Skip to main content

Fibroblastic and Myofibroblastic Pediatric Soft Tissue Tumors

  • Chapter
  • First Online:
Pediatric Neoplasia

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 916 Accesses

Abstract

Infantile/congenital fibrosarcoma is a rare tumor which peaks in incidence within the first 3 months of life, may be present at birth in up to 40% of cases, and predominates within the first 4 years (Pediatr Pathol 14(1):133–150, 1994). Clinically it presents as a rapidly growing, painless mass in the deep soft tissues of the distal limbs (Eur J Cancer 32A(12):2094–2100, 1996). Less commonly it involves the trunk or head and neck (Enzinger and Weiss’s soft tissue tumors, 5th edn, 2008). This tumor represents a distinct clinical entity from the adult form of fibrosarcoma based on its behavior as well as its signature chromosomal translocation t(12;15). In general, patients do quite well with surgical excision showing >90% 5 year survival, only approximately one-third of tumors recurring, and a very small minority metastasizing (J Surg Oncol 78(4):225–231, 2001; Cancer 38(2):729–739, 1976; J Pediatr Hematol Oncol 24(9):722–726, 2002; Cancer 40(4):1711–1721, 1977). The tumor histologically resembles the adult-type fibrosarcoma with intersecting highly cellular fascicles of monotonous spindled cells commonly with interspersed lymphocytes (Fig. 9.1). Mitoses and necrosis are variably present. Alternate histology is sometime seen to include hemangiopericytic vasculature, calcification, central necrosis, infantile myofibromatosis-like areas, and variable amounts of pleomorphism after treatment (Cancer Genet Cytogenet 132(1):1–13, 2002). The differential diagnoses to be considered encompass adult-type fibrosarcoma, monophasic synovial sarcoma, malignant peripheral nerve sheath tumor, infantile hemangiopericytoma, infantile myofibromatosis, spindled rhabdomyosarcoma, and the cellular variant of infantile fibromatosis. Close examination of H&E histology of these tumors, with most only staining positive for Vimentin, can help pare down this differential. However, molecular assessment of the tumor either by FISH or RT-PCR usually on paraffin-embedded tissue is the key diagnostic component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coffin CM, Jaszcz W, O’Shea PA, Dehner LP. So-called congenital-infantile fibrosarcoma: does it exist and what is it? Pediatr Pathol. 1994;14(1):133–50.

    PubMed  CAS  Google Scholar 

  2. Fisher C. Fibromatosis and fibrosarcoma in infancy and childhood. Eur J Cancer. 1996; 32A(12):2094–100.

    PubMed  CAS  Google Scholar 

  3. Weiss SW, Goldblum JR. Enzinger and Weiss’s soft tissue tumors. 5th ed. Philadelphia, PA: Mosby/Elsevier; 2008.

    Google Scholar 

  4. Cecchetto G, Carli M, Alaggio R, et al. Fibrosarcoma in pediatric patients: results of the Italian Cooperative Group studies (1979–1995). J Surg Oncol. 2001;78(4):225–31.

    PubMed  CAS  Google Scholar 

  5. Chung EB, Enzinger FM. Infantile fibrosarcoma. Cancer. 1976;38(2):729–39.

    PubMed  CAS  Google Scholar 

  6. Loh ML, Ahn P, Perez-Atayde AR, Gebhardt MC, Shamberger RC, Grier HE. Treatment of infantile fibrosarcoma with chemotherapy and surgery: results from the Dana-Farber Cancer Institute and Children’s Hospital, Boston. J Pediatr Hematol Oncol. 2002;24(9):722–6.

    PubMed  Google Scholar 

  7. Soule EH, Pritchard DJ. Fibrosarcoma in infants and children: a review of 110 cases. Cancer. 1977;40(4):1711–21.

    PubMed  CAS  Google Scholar 

  8. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: congenital (infantile) fibrosarcoma and mesoblastic nephroma. Cancer Genet Cytogenet. 2002;132(1):1–13.

    PubMed  CAS  Google Scholar 

  9. Rubin BP, Chen CJ, Morgan TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153(5):1451–8.

    PubMed  CAS  Google Scholar 

  10. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18(2):184–7.

    PubMed  CAS  Google Scholar 

  11. Bourgeois JM, Knezevich SR, Mathers JA, Sorensen PH. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol. 2000;24(7):937–46.

    PubMed  CAS  Google Scholar 

  12. Adam LR, Davison EV, Malcolm AJ, Pearson AD, Craft AW. Cytogenetic analysis of a congenital fibrosarcoma. Cancer Genet Cytogenet. 1991;52(1):37–41.

    PubMed  CAS  Google Scholar 

  13. Argyle JC, Tomlinson GE, Stewart D, Schneider NR. Ultrastructural, immunocytochemical, and cytogenetic characterization of a large congenital fibrosarcoma. Arch Pathol Lab Med. 1992;116(9):972–5.

    PubMed  CAS  Google Scholar 

  14. Bernstein R, Zeltzer PM, Lin F, Carpenter PM. Trisomy 11 and other nonrandom trisomies in congenital fibrosarcoma. Cancer Genet Cytogenet. 1994;78(1):82–6.

    PubMed  CAS  Google Scholar 

  15. Dal Cin P, Brock P, Casteels-Van Daele M, De Wever I, Van Damme B, Van den Berghe H. Cytogenetic characterization of congenital or infantile fibrosarcoma. Eur J Pediatr. 1991; 150(8):579–81.

    PubMed  CAS  Google Scholar 

  16. Knezevich SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE, Sorensen PH. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998;58(22):5046–8.

    PubMed  CAS  Google Scholar 

  17. Mandahl N, Heim S, Rydholm A, Willen H, Mitelman F. Nonrandom numerical chromosome aberrations (+8, +11, +17, +20) in infantile fibrosarcoma. Cancer Genet Cytogenet. 1989; 40(1):137–9.

    PubMed  CAS  Google Scholar 

  18. Speleman F, Dal Cin P, De Potter K, et al. Cytogenetic investigation of a case of congenital fibrosarcoma. Cancer Genet Cytogenet. 1989;39(1):21–4.

    PubMed  CAS  Google Scholar 

  19. Gorman PA, Malone M, Pritchard J, Sheer D. Deletion of part of the short arm of chromosome 17 in a congenital fibrosarcoma. Cancer Genet Cytogenet. 1990;48(2):193–8.

    PubMed  CAS  Google Scholar 

  20. Schofield DE, Fletcher JA, Grier HE, Yunis EJ. Fibrosarcoma in infants and children. Application of new techniques. Am J Surg Pathol. 1994;18(1):14–24.

    PubMed  CAS  Google Scholar 

  21. Strehl S, Ladenstein R, Wrba F, Salzer-Kuntschik M, Gadner H, Ambros PF. Translocation (12;13) in a case of infantile fibrosarcoma. Cancer Genet Cytogenet. 1993;71(1):94–6.

    PubMed  CAS  Google Scholar 

  22. Jin W, Kim BC, Tognon C, et al. The ETV6-NTRK3 chimeric tyrosine kinase suppresses TGF-beta signaling by inactivating the TGF-beta type II receptor. Proc Natl Acad Sci U S A. 2005;102(45):16239–44.

    PubMed  CAS  Google Scholar 

  23. Jin W, Yun C, Hobbie A, Martin MJ, Sorensen PH, Kim SJ. Cellular transformation and activation of the phosphoinositide-3-kinase-Akt cascade by the ETV6-NTRK3 chimeric tyrosine kinase requires c-Src. Cancer Res. 2007;67(7):3192–200.

    PubMed  CAS  Google Scholar 

  24. Martin MJ, Melnyk N, Pollard M, et al. The insulin-like growth factor I receptor is required for Akt activation and suppression of anoikis in cells transformed by the ETV6-NTRK3 chimeric tyrosine kinase. Mol Cell Biol. 2006;26(5):1754–69.

    PubMed  CAS  Google Scholar 

  25. Tognon C, Garnett M, Kenward E, Kay R, Morrison K, Sorensen PH. The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res. 2001;61(24):8909–16.

    PubMed  CAS  Google Scholar 

  26. Wai DH, Knezevich SR, Lucas T, Jansen B, Kay RJ, Sorensen PH. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene. 2000;19(7):906–15.

    PubMed  CAS  Google Scholar 

  27. Eguchi M, Eguchi-Ishimae M, Tojo A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood. 1999;93(4):1355–63.

    PubMed  CAS  Google Scholar 

  28. Tognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367–76.

    PubMed  CAS  Google Scholar 

  29. Coffin CM, Hornick JL, Zhou H, Fletcher CD. Gardner fibroma: a clinicopathologic and immunohistochemical analysis of 45 patients with 57 fibromas. Am J Surg Pathol. 2007; 31(3):410–6.

    PubMed  Google Scholar 

  30. Gardner EJ, Burt RW, Freston JW. Gastrointestinal polyposis: syndromes and genetic mechanisms. West J Med. 1980;132(6):488–99.

    PubMed  CAS  Google Scholar 

  31. Gardner EJ. Follow-up study of a family group exhibiting dominant inheritance for a syndrome including intestinal polyps, osteomas, fibromas and epidermal cysts. Am J Hum Genet. 1962;14:376–90.

    PubMed  CAS  Google Scholar 

  32. Gardner EJ, Richards RC. Multiple cutaneous and subcutaneous lesions occurring simultaneously with hereditary polyposis and osteomatosis. Am J Hum Genet. 1953;5(2):139–47.

    PubMed  CAS  Google Scholar 

  33. Clark SK, Smith TG, Katz DE, Reznek RH, Phillips RK. Identification and progression of a desmoid precursor lesion in patients with familial adenomatous polyposis. Br J Surg. 1998; 85(7):970–3.

    PubMed  CAS  Google Scholar 

  34. Wehrli BM, Weiss SW, Yandow S, Coffin CM. Gardner-associated fibromas (GAF) in young patients: a distinct fibrous lesion that identifies unsuspected Gardner syndrome and risk for fibromatosis. Am J Surg Pathol. 2001;25(5):645–51.

    PubMed  CAS  Google Scholar 

  35. Allen PW. Nuchal-type fibroma appearance in a desmoid fibromatosis. Am J Surg Pathol. 2001;25(6):828–9.

    PubMed  CAS  Google Scholar 

  36. Bussey HJ. Historical developments in familial polyposis coli. Semin Surg Oncol. 1987;3(2): 67–70.

    PubMed  CAS  Google Scholar 

  37. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev. 2001;1(1):55–67.

    CAS  Google Scholar 

  38. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.

    PubMed  CAS  Google Scholar 

  39. Montgomery E, Folpe AL. The diagnostic value of beta-catenin immunohistochemistry. Adv Anat Pathol. 2005;12(6):350–6.

    PubMed  CAS  Google Scholar 

  40. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264): 1023–6.

    PubMed  CAS  Google Scholar 

  41. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422–6.

    PubMed  CAS  Google Scholar 

  42. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12.

    PubMed  CAS  Google Scholar 

  43. Weiss SW, Goldblum JR. Enzinger & Weiss’s soft tissue tumors. 5th ed. St Louis: Mosby; 2008.

    Google Scholar 

  44. Lips DJ, Barker N, Clevers H, Hennipman A. The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). Eur J Surg Oncol. 2009;35(1):3–10.

    PubMed  CAS  Google Scholar 

  45. Eccles DM, van der Luijt R, Breukel C, et al. Hereditary desmoid disease due to a frameshift mutation at codon 1924 of the APC gene. Am J Hum Genet. 1996;59(6):1193–201.

    PubMed  CAS  Google Scholar 

  46. Scott RJ, Froggatt NJ, Trembath RC, Evans DG, Hodgson SV, Maher ER. Familial infiltrative fibromatosis (desmoid tumours) (MIM135290) caused by a recurrent 3′ APC gene mutation. Hum Mol Genet. 1996;5(12):1921–4.

    PubMed  CAS  Google Scholar 

  47. Nuyttens JJ, Rust PF, Thomas Jr CR, Turrisi 3rd AT. Surgery versus radiation therapy for patients with aggressive fibromatosis or desmoid tumors: a comparative review of 22 articles. Cancer. 2000;88(7):1517–23.

    PubMed  CAS  Google Scholar 

  48. Pritchard DJ, Nascimento AG, Petersen IA. Local control of extra-abdominal desmoid tumors. J Bone Joint Surg. 1996;78(6):848–54.

    PubMed  CAS  Google Scholar 

  49. Hayry P, Reitamo JJ, Totterman S, Hopfner-Hallikainen D, Sivula A. The desmoid tumor. II. Analysis of factors possibly contributing to the etiology and growth behavior. Am J Clin Pathol. 1982;77(6):674–80.

    PubMed  CAS  Google Scholar 

  50. Huang K, Fu H, Shi YQ, Zhou Y, Du CY. Prognostic factors for extra-abdominal and abdominal wall desmoids: a 20-year experience at a single institution. J Surg Oncol. 2009; 100(7):563–9.

    PubMed  Google Scholar 

  51. Carlson JW, Fletcher CD. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51(4):509–14.

    PubMed  CAS  Google Scholar 

  52. Tejpar S, Nollet F, Li C, et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene. 1999;18(47): 6615–20.

    PubMed  CAS  Google Scholar 

  53. Kotiligam D, Lazar AJ, Pollock RE, Lev D. Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol. 2008;23(1):117–26.

    PubMed  CAS  Google Scholar 

  54. Bridge JA, Swarts SJ, Buresh C, et al. Trisomies 8 and 20 characterize a subgroup of benign fibrous lesions arising in both soft tissue and bone. Am J Pathol. 1999;154(3):729–33.

    PubMed  CAS  Google Scholar 

  55. De Wever I, Dal Cin P, Fletcher CD, et al. Cytogenetic, clinical, and morphologic correlations in 78 cases of fibromatosis: a report from the CHAMP Study Group. CHromosomes And Morphology. Mod Pathol. 2000;13(10):1080–5.

    PubMed  Google Scholar 

  56. Fletcher JA, Naeem R, Xiao S, Corson JM. Chromosome aberrations in desmoid tumors. Trisomy 8 may be a predictor of recurrence. Cancer Genet Cytogenet. 1995;79(2):139–43.

    PubMed  CAS  Google Scholar 

  57. Couture J, Mitri A, Lagace R, et al. A germline mutation at the extreme 3′ end of the APC gene results in a severe desmoid phenotype and is associated with overexpression of beta-catenin in the desmoid tumor. Clin Genet. 2000;57(3):205–12.

    PubMed  CAS  Google Scholar 

  58. Bonvalot S, Eldweny H, Haddad V, et al. Extra-abdominal primary fibromatosis: aggressive management could be avoided in a subgroup of patients. Eur J Surg Oncol. 2008;34(4):462–8.

    PubMed  CAS  Google Scholar 

  59. Dalen BP, Bergh PM, Gunterberg BU. Desmoid tumors: a clinical review of 30 patients with more than 20 years’ follow-up. Acta Orthop Scand. 2003;74(4):455–9.

    PubMed  Google Scholar 

  60. Phillips SR, A’Hern R, Thomas JM. Aggressive fibromatosis of the abdominal wall, limbs and limb girdles. Br J Surg. 2004;91(12):1624–9.

    PubMed  CAS  Google Scholar 

  61. Spear MA, Jennings LC, Mankin HJ, et al. Individualizing management of aggressive fibromatoses. Int J Radiat Oncol Biol Phys. 1998;40(3):637–45.

    PubMed  CAS  Google Scholar 

  62. Merchant NB, Lewis JJ, Woodruff JM, Leung DH, Brennan MF. Extremity and trunk desmoid tumors: a multifactorial analysis of outcome. Cancer. 1999;86(10):2045–52.

    PubMed  CAS  Google Scholar 

  63. Gebert C, Hardes J, Kersting C, et al. Expression of beta-catenin and p53 are prognostic factors in deep aggressive fibromatosis. Histopathology. 2007;50(4):491–7.

    PubMed  CAS  Google Scholar 

  64. Huang PW, Tzen CY. Prognostic factors in desmoid-type fibromatosis: a clinicopathological and immunohistochemical analysis of 46 cases. Pathology. 2010;42(2):147–50.

    PubMed  Google Scholar 

  65. Moffatt EJ, Kerns BJ, Madden JM, Layfield LJ. Prognostic factors for fibromatoses: a correlation of proliferation index, estrogen receptor, p53, retinoblastoma, and src gene products and clinical features with outcome. J Surg Oncol. 1997;65(2):117–22.

    PubMed  CAS  Google Scholar 

  66. Hoos A, Lewis JJ, Antonescu CR, et al. Characterization of molecular abnormalities in human fibroblastic neoplasms: a model for genotype-phenotype association in soft tissue tumors. Cancer Res. 2001;61(7):3171–5.

    PubMed  CAS  Google Scholar 

  67. Muller E, Castagnaro M, Yandel DW, Wolfe HJ, Alman BA. Molecular genetic and immunohistochemical analysis of the tumor suppressor genes Rb and p53 in palmar and aggressive fibromatosis. Diagn Mol Pathol. 1996;5(3):194–200.

    PubMed  CAS  Google Scholar 

  68. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol. 1999;155(4):1033–8.

    PubMed  CAS  Google Scholar 

  69. Dilek FH, Topak N, Aktepe F, et al. E-cadherin, beta-catenin adhesion complex and relation to matrilysin expression in pT3 rectosigmoid cancers. Pathol Res Pract. 2008;204(11):809–15.

    PubMed  Google Scholar 

  70. Denys H, De Wever O, Nusgens B, et al. Invasion and MMP expression profile in desmoid tumours. Br J Cancer. 2004;90(7):1443–9.

    PubMed  CAS  Google Scholar 

  71. Crawford HC, Fingleton BM, Rudolph-Owen LA, et al. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene. 1999;18(18):2883–91.

    PubMed  CAS  Google Scholar 

  72. Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med. 2006;231(1):20–7.

    CAS  Google Scholar 

  73. Jones LE, Humphreys MJ, Campbell F, Neoptolemos JP, Boyd MT. Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res. 2004; 10(8):2832–45.

    PubMed  CAS  Google Scholar 

  74. McDonnell S, Navre M, Coffey Jr RJ, Matrisian LM. Expression and localization of the matrix metalloproteinase pump-1 (MMP-7) in human gastric and colon carcinomas. Mol Carcinog. 1991;4(6):527–33.

    PubMed  CAS  Google Scholar 

  75. Matono H, Oda Y, Nakamori M, et al. Correlation between beta-catenin widespread nuclear expression and matrix metalloproteinase-7 overexpression in sporadic desmoid tumors. Hum Pathol. 2008;39(12):1802–8.

    PubMed  CAS  Google Scholar 

  76. Shmookler BM, Enzinger FM, Weiss SW. Giant cell fibroblastoma. A juvenile form of dermatofibrosarcoma protuberans. Cancer. 1989;64(10):2154–61.

    PubMed  CAS  Google Scholar 

  77. Allen PW, Zwi J. Giant cell fibroblastoma transforming into dermatofibrosarcoma protuberans. Am J Surg Pathol. 1992;16(11):1127–9.

    PubMed  CAS  Google Scholar 

  78. Beham A, Fletcher CD. Dermatofibrosarcoma protuberans with areas resembling giant cell fibroblastoma: report of two cases. Histopathology. 1990;17(2):165–7.

    PubMed  CAS  Google Scholar 

  79. Coyne J, Kaftan SM, Craig RD. Dermatofibrosarcoma protuberans recurring as a giant cell fibroblastoma. Histopathology. 1992;21(2):184–7.

    PubMed  CAS  Google Scholar 

  80. Nair R, Kane SV, Borges A, Advani SH. Giant cell fibroblastoma. J Surg Oncol. 1993;53(2): 136–9.

    PubMed  CAS  Google Scholar 

  81. Dupree WB, Langloss JM, Weiss SW. Pigmented dermatofibrosarcoma protuberans (Bednar tumor). A pathologic, ultrastructural, and immunohistochemical study. Am J Surg Pathol. 1985;9(9):630–9.

    PubMed  CAS  Google Scholar 

  82. Mentzel T, Beham A, Katenkamp D, Dei Tos AP, Fletcher CD. Fibrosarcomatous (“high-grade”) dermatofibrosarcoma protuberans: clinicopathologic and immunohistochemical study of a series of 41 cases with emphasis on prognostic significance. Am J Surg Pathol. 1998;22(5):576–87.

    PubMed  CAS  Google Scholar 

  83. Wang J, Morimitsu Y, Okamoto S, et al. COL1A1-PDGFB fusion transcripts in fibrosarcomatous areas of six dermatofibrosarcomas protuberans. J Mol Diagn. 2000;2(1): 47–52.

    PubMed  CAS  Google Scholar 

  84. Diaz-Cascajo C, Weyers W, Borrego L, Inarrea JB, Borghi S. Dermatofibrosarcoma protuberans with fibrosarcomatous areas: a clinico-pathologic and immunohistochemic study in four cases. Am J Dermatopathol. 1997;19(6):562–7.

    PubMed  CAS  Google Scholar 

  85. Diedhiou A, Larsimont D, Vandeweyer E, Andry G, De Saint-Aubain Somerhausen N. Fibrosarcomatous variant of dermatofibrosarcoma protuberans: clinicopathologic analysis of 4 cases. Ann Pathol. 2001;21(2):164–7.

    PubMed  CAS  Google Scholar 

  86. Abenoza P, Lillemoe T. CD34 and factor XIIIa in the differential diagnosis of dermatofibroma and dermatofibrosarcoma protuberans. Am J Dermatopathol. 1993;15(5):429–34.

    PubMed  CAS  Google Scholar 

  87. Aiba S, Tabata N, Ishii H, Ootani H, Tagami H. Dermatofibrosarcoma protuberans is a unique fibrohistiocytic tumour expressing CD34. Br J Dermatol. 1992;127(2):79–84.

    PubMed  CAS  Google Scholar 

  88. Cohen PR, Rapin RP, Farhood AI. Dermatofibroma and dermatofibrosarcoma protuberans: differential expression of CD34 and factor XIIIa. Am J Dermatopathol. 1994;16(5):573–4.

    PubMed  CAS  Google Scholar 

  89. Cohen PR, Rapini RP, Farhood AI. Expression of the human hematopoietic progenitor cell antigen CD34 in dermatofibrosarcoma protuberans, other spindle cell tumors, and vascular lesions. J Am Acad Dermatol. 1994;30(1):147–8.

    PubMed  CAS  Google Scholar 

  90. Goldblum JR. CD34 positivity in fibrosarcomas which arise in dermatofibrosarcoma protuberans. Arch Pathol Lab Med. 1995;119(3):238–41.

    PubMed  CAS  Google Scholar 

  91. Kutzner H. Expression of the human progenitor cell antigen CD34 (HPCA-1) distinguishes dermatofibrosarcoma protuberans from fibrous histiocytoma in formalin-fixed, paraffin-embedded tissue. J Am Acad Dermatol. 1993;28(4):613–7.

    PubMed  CAS  Google Scholar 

  92. Sellheyer K, Nelson P, Krahl D. Dermatofibrosarcoma protuberans: a tumour of nestin-positive cutaneous mesenchymal stem cells? Br J Dermatol. 2009;161(6):1317–22.

    PubMed  CAS  Google Scholar 

  93. Craver R, Dewenter T, Ebran N, Pedeutour F. COL1A1-PDGFB fusion in a pediatric Bednar tumor with 2 copies of a der(22)t(17;22). Cancer Genet Cytogenet. 2006;168(2):155–7.

    PubMed  CAS  Google Scholar 

  94. Craver RD, Correa H, Kao YS, Van Brunt T, Golladay ES. Aggressive giant cell fibroblastoma with a balanced 17;22 translocation. Cancer Genet Cytogenet. 1995;80(1):20–2.

    PubMed  CAS  Google Scholar 

  95. Dal Cin P, Sciot R, de Wever I, et al. Cytogenetic and immunohistochemical evidence that giant cell fibroblastoma is related to dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 1996;15(1):73–5.

    PubMed  CAS  Google Scholar 

  96. Gisselsson D, Hoglund M, O’Brien KP, Dumanski JP, Mertens F, Mandahl N. A case of dermatofibrosarcoma protuberans with a ring chromosome 5 and a rearranged chromosome 22 containing amplified COL1A1 and PDGFB sequences. Cancer Lett. 1998;133(2): 129–34.

    PubMed  CAS  Google Scholar 

  97. Maire G, Martin L, Michalak-Provost S, et al. Fusion of COL1A1 exon 29 with PDGFB exon 2 in a der(22)t(17;22) in a pediatric giant cell fibroblastoma with a pigmented Bednar tumor component. Evidence for age-related chromosomal pattern in dermatofibrosarcoma protuberans and related tumors. Cancer Genet Cytogenet. 2002;134(2):156–61.

    PubMed  CAS  Google Scholar 

  98. Simon MP, Pedeutour F, Sirvent N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15(1):95–8.

    PubMed  CAS  Google Scholar 

  99. Patel KU, Szabo SS, Hernandez VS, et al. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol. 2008;39(2):184–93.

    PubMed  CAS  Google Scholar 

  100. Greco A, Fusetti L, Villa R, et al. Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet derived growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene. 1998;17(10):1313–9.

    PubMed  CAS  Google Scholar 

  101. Shimizu A, O’Brien KP, Sjoblom T, et al. The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999;59(15): 3719–23.

    PubMed  CAS  Google Scholar 

  102. Simon MP, Navarro M, Roux D, Pouyssegur J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in Dermatofibrosarcoma protuberans (DP). Oncogene. 2001;20(23):2965–75.

    PubMed  CAS  Google Scholar 

  103. Terrier-Lacombe MJ, Guillou L, Maire G, et al. Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data—a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol. 2003;27(1):27–39.

    PubMed  Google Scholar 

  104. Wang J, Hisaoka M, Shimajiri S, Morimitsu Y, Hashimoto H. Detection of COL1A1-PDGFB fusion transcripts in dermatofibrosarcoma protuberans by reverse transcription-polymerase chain reaction using archival formalin-fixed, paraffin-embedded tissues. Diagn Mol Pathol. 1999;8(3):113–9.

    PubMed  CAS  Google Scholar 

  105. Abbott JJ, Erickson-Johnson M, Wang X, Nascimento AG, Oliveira AM. Gains of COL1A1-PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod Pathol. 2006;19(11):1512–8.

    PubMed  CAS  Google Scholar 

  106. Macarenco RS, Zamolyi R, Franco MF, et al. Genomic gains of COL1A1-PDFGB occur in the histologic evolution of giant cell fibroblastoma into dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 2008;47(3):260–5.

    PubMed  CAS  Google Scholar 

  107. Labropoulos SV, Fletcher JA, Oliveira AM, Papadopoulos S, Razis ED. Sustained complete remission of metastatic dermatofibrosarcoma protuberans with imatinib mesylate. Anticancer Drugs. 2005;16(4):461–6.

    PubMed  CAS  Google Scholar 

  108. Labropoulos SV, Razis ED. Imatinib in the treatment of dermatofibrosarcoma protuberans. Biologics. 2007;1(4):347–53.

    PubMed  CAS  Google Scholar 

  109. Maki RG, Awan RA, Dixon RH, Jhanwar S, Antonescu CR. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer. 2002;100(6):623–6.

    PubMed  CAS  Google Scholar 

  110. McArthur GA. Molecular targeting of dermatofibrosarcoma protuberans: a new approach to a surgical disease. J Natl Compr Canc Netw. 2007;5(5):557–62.

    PubMed  Google Scholar 

  111. McArthur GA, Demetri GD, van Oosterom A, et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol. 2005;23(4):866–73.

    PubMed  CAS  Google Scholar 

  112. Rubin BP, Schuetze SM, Eary JF, et al. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol. 2002;20(17):3586–91.

    PubMed  CAS  Google Scholar 

  113. Evans HL. Low-grade fibromyxoid sarcoma. A report of two metastasizing neoplasms having a deceptively benign appearance. Am J Clin Pathol. 1987;88(5):615–9.

    PubMed  CAS  Google Scholar 

  114. Lane KL, Shannon RJ, Weiss SW. Hyalinizing spindle cell tumor with giant rosettes: a distinctive tumor closely resembling low-grade fibromyxoid sarcoma. Am J Surg Pathol. 1997;21(12):1481–8.

    PubMed  CAS  Google Scholar 

  115. Reid R, de Silva MV, Paterson L, Ryan E, Fisher C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol. 2003;27(9):1229–36.

    PubMed  Google Scholar 

  116. Franchi A, Massi D, Santucci M. Hyalinizing spindle cell tumor with giant rosettes and low-grade fibromyxoid sarcoma: an immunohistochemical and ultrastructural comparative investigation. Ultrastruct Pathol. 2003;27(5):349–55.

    PubMed  Google Scholar 

  117. Folpe AL, Lane KL, Paull G, Weiss SW. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: a clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol. 2000;24(10):1353–60.

    PubMed  CAS  Google Scholar 

  118. Billings SD, Giblen G, Fanburg-Smith JC. Superficial low-grade fibromyxoid sarcoma (Evans tumor): a clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am J Surg Pathol. 2005;29(2):204–10.

    PubMed  Google Scholar 

  119. Bejarano PA, Padhya TA, Smith R, Blough R, Devitt JJ, Gluckman JL. Hyalinizing spindle cell tumor with giant rosettes—a soft tissue tumor with mesenchymal and neuroendocrine features. An immunohistochemical, ultrastructural, and cytogenetic analysis. Arch Pathol Lab Med. 2000;124(8):1179–84.

    PubMed  CAS  Google Scholar 

  120. Panagopoulos I, Storlazzi CT, Fletcher CD, et al. The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer. 2004;40(3):218–28.

    PubMed  CAS  Google Scholar 

  121. Storlazzi CT, Mertens F, Nascimento A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet. 2003;12(18):2349–58.

    PubMed  CAS  Google Scholar 

  122. Mezzelani A, Sozzi G, Nessling M, et al. Low grade fibromyxoid sarcoma. a further low-grade soft tissue malignancy characterized by a ring chromosome. Cancer Genet Cytogenet. 2000;122(2):144–8.

    PubMed  CAS  Google Scholar 

  123. Mertens F, Fletcher CD, Antonescu CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85(3):408–15.

    PubMed  CAS  Google Scholar 

  124. Mirra M, Falconieri G, Zanconati F, et al. Inflammatory fibrosarcoma: another inmitator of Hodgkin’s disease? Pathol Res Pract. 1996;192:474.

    PubMed  CAS  Google Scholar 

  125. Folpe AL, Inwards C, editors. Bone and soft tissue pathology. 1st ed. Philadelphia: Saunders; 2010.

    Google Scholar 

  126. Coffin CM, Hornick JL, Fletcher CDM. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007;31(4):509–20.

    PubMed  Google Scholar 

  127. Ambiru S, Nakamura S, Itabashi T, et al. Inflammatory myofibroblastic tumor causing ileoileal intussusception: an unusual cause of an unusual neoplasm in an adult, with a clinicopathological review of the literature. Clin J Gastroenterol. 2009;2(3):194–8.

    Google Scholar 

  128. Anvari MS, Soleimani A, Abbasi A, et al. Inflammatory myofibroblastic tumor of the right ventricle causing tricuspid valve regurgitation. Tex Heart Inst J. 2009;36(2):164–7.

    PubMed  Google Scholar 

  129. Bektas S, Okulu E, Kayigil O, Ertoy Baydar D. Inflammatory myofibroblastic tumor of the perirenal soft tissue misdiagnosed as renal cell carcinoma. Pathol Res Pract. 2007;203(6):461–5.

    PubMed  Google Scholar 

  130. Bellezza G, Cavaliere A, Del Sordo R, Sidoni A. Inflammatory myofibroblastic tumor of the larynx with anaplastic lymphoma kinase (ALK) protein overexpression. A case report. Tumori. 2006;92(5):449–51.

    PubMed  CAS  Google Scholar 

  131. Boo Y-J, Kim J, Kim J-H, Kim C-S, Suh S-O. Inflammatory myofibroblastic tumor of the kidney in a child: report of a case. Surgery. 2006;36(8):710–3.

    Google Scholar 

  132. Brooks JK, Nikitakis NG, Frankel BF, Papadimitriou JC, Sauk JJ. Oral inflammatory myofibroblastic tumor demonstrating ALK, p53, MDM2, CDK4, pRb, and Ki-67 immunoreactivity in an elderly patient. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005; 99(6): 716–26.

    PubMed  Google Scholar 

  133. Burke A, Li L, Kling E, Kutys R, Virmani R, Miettinen M. Cardiac inflammatory myofibroblastic tumor: a “benign” neoplasm that may result in syncope, myocardial infarction, and sudden death. Am J Surg Pathol. 2007;31(7):1115–22.

    PubMed  Google Scholar 

  134. Chen C-H, Lin R-L, Liu H-C, Chen C-H, Hung T-T, Huang W-C. Inflammatory myofibroblastic tumor mimicking anterior mediastinal malignancy. Ann Thorac Surg. 2008;86(4):1362–4.

    PubMed  Google Scholar 

  135. Chen SS, Liu SI, Mok KT, et al. Mesenteric inflammatory myofibroblastic tumors in an elder patient with early recurrence: a case report. World J Gastroenterol. 2007;13(26):3645–8.

    PubMed  Google Scholar 

  136. Chen ST, Lee JC. An inflammatory myofibroblastic tumor in liver with ALK and RANBP2 gene rearrangement: combination of distinct morphologic, immunohistochemical, and genetic features. Hum Pathol. 2008;39(12):1854–8.

    PubMed  CAS  Google Scholar 

  137. Cheng L, Foster SR, MacLennan GT, Lopez-Beltran A, Zhang S, Montironi R. Inflammatory myofibroblastic tumors of the genitourinary tract—single entity or continuum? J Urol. 2008;180(4):1235–40.

    PubMed  Google Scholar 

  138. Cho MY, Min YK, Kim NR, et al. Fever of unknown origin as a presentation of gastric inflammatory myofibroblastic tumor in a two-year-old boy. J Korean Med Sci. 2002;17(5):699–703.

    PubMed  Google Scholar 

  139. Coffin CM. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor): a clinicopathologic and immunohistochemical study of 84 Cases. Am J Surg Pathol. 1995;19:859–72.

    PubMed  CAS  Google Scholar 

  140. Coffin CM, Humphrey PA, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor: a clinical and pathological survey. Semin Diagn Pathol. 1998;15(2):85–101.

    PubMed  CAS  Google Scholar 

  141. Dangle PP, Wang WP, Pohar KS. Inflammatory myofibroblastic tumor of epididymis: a case report and review of literature. World J Surg Oncol. 2008;6:119.

    PubMed  Google Scholar 

  142. de Oliveira RS, Amato MCM, Brassesco MS, et al. Clinical and cytogenetic analysis of an intracranial inflammatory myofibroblastic tumor induced by a ventriculoperitoneal shunt. J Neurosurg Pediatr. 2009;4(4):372–7.

    PubMed  Google Scholar 

  143. Demirkan NC, Akalin T, Yilmaz F, et al. Inflammatory myofibroblastic tumor of small bowel wall in childhood: report of a case and a review of the literature. Pathol Int. 2001;51(1):47–9.

    PubMed  CAS  Google Scholar 

  144. Guilemany JM, Alos L, Alobid I, Bernal-Sprekelsen M, Cardesa A. Inflammatory myofibroblastic tumor in the larynx: clinicopathologic features and histogenesis. Acta Otolaryngol (Stockh). 2005;125(2):215–9.

    Google Scholar 

  145. Hagenstad CT, Kilpatrick SE, Pettenati MJ, Savage PD. Inflammatory myofibroblastic tumor with bone marrow involvement. A case report and review of the literature. Arch Pathol Lab Med. 2003;127(7):865–7.

    PubMed  Google Scholar 

  146. Hannah CD, Oliver DH, Liu J. Fine needle aspiration biopsy and immunostaining findings in an aggressive inflammatory myofibroblastic tumor of the lung: a case report. Acta Cytol. 2007;51(2):239–43.

    PubMed  Google Scholar 

  147. Harik LR, Merino C, Coindre J-M, Amin MB, Pedeutour F, Weiss SW. Pseudosarcomatous myofibroblastic proliferations of the bladder: a clinicopathologic study of 42 cases. Am J Surg Pathol. 2006;30(7):787–94.

    PubMed  Google Scholar 

  148. Hsieh CT, Lin EY, Tsai WC, Tsai TH, Chiang YH, Chang CF. Intradural extramedullary spinal inflammatory myofibroblastic tumor: a case report and review of literature. J Med Sci. 2006;26(4):133–6.

    Google Scholar 

  149. Ilvan S, Celik V, Paksoy M, Cetinaslan I, Calay Z. Inflammatory myofibroblastic tumor (inflammatory pseudotumor) of the breast. APMIS. 2005;113(1):66–9.

    PubMed  Google Scholar 

  150. Koirala R, Shakya VC, Agrawal CS, et al. Retroperitoneal inflammatory myofibroblastic tumor. Am J Surg. 2010;199(2):e17–9.

    PubMed  Google Scholar 

  151. Mizukami H, Yajima N, Wada R, et al. Pancreatic malignant fibrous histiocytoma, inflammatory myofibroblastic tumor, and inflammatory pseudotumor related to autoimmune pancreatitis: characterization and differential diagnosis. Virchows Arch. 2006;448(5):552–60.

    PubMed  Google Scholar 

  152. Montgomery EA, Shuster DD, Burkart AL, et al. Inflammatory myofibroblastic tumors of the urinary tract: a clinicopathologic study of 46 cases, including a malignant example inflammatory fibrosarcoma and a subset associated with high-grade urothelial carcinoma. Am J Surg Pathol. 2006;30(12):1502–12.

    PubMed  Google Scholar 

  153. Nascimento AF, Dal Cin P, Cilento BG, Perez-Atayde AR, Kozakewich HPW, Nose V. Urachal inflammatory myofibroblastic tumor with ALK gene rearrangement: a study of urachal remnants. Urology. 2004;64(1):140–4.

    PubMed  Google Scholar 

  154. Hussong JW, Brown M, Perkins SL, et al. Comparison of DNA ploidy, histologic, and immunohistochemical findings with clinical outcome in inflammatory myofibroblastic tumors. Mod Pathol. 1999;12:279–86.

    PubMed  CAS  Google Scholar 

  155. Coffin CM, Patel A, Perkins S, Elenitoba-Johnson KS, Perlman E, Griffin CA. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol. 2001;14(6):569–76.

    PubMed  CAS  Google Scholar 

  156. Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999;59(12):2776–80.

    PubMed  CAS  Google Scholar 

  157. Sciot R, Dal Cin P, Fletcher CD, et al. Inflammatory myofibroblastic tumor of bone: report of two cases with evidence of clonal chromosomal changes. Am J Surg Pathol. 1997;21(10): 1166–72.

    PubMed  CAS  Google Scholar 

  158. Snyder CS, Dell’Aquila M, Haghighi P, Baergen RN, Suh YK, Yi ES. Clonal changes in inflammatory pseudotumor of the lung: a case report. Cancer. 1995;76(9):1545–9.

    PubMed  CAS  Google Scholar 

  159. Su LD, Atayde-Perez A, Sheldon S, Fletcher JA, Weiss SW. Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol. 1998;11(4):364–8.

    PubMed  CAS  Google Scholar 

  160. Yousem SA, Shaw H, Cieply K. Involvement of 2p23 in pulmonary inflammatory pseudotumors. Hum Pathol. 2001;32(4):428–33.

    PubMed  CAS  Google Scholar 

  161. Debelenko LV, Arthur DC, Pack SD, Helman LJ, Schrump DS, Tsokos M. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab Invest. 2003;83(9):1255–65.

    PubMed  CAS  Google Scholar 

  162. Lawrence B, Perez-Atayde A, Hibbard MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 2000;157(2):377–84.

    PubMed  CAS  Google Scholar 

  163. Bridge JA, Kanamori M, Ma Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 2001;159(2):411–5.

    PubMed  CAS  Google Scholar 

  164. Cools J, Wlodarska I, Somers R, et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 2002;34(4):354–62.

    PubMed  CAS  Google Scholar 

  165. Debiec-Rychter M, Marynen P, Hagemeijer A, Pauwels P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 2003;38(2):187–90.

    PubMed  Google Scholar 

  166. Ma Z, Hill DA, Collins MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 2003;37(1):98–105.

    PubMed  CAS  Google Scholar 

  167. Panagopoulos I, Nilsson T, Domanski HA, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer. 2006;118(5):1181–6.

    PubMed  CAS  Google Scholar 

  168. Patel AS, Murphy KM, Hawkins AL, et al. RANBP2 and CLTC are involved in ALK rearrangements in inflammatory myofibroblastic tumors. Cancer Genet Cytogenet. 2007;176(2):107–14.

    PubMed  CAS  Google Scholar 

  169. Pulford K, Lamant L, Espinos E, et al. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci. 2004;61(23):2939–53.

    PubMed  CAS  Google Scholar 

  170. Allouche M. ALK is a novel dependence receptor: potential implications in development and cancer. Cell Cycle. 2007;6(13):1533–8.

    PubMed  CAS  Google Scholar 

  171. Cook JR, Dehner LP, Collins MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol. 2001;25(11):1364–71.

    PubMed  CAS  Google Scholar 

  172. Cessna MH, Zhou H, Sanger WG, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol. 2002;15(9):931–8.

    PubMed  Google Scholar 

  173. Jiang YH, Cheng B, Ge MH, Cheng Y, Zhang G. Comparison of the clinical and immunohistochemical features, including anaplastic lymphoma kinase (ALK) and p53, in inflammatory myofibroblastic tumours. J Int Med Res. 2009;37(3):867–77.

    PubMed  Google Scholar 

  174. Pulford K, Morris SW, Turturro F. Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol. 2004;199(3):330–58.

    PubMed  CAS  Google Scholar 

  175. Kelleher FC, McDermott R. The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene. Eur J Cancer. 2010;46(13):2357–68.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo V. Zambrano MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walters, M.P., Zambrano, E.V. (2012). Fibroblastic and Myofibroblastic Pediatric Soft Tissue Tumors. In: Mackinnon Jr, A. (eds) Pediatric Neoplasia. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-116-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-116-5_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-115-8

  • Online ISBN: 978-1-62703-116-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics