Skip to main content

Surgical Treatment of Infrainguinal Occlusive Disease in Diabetes

  • Chapter
  • First Online:
Diabetes and Peripheral Vascular Disease

Part of the book series: Contemporary Diabetes ((CDI))

  • 2325 Accesses

Abstract

Diabetes is a ubiquitous disease process that initiates and accelerates the progression of atherosclerosis in all vascular territories, and remains the leading cause of limb loss in the United States. Diabetes and smoking are the two strongest risk factors for peripheral artery disease (PAD), and when present in combination they portend a high risk for progression to critical limb ischemia (CLI). The severity of the clinical presentation can be broad, ranging from symptoms of intermittent claudication (IC) to CLI with extensive gangrene. Importantly, many patients with diabetes present with CLI without an antecedent history of IC due to the common anatomic pattern of diffuse infrapopliteal disease with proximal sparing. The goal of surgical intervention for advanced PAD is to preserve a functional limb—through relief of pain, clearance of infection, and promotion of wound healing. Four types of treatment options exist: medical management, open surgical revascularization, endovascular intervention, or primary amputation. Although patients with diabetes tend to have unique clinical presentations and anatomic patterns of disease compared to nondiabetics, the vascular treatment algorithms for advanced PAD are broadly similar. Therapeutic decisions are individualized for each patient, factoring in estimated life expectancy, current functional status, comorbid conditions, severity of ischemia, and the underlying vascular anatomy. Diabetic patients with CLI are a high risk group, underscoring the importance of making the correct decision about which intervention to apply, and executing a quality revascularization in a timely fashion. Although patency outcomes of infrainguinal vein grafts are no different in diabetes, limb loss and mortality rates tend to be higher in this overall population. Aggressive management of the ischemic–neuropathic diabetic foot is the critical component to successful limb salvage, and requires multidisciplinary expertise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinhas-Hamiel O, Zeitler P. The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr. 2005;146(5):693–700.

    Article  PubMed  Google Scholar 

  2. Heron M, et al. Deaths: final data for 2006. Natl Vital Stat Rep. 2009;57(14):1–134.

    PubMed  Google Scholar 

  3. Umpierrez GE, et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(1):16–38.

    Article  PubMed  CAS  Google Scholar 

  4. Hu FB, et al. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch Intern Med. 2001;161(14):1717–23.

    Article  PubMed  CAS  Google Scholar 

  5. Ramsey SD, et al. Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care. 1999;22(3):382–7.

    Article  PubMed  CAS  Google Scholar 

  6. Conrad MC. Large and small artery occlusion in diabetics and nondiabetics with severe vascular disease. Circulation. 1967;36(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  7. Hooi JD, et al. The prognosis of non-critical limb ischaemia: a systematic review of population-based evidence. Br J Gen Pract. 1999;49(438):49–55.

    PubMed  CAS  Google Scholar 

  8. Jonason T, Ringqvist I. Diabetes mellitus and intermittent claudication. Relation between peripheral vascular complications and location of the occlusive atherosclerosis in the legs. Acta Med Scand. 1985;218(2):217–21.

    Article  PubMed  CAS  Google Scholar 

  9. Hooi JD, et al. Incidence of and risk factors for asymptomatic peripheral arterial occlusive disease: a longitudinal study. Am J Epidemiol. 2001;153(7):666–72.

    Article  PubMed  CAS  Google Scholar 

  10. Hirsch AT, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113(11):e463–654.

    Article  PubMed  Google Scholar 

  11. Murphy TP, et al. Supervised exercise versus primary stenting for claudication resulting from aortoiliac peripheral artery disease: six-month outcomes from the claudication: exercise versus endoluminal revascularization (CLEVER) study. Circulation. 2012;125(1):130–9.

    Article  PubMed  Google Scholar 

  12. Bradbury AW, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: an intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy. J Vasc Surg. 2010;51(5 Suppl):5S–17.

    Article  PubMed  Google Scholar 

  13. Bradbury AW, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: a description of the severity and extent of disease using the Bollinger angiogram scoring method and the TransAtlantic Inter-Society Consensus II classification. J Vasc Surg. 2010;51(5 Suppl):32S–42.

    Article  PubMed  Google Scholar 

  14. Bradbury AW, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: analysis of amputation free and overall survival by treatment received. J Vasc Surg. 2010;51(5 Suppl):18S–31.

    Article  PubMed  Google Scholar 

  15. Conte MS, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43(4):742–51. Discussion 751.

    Article  PubMed  Google Scholar 

  16. Brass EP, et al. Parenteral therapy with lipo-ecraprost, a lipid-based formulation of a PGE1 analog, does not alter six-month outcomes in patients with critical leg ischemia. J Vasc Surg. 2006;43(4):752–9.

    Article  PubMed  Google Scholar 

  17. Monahan TS, Owens CD. Risk factors for lower-extremity vein graft failure. Semin Vasc Surg. 2009;22(4):216–26.

    Article  PubMed  Google Scholar 

  18. Twine CP, McLain AD. Graft type for femoro-popliteal bypass surgery. Cochrane Database Syst Rev. (5):CD001487.

    Google Scholar 

  19. Taylor Jr LM, et al. Autogenous reversed vein bypass for lower extremity ischemia in patients with absent or inadequate greater saphenous vein. Am J Surg. 1987;153(5):505–10.

    Article  PubMed  Google Scholar 

  20. Chew DK, et al. Bypass in the absence of ipsilateral greater saphenous vein: safety and superiority of the contralateral greater saphenous vein. J Vasc Surg. 2002;35(6):1085–92.

    Article  PubMed  Google Scholar 

  21. Faries PL, et al. The use of arm vein in lower-­extremity revascularization: results of 520 procedures performed in eight years. J Vasc Surg. 2000;31(1 Pt 1):50–9.

    Article  PubMed  CAS  Google Scholar 

  22. Londrey GL, et al. Infrainguinal reconstruction with arm vein, lesser saphenous vein, and remnants of greater saphenous vein: a report of 257 cases. J Vasc Surg. 1994;20(3):451–6. Discussion 456–7.

    Article  PubMed  CAS  Google Scholar 

  23. Stonebridge PA, Prescott RJ, Ruckley CV. Randomized trial comparing infrainguinal polytetrafluoroethylene bypass grafting with and without vein interposition cuff at the distal anastomosis. The Joint Vascular Research Group. J Vasc Surg. 1997;26(4):543–50.

    Article  PubMed  CAS  Google Scholar 

  24. Norgren L, et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33 Suppl 1:S1–75.

    Article  PubMed  Google Scholar 

  25. Walsh DB, et al. The natural history of superficial femoral artery stenoses. J Vasc Surg. 1991;14(3):299–304.

    Article  PubMed  CAS  Google Scholar 

  26. Reed AB, et al. Usefulness of autogenous bypass grafts originating distal to the groin. J Vasc Surg. 2002;35(1):48–54. Discussion 54–5.

    PubMed  Google Scholar 

  27. Ballotta E, et al. Prospective randomized study on reversed saphenous vein infrapopliteal bypass to treat limb-threatening ischemia: common femoral artery versus superficial femoral or popliteal and tibial arteries as inflow. J Vasc Surg. 2004;40(4):732–40.

    Article  PubMed  Google Scholar 

  28. Schanzer A, et al. Superficial femoral artery percutaneous intervention is an effective strategy to optimize inflow for distal origin bypass grafts. J Vasc Surg. 2007;45(4):740–3.

    Article  PubMed  Google Scholar 

  29. Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg. 1987;40(2):113–41.

    Article  PubMed  CAS  Google Scholar 

  30. Attinger CE, et al. Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions, and revascularization. Plast Reconstr Surg. 2006;117(7 Suppl):261S–93.

    Article  PubMed  CAS  Google Scholar 

  31. Neville RF, et al. Revascularization of a specific angiosome for limb salvage: does the target artery matter? Ann Vasc Surg. 2009;23(3):367–73.

    Article  PubMed  Google Scholar 

  32. Darling 3rd RC, et al. Choice of peroneal or dorsalis pedis artery bypass for limb salvage. Semin Vasc Surg. 1997;10(1):17–22.

    PubMed  Google Scholar 

  33. Hughes K, et al. Bypass to plantar and tarsal arteries: an acceptable approach to limb salvage. J Vasc Surg. 2004;40(6):1149–57.

    Article  PubMed  Google Scholar 

  34. Pomposelli Jr FB, et al. Dorsalis pedis arterial bypass: durable limb salvage for foot ischemia in patients with diabetes mellitus. J Vasc Surg. 1995;21(3):375–84.

    Article  PubMed  Google Scholar 

  35. Pomposelli FB, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003;37(2):307–15.

    Article  PubMed  Google Scholar 

  36. Samson RH, Showalter DP, Yunis JP. Isolated femoropopliteal bypass graft for limb salvage after failed tibial reconstruction: a viable alternative to amputation. J Vasc Surg. 1999;29(3):409–12.

    Article  PubMed  CAS  Google Scholar 

  37. Kram HB, et al. Late results of two hundred seventeen femoropopliteal bypasses to isolated popliteal artery segments. J Vasc Surg. 1991;14(3):386–90.

    Article  PubMed  CAS  Google Scholar 

  38. Wengerter KR, et al. Prospective randomized multicenter comparison of in situ and reversed vein infrapopliteal bypasses. J Vasc Surg. 1991;13(2):189–97. Discussion 197–9.

    Article  PubMed  CAS  Google Scholar 

  39. Schanzer A, et al. Technical factors affecting autogenous vein graft failure: observations from a large multicenter trial. J Vasc Surg. 2007;46(6):1180–90. Discussion 1190.

    Article  PubMed  Google Scholar 

  40. Mills JL, Fujitani RM, Taylor SM. Contribution of routine intraoperative completion arteriography to early infrainguinal bypass patency. Am J Surg. 1992;164(5):506–10. Discussion 510–1.

    Article  PubMed  CAS  Google Scholar 

  41. Johnson BL, et al. Intraoperative duplex monitoring of infrainguinal vein bypass procedures. J Vasc Surg. 2000;31(4):678–90.

    Article  PubMed  CAS  Google Scholar 

  42. Schouten O, et al. Fluvastatin and perioperative events in patients undergoing vascular surgery. N Engl J Med. 2009;361(10):980–9.

    Article  PubMed  CAS  Google Scholar 

  43. Tinder CN, Bandyk DF. Detection of imminent vein graft occlusion: what is the optimal surveillance program? Semin Vasc Surg. 2009;22(4):252–60.

    Article  PubMed  Google Scholar 

  44. Sumpio BE, et al. The role of interdisciplinary team approach in the management of the diabetic foot: a joint statement from the Society for Vascular Surgery and the American Podiatric Medical Association. J Am Podiatr Med Assoc. 2010;100(4):309–11.

    PubMed  Google Scholar 

  45. Akbari CM, et al. Lower extremity revascularization in diabetes: late observations. Arch Surg. 2000;135(4):452–6.

    Article  PubMed  CAS  Google Scholar 

  46. Wolfle KD, et al. Graft patency and clinical outcome of femorodistal arterial reconstruction in diabetic and non-diabetic patients: results of a multicentre comparative analysis. Eur J Vasc Endovasc Surg. 2003;25(3):229–34.

    Article  PubMed  CAS  Google Scholar 

  47. Axelrod DA, et al. Perioperative cardiovascular risk stratification of patients with diabetes who undergo elective major vascular surgery. J Vasc Surg. 2002;35(5):894–901.

    Article  PubMed  Google Scholar 

  48. Hamdan AD, et al. Lack of association of diabetes with increased postoperative mortality and cardiac morbidity: results of 6565 major vascular operations. Arch Surg. 2002;137(4):417–21.

    Article  PubMed  Google Scholar 

  49. Nguyen LL, et al. Disparity in outcomes of surgical revascularization for limb salvage: race and gender are synergistic determinants of vein graft failure and limb loss. Circulation. 2009;119(1):123–30.

    Article  PubMed  Google Scholar 

  50. Lantis 2nd JC, et al. Infrainguinal bypass grafting in patients with end-stage renal disease: improving outcomes? J Vasc Surg. 2001;33(6):1171–8.

    Article  PubMed  Google Scholar 

  51. Owens CD, et al. Refinement of survival prediction in patients undergoing lower extremity bypass surgery: stratification by chronic kidney disease classification. J Vasc Surg. 2007;45(5):944–52.

    Article  PubMed  Google Scholar 

  52. Golledge J, et al. Critical assessment of the outcome of infrainguinal vein bypass. Ann Surg. 2001;234(5):697–701.

    Article  PubMed  CAS  Google Scholar 

  53. Abou-Zamzam Jr AM, et al. Functional outcome after infrainguinal bypass for limb salvage. J Vasc Surg. 1997;25(2):287–95. Discussion 295–7.

    Article  PubMed  Google Scholar 

  54. Nguyen LL, et al. Prospective multicenter study of quality of life before and after lower extremity vein bypass in 1404 patients with critical limb ischemia. J Vasc Surg. 2006;44(5):977–83. Discussion 983–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Conte M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vartanian, S.M., Conte, M.S. (2012). Surgical Treatment of Infrainguinal Occlusive Disease in Diabetes. In: Shrikhande, G., McKinsey, J. (eds) Diabetes and Peripheral Vascular Disease. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-158-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-158-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-157-8

  • Online ISBN: 978-1-62703-158-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics