Skip to main content

Managing Complications of Vascular Surgery and Endovascular Therapy

  • Chapter
  • First Online:
Diabetes and Peripheral Vascular Disease

Part of the book series: Contemporary Diabetes ((CDI))

  • 2361 Accesses

Abstract

The literature describing the merits of open and endovascular arterial therapy for lower extremity peripheral arterial occlusive disease is well represented with details of technique and operative results. Despite the robust data describing the efficacy and impact of infrainguinal arterial reconstruction on quality of life and limb salvage, little focus is placed on the potential complications that can befall patients who undergo these interventions. Frequently, revascularization strategies require complex considerations regarding a variety of variables, including the inflow vessel, distal target, hemodynamic impact of the involved lesion(s), conduit availability and quality, and perhaps most importantly, anticipated benefit to the patient. Even in the most optimal situation, the most experienced and competent vascular specialist will encounter a myriad of complications in the management of peripheral vascular arterial occlusive disease. These problems reflect the complexity of the anatomic and patient-specific covariates that invariably impact outcome. Over the last two decades, the contemporary vascular surgeon has seen a paradigm shift in the management of lower extremity occlusive disease due to the rapid proliferation and adoption of innumerable endoluminal therapies. With this change, more and more patients are undergoing revascularization because previous so-called “high-risk” or “no-option” patients receive hybrid or endoluminal salvage procedures. The impact of these new treatment strategies is under increasing scrutiny, and calls for comparative effectiveness research have been clearly vocalized. A number of previously unforeseen or unanticipated complications have been introduced into the care of these patients as a result of these novel techniques. Complications that result from the management of peripheral arterial disease frequently result in amputation or death. Accordingly, the contemporary vascular surgeon needs to be well versed in the management of complications that may occur with both open and endovascular treatment of peripheral vascular disease. This chapter highlights the technical complications and subsequent management strategies of infrainguinal bypass surgery, as well as, those resulting from endovascular treatment of lower extremity ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergamini TM, et al. Experience with in situ saphenous vein bypasses during 1981 to 1989: determinant factors of long-term patency. J Vasc Surg. 1991;13(1):137–47. Discussion 148–9.

    Article  PubMed  CAS  Google Scholar 

  2. Sladen JG, Gilmour JL. Vein graft stenosis. Characteristics and effect of treatment. Am J Surg. 1981;141(5):549–53.

    Article  PubMed  CAS  Google Scholar 

  3. Berceli SA, et al. Surgical and endovascular revision of infrainguinal vein bypass grafts: analysis of midterm outcomes from the PREVENT III trial. J Vasc Surg. 2007;46(6):1173–9.

    Article  PubMed  Google Scholar 

  4. Bandyk DF, et al. Durability of the in situ saphenous vein arterial bypass: a comparison of primary and secondary patency. J Vasc Surg. 1987;5(2):256–68.

    PubMed  CAS  Google Scholar 

  5. Cohen JR, et al. Recognition and management of impending vein-graft failure. Importance for long-term patency. Arch Surg. 1986;121(7):758–9.

    Article  PubMed  CAS  Google Scholar 

  6. Bandyk DF, et al. Durability of vein graft revision: the outcome of secondary procedures. J Vasc Surg. 1991;13(2):200–8. Discussion 209–10.

    Article  PubMed  CAS  Google Scholar 

  7. Rzucidlo EM, et al. Prediction of early graft failure with intraoperative completion duplex ultrasound scan. J Vasc Surg. 2002;36(5):975–81.

    Article  PubMed  Google Scholar 

  8. Bandyk DF, et al. Monitoring functional patency of in situ saphenous vein bypasses: the impact of a surveillance protocol and elective revision. J Vasc Surg. 1989;9(2):286–96.

    PubMed  CAS  Google Scholar 

  9. Seeger JM, et al. Potential predictors of outcome in patients with tissue loss who undergo infrainguinal vein bypass grafting. J Vasc Surg. 1999;30(3):427–35.

    Article  PubMed  CAS  Google Scholar 

  10. Stept LL, et al. Technical defects as a cause of early graft failure after femorodistal bypass. Arch Surg. 1987;122(5):599–604.

    Article  PubMed  CAS  Google Scholar 

  11. Donaldson MC, Mannick JA, Whittemore AD. Causes of primary graft failure after in situ saphenous vein bypass grafting. J Vasc Surg. 1992;15(1):113–8. Discussion 118–20.

    Article  PubMed  CAS  Google Scholar 

  12. Raffetto JD, et al. Differences in risk factors for lower extremity arterial occlusive disease. J Am Coll Surg. 2005;201(6):918–24.

    Article  PubMed  Google Scholar 

  13. Gibson KD, et al. Identification of factors predictive of lower extremity vein graft thrombosis. J Vasc Surg. 2001;33(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  14. Woodburn KR, et al. Clinical, biochemical, and rheologic factors affecting the outcome of infrainguinal bypass grafting. J Vasc Surg. 1996;24(4):639–46.

    Article  PubMed  CAS  Google Scholar 

  15. Saltzberg SS, et al. Outcome of lower-extremity revascularization in patients younger than 40 years in a predominantly diabetic population. J Vasc Surg. 2003;38(5):1056–9.

    Article  PubMed  Google Scholar 

  16. Taylor Jr LM, Edwards JM, Porter JM. Present status of reversed vein bypass grafting: five-year results of a modern series. J Vasc Surg. 1990;11(2):193–205. Discussion 205–6.

    PubMed  Google Scholar 

  17. Neville RF, Tempesta B, Sidway AN. Tibial bypass for limb salvage using polytetrafluoroethylene and a distal vein patch. J Vasc Surg. 2001;33(2):266–71. Discussion 271–2.

    Article  PubMed  CAS  Google Scholar 

  18. Neville RF, et al. Distal vein patch with an arteriovenous fistula: a viable option for the patient without autogenous conduit and severe distal occlusive disease. J Vasc Surg. 2009;50(1):83–8.

    Article  PubMed  Google Scholar 

  19. Moawad J, Gagne P. Adjuncts to improve patency of infrainguinal prosthetic bypass grafts. Vasc Endovascular Surg. 2003;37(6):381–6.

    Article  PubMed  Google Scholar 

  20. Erickson CA, et al. Ongoing vascular laboratory surveillance is essential to maximize long-term in situ saphenous vein bypass patency. J Vasc Surg. 1996;23(1):18–26. Discussion 26–7.

    Article  PubMed  CAS  Google Scholar 

  21. Rhodes JM, et al. The benefits of secondary interventions in patients with failing or failed pedal bypass grafts. Am J Surg. 1999;178(2):151–5.

    Article  PubMed  CAS  Google Scholar 

  22. Nguyen LL, et al. Infrainguinal vein bypass graft revision: factors affecting long-term outcome. J Vasc Surg. 2004;40(5):916–23.

    Article  PubMed  Google Scholar 

  23. Landry GJ, et al. Long-term outcome of revised lower-extremity bypass grafts. J Vasc Surg. 2002;35(1):56–62. Discussion 62–3.

    PubMed  Google Scholar 

  24. Pomposelli FB, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003;37(2):307–15.

    Article  PubMed  Google Scholar 

  25. Sullivan Jr TR, et al. Clinical results of common strategies used to revise infrainguinal vein grafts. J Vasc Surg. 1996;24(6):909–17. Discussion 917–9.

    Article  PubMed  Google Scholar 

  26. Schneider PA, Caps MT, Nelken N. Infrainguinal vein graft stenosis: cutting balloon angioplasty as the first-line treatment of choice. J Vasc Surg. 2008;47(5):960–6. Discussion 966.

    Article  PubMed  Google Scholar 

  27. Alpert JR, et al. Treatment of vein graft stenosis by balloon catheter dilation. JAMA. 1979;242(25):2769–71.

    Article  PubMed  CAS  Google Scholar 

  28. Simosa HF, et al. Predictors of failure after angioplasty of infrainguinal vein bypass grafts. J Vasc Surg. 2009;49(1):117–21.

    Article  PubMed  Google Scholar 

  29. Whittemore AD, et al. Secondary femoropopliteal reconstruction. Ann Surg. 1981;193(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  30. Belkin M, et al. Observations on the use of thrombolytic agents for thrombotic occlusion of infrainguinal vein grafts. J Vasc Surg. 1990;11(2):289–94. Discussion 295–6.

    PubMed  CAS  Google Scholar 

  31. Nackman GB, et al. Thrombolysis of occluded infrainguinal vein grafts: predictors of outcome. J Vasc Surg. 1997;25(6):1023–31. Discussion 1031–2.

    Article  PubMed  CAS  Google Scholar 

  32. Belkin M. Secondary bypass after infrainguinal bypass graft failure. Semin Vasc Surg. 2009;22(4):234–9.

    Article  PubMed  Google Scholar 

  33. Andros G, et al. Arm veins for arterial revascularization of the leg: arteriographic and clinical observations. J Vasc Surg. 1986;4(5):416–27.

    PubMed  CAS  Google Scholar 

  34. Harward TR, et al. The use of arm vein conduits during infrageniculate arterial bypass. J Vasc Surg. 1992;16(3):420–6. Discussion 426–7.

    Article  PubMed  CAS  Google Scholar 

  35. Greenblatt DY, Rajamanickam V, Mell MW. Predictors of surgical site infection after open lower extremity revascularization. J Vasc Surg. 2011;54(2):433–9.

    Article  PubMed  Google Scholar 

  36. Giles KA, et al. Body mass index: surgical site infections and mortality after lower extremity bypass from the National Surgical Quality Improvement Program 2005-2007. Ann Vasc Surg. 2010;24(1):48–56.

    Article  PubMed  Google Scholar 

  37. Childress BB, et al. Impact of an absorbent silver-eluting dressing system on lower extremity revascularization wound complications. Ann Vasc Surg. 2007;21(5):598–602.

    Article  PubMed  Google Scholar 

  38. Alkon JD, et al. Management of complex groin wounds: preferred use of the rectus femoris muscle flap. Plast Reconstr Surg. 2005;115(3):776–83. Discussion 784–5.

    Article  PubMed  CAS  Google Scholar 

  39. Veith FJ. Presidential address: Charles Darwin and vascular surgery. J Vasc Surg. 1997;25(1):8–18.

    Article  PubMed  CAS  Google Scholar 

  40. Messina LM, et al. Clinical characteristics and surgical management of vascular complications in patients undergoing cardiac catheterization: interventional versus diagnostic procedures. J Vasc Surg. 1991;13(5):593–600.

    Article  PubMed  CAS  Google Scholar 

  41. Nowygrod R, et al. Trends, complications, and mortality in peripheral vascular surgery. J Vasc Surg. 2006;43(2):205–16.

    Article  PubMed  Google Scholar 

  42. Hoffer EK, Bloch RD. Percutaneous arterial closure devices. J Vasc Interv Radiol. 2003;14(7):865–85.

    Article  PubMed  Google Scholar 

  43. Singh H, et al. Quality improvement guidelines for diagnostic arteriography. J Vasc Interv Radiol. 2003;14(9 Pt 2):S283–8.

    PubMed  Google Scholar 

  44. Fitts J, et al. Fluoroscopy-guided femoral artery puncture reduces the risk of PCI-related vascular complications. J Interv Cardiol. 2008;21(3):273–8.

    Article  PubMed  Google Scholar 

  45. Oweida SW, et al. Postcatheterization vascular complications associated with percutaneous transluminal coronary angioplasty. J Vasc Surg. 1990;12(3):310–5.

    PubMed  CAS  Google Scholar 

  46. McCann RL, Schwartz LB, Pieper KS. Vascular complications of cardiac catheterization. J Vasc Surg. 1991;14(3):375–81.

    Article  PubMed  CAS  Google Scholar 

  47. Starnes BW, et al. Percutaneous arterial closure in peripheral vascular disease: a prospective randomized evaluation of the Perclose device. J Vasc Surg. 2003;38(2):263–71.

    Article  PubMed  CAS  Google Scholar 

  48. Mackrell PJ, et al. Can the Perclose suture-mediated closure system be used safely in patients undergoing diagnostic and therapeutic angiography to treat chronic lower extremity ischemia? J Vasc Surg. 2003;38(6):1305–8.

    Article  PubMed  Google Scholar 

  49. Wilson JS, et al. Management of vascular complications following femoral artery catheterization with and without percutaneous arterial closure devices. Ann Vasc Surg. 2002;16(5):597–600.

    Article  PubMed  Google Scholar 

  50. Koreny M, et al. Arterial puncture closing devices compared with standard manual compression after cardiac catheterization: systematic review and meta-analysis. JAMA. 2004;291(3):350–7.

    Article  PubMed  CAS  Google Scholar 

  51. Goodney PP, Chang RW, Cronenwett JL. A percutaneous arterial closure protocol can decrease complications after endovascular interventions in vascular surgery patients. J Vasc Surg. 2008;48(6):1481–8.

    Article  PubMed  Google Scholar 

  52. Muller-Hulsbeck S, et al. Final results of the protected superficial femoral artery trial using the FilterWire EZ system. Cardiovasc Intervent Radiol. 2010;33(6):1120–7.

    Article  PubMed  Google Scholar 

  53. Shrikhande GV, et al. Lesion types and device characteristics that predict distal embolization during percutaneous lower extremity interventions. J Vasc Surg. 2011;53(2):347–52.

    Article  PubMed  Google Scholar 

  54. Scali ST, et al. Long-term results of open and endovascular revascularization of superficial femoral artery occlusive disease. J Vasc Surg. 2011;54(3):714–21.

    Article  PubMed  Google Scholar 

  55. Gallagher KA, et al. Endovascular management as first therapy for chronic total occlusion of the lower extremity arteries: comparison of balloon angioplasty, stenting, and directional atherectomy. J Endovasc Ther. 2011;18(5):624–37.

    Article  PubMed  Google Scholar 

  56. Iida O, et al. Long-term outcomes and risk stratification of patency following nitinol stenting in the femoropopliteal segment: retrospective multicenter analysis. J Endovasc Ther. 2011;18(6):753–61.

    Article  PubMed  Google Scholar 

  57. Taylor SM, et al. Clinical success using patient-oriented outcome measures after lower extremity bypass and endovascular intervention for ischemic tissue loss. J Vasc Surg. 2009;50(3):534–41. Discussion 541.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore T. Scali M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scali, S.T., Flynn, T.C. (2012). Managing Complications of Vascular Surgery and Endovascular Therapy. In: Shrikhande, G., McKinsey, J. (eds) Diabetes and Peripheral Vascular Disease. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-158-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-158-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-157-8

  • Online ISBN: 978-1-62703-158-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics