Soft Tissue “Small Round Blue Cell Tumors” of Childhood

  • Matthew P. Walters
  • Eduardo V. ZambranoEmail author
Part of the Molecular and Translational Medicine book series (MOLEMED)


The group of small round blue cell tumors of childhood represents a descriptive category of malignant pediatric neoplasms characterized by the presence of morphologically poorly differentiated cells containing large hyperchromatic nuclei and scant cytoplasm. Frequently, clinical and morphological clues can be identified, which may orient in the correct histopathological diagnosis of these tumors; in many occasions, however, the correct diagnosis will be accomplished only through the implementation of immunohistochemical, ultrastructural, and/or molecular analysis of neoplastic cells. Significant advances have been achieved in recent years, which have proved crucial in the diagnostic work up of these frequently challenging cases, as well as in providing markers of prognostic relevance and in uncovering potential therapeutic targets.


Neuroblastoma Sarcoma Pediatric neoplasia Rhabdomyosarcoma Ewing family of tumors 


  1. 1.
    Gurney JG, Ross JA, Wall DA, Bleyer WA, Severson RK, Robison LL. Infant cancer in the U.S.: histology-specific incidence and trends, 1973 to 1992. J Pediatr Hematol Oncol. 1997; 19(5):428–32.PubMedGoogle Scholar
  2. 2.
    Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369(9579):2106–20.PubMedGoogle Scholar
  3. 3.
    Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3(3):203–16.PubMedGoogle Scholar
  4. 4.
    Barrette S, Bernstein ML, Leclerc JM, et al. Treatment complications in children diagnosed with neuroblastoma during a screening program. J Clin Oncol. 2006;24(10):1542–5.PubMedGoogle Scholar
  5. 5.
    Schilling FH, Spix C, Berthold F, et al. Neuroblastoma screening at one year of age. N Engl J Med. 2002;346(14):1047–53.PubMedGoogle Scholar
  6. 6.
    Yamamoto K, Ohta S, Ito E, et al. Marginal decrease in mortality and marked increase in incidence as a result of neuroblastoma screening at 6 months of age: cohort study in seven prefectures in Japan. J Clin Oncol. 2002;20(5):1209–14.PubMedGoogle Scholar
  7. 7.
    Schwab M, Westermann F, Hero B, Berthold F. Neuroblastoma: biology and molecular and chromosomal pathology. Lancet Oncol. 2003;4(8):472–80.PubMedGoogle Scholar
  8. 8.
    Strenger V, Kerbl R, Dornbusch HJ, et al. Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatr Blood Cancer. 2007;48(5):504–9.PubMedGoogle Scholar
  9. 9.
    Joshi VV, Silverman JF. Pathology of neuroblastic tumors. Semin Diagn Pathol. 1994;11(2): 107–17.PubMedGoogle Scholar
  10. 10.
    Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer. 1999;86(2):349–63.PubMedGoogle Scholar
  11. 11.
    Abramowsky CR, Katzenstein HM, Alvarado CS, Shehata BM. Anaplastic large cell neuroblastoma. Pediatr Dev Pathol. 2009;12(1):1–5.PubMedGoogle Scholar
  12. 12.
    Cozzutto C, Carbone A. Pleomorphic (anaplastic) neuroblastoma. Arch Pathol Lab Med. 1988;112(6):621–5.PubMedGoogle Scholar
  13. 13.
    Joshi VV, Silverman JF, Altshuler G, et al. Systematization of primary histopathologic and fine-needle aspiration cytologic features and description of unusual histopathologic features of neuroblastic tumors: a report from the Pediatric Oncology Group. Hum Pathol. 1993; 24(5):493–504.PubMedGoogle Scholar
  14. 14.
    Tornoczky T, Kalman E, Kajtar PG, et al. Large cell neuroblastoma: a distinct phenotype of neuroblastoma with aggressive clinical behavior. Cancer. 2004;100(2):390–7.PubMedGoogle Scholar
  15. 15.
    Peuchmaur M, d’Amore ES, Joshi VV, et al. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer. 2003;98(10):2274–81.PubMedGoogle Scholar
  16. 16.
    Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am. 2008;55(1):97–120; x.Google Scholar
  17. 17.
    Munchar MJ, Sharifah NA, Jamal R, Looi LM. CD44s expression correlated with the International Neuroblastoma Pathology Classification (Shimada system) for neuroblastic tumours. Pathology. 2003;35(2):125–9.PubMedGoogle Scholar
  18. 18.
    Pritchard J, Hickman JA. Why does stage 4s neuroblastoma regress spontaneously? Lancet. 1994;344(8926):869–70.PubMedGoogle Scholar
  19. 19.
    Evans AE, Gerson J, Schnaufer L. Spontaneous regression of neuroblastoma. Natl Cancer Inst Monogr. 1976;44:49–54.PubMedGoogle Scholar
  20. 20.
    Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984; 224(4653):1121–4.PubMedGoogle Scholar
  21. 21.
    Seeger RC, Brodeur GM, Sather H, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313(18):1111–6.PubMedGoogle Scholar
  22. 22.
    Ambros IM, Benard J, Boavida M, et al. Quality assessment of genetic markers used for therapy stratification. J Clin Oncol. 2003;21(11):2077–84.PubMedGoogle Scholar
  23. 23.
    Perez CA, Matthay KK, Atkinson JB, et al. Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: a children’s cancer group study. J Clin Oncol. 2000;18(1):18–26.PubMedGoogle Scholar
  24. 24.
    Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol. 2005;6(8):635–45.PubMedGoogle Scholar
  25. 25.
    Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22(20):2755–66.PubMedGoogle Scholar
  26. 26.
    Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976–90.PubMedGoogle Scholar
  27. 27.
    Brodeur GM, Fong CT. Molecular biology and genetics of human neuroblastoma. Cancer Genet Cytogenet. 1989;41(2):153–74.PubMedGoogle Scholar
  28. 28.
    Corvi R, Amler LC, Savelyeva L, Gehring M, Schwab M. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells. Proc Natl Acad Sci U S A. 1994;91(12):5523–7.PubMedGoogle Scholar
  29. 29.
    Schneider SS, Hiemstra JL, Zehnbauer BA, et al. Isolation and structural analysis of a 1.2-megabase N-myc amplicon from a human neuroblastoma. Mol Cell Biol. 1992;12(12): 5563–70.PubMedGoogle Scholar
  30. 30.
    De Preter K, Speleman F, Combaret V, et al. Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay. Mod Pathol. 2002; 15(2):159–66.PubMedGoogle Scholar
  31. 31.
    George RE, Kenyon R, McGuckin AG, et al. Analysis of candidate gene co-amplification with MYCN in neuroblastoma. Eur J Cancer. 1997;33(12):2037–42.PubMedGoogle Scholar
  32. 32.
    Manohar CF, Salwen HR, Brodeur GM, Cohn SL. Co-amplification and concomitant high levels of expression of a DEAD box gene with MYCN in human neuroblastoma. Genes Chromosomes Cancer. 1995;14(3):196–203.PubMedGoogle Scholar
  33. 33.
    Squire JA, Thorner PS, Weitzman S, et al. Co-amplification of MYCN and a DEAD box gene (DDX1) in primary neuroblastoma. Oncogene. 1995;10(7):1417–22.PubMedGoogle Scholar
  34. 34.
    Weber A, Imisch P, Bergmann E, Christiansen H. Coamplification of DDX1 correlates with an improved survival probability in children with MYCN-amplified human neuroblastoma. J Clin Oncol. 2004;22(13):2681–90.PubMedGoogle Scholar
  35. 35.
    Attiyeh EF, London WB, Mosse YP, et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med. 2005;353(21):2243–53.PubMedGoogle Scholar
  36. 36.
    Bown N, Cotterill S, Lastowska M, et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med. 1999;340(25):1954–61.PubMedGoogle Scholar
  37. 37.
    Caron H. Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol. 1995;24(4):215–21.PubMedGoogle Scholar
  38. 38.
    Caron H, van Sluis P, Buschman R, et al. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus. Hum Genet. 1996;97(6):834–7.PubMedGoogle Scholar
  39. 39.
    Maris JM, White PS, Beltinger CP, et al. Significance of chromosome 1p loss of heterozygosity in neuroblastoma. Cancer Res. 1995;55(20):4664–9.PubMedGoogle Scholar
  40. 40.
    Spitz R, Hero B, Ernestus K, Berthold F. Gain of distal chromosome arm 17q is not associated with poor prognosis in neuroblastoma. Clin Cancer Res. 2003;9(13):4835–40.PubMedGoogle Scholar
  41. 41.
    White PS, Thompson PM, Gotoh T, et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene. 2005;24(16):2684–94.PubMedGoogle Scholar
  42. 42.
    Luttikhuis ME, Powell JE, Rees SA, et al. Neuroblastomas with chromosome 11q loss and single copy MYCN comprise a biologically distinct group of tumours with adverse prognosis. Br J Cancer. 2001;85(4):531–7.PubMedGoogle Scholar
  43. 43.
    Maris JM, Weiss MJ, Guo C, et al. Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children’s Cancer Group study. J Clin Oncol. 2000;18(9):1888–99.PubMedGoogle Scholar
  44. 44.
    Guo C, White PS, Weiss MJ, et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene. 1999;18(35):4948–57.PubMedGoogle Scholar
  45. 45.
    Janoueix-Lerosey I, Schleiermacher G, Michels E, et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol. 2009;27(7):1026–33.PubMedGoogle Scholar
  46. 46.
    Ambros PF, Ambros IM, Strehl S, et al. Regression and progression in neuroblastoma. Does genetics predict tumour behaviour? Eur J Cancer. 1995;31A(4):510–5.PubMedGoogle Scholar
  47. 47.
    Schleiermacher G, Michon J, Huon I, et al. Chromosomal CGH identifies patients with a higher risk of relapse in neuroblastoma without MYCN amplification. Br J Cancer. 2007; 97(2):238–46.PubMedGoogle Scholar
  48. 48.
    Thompson PM, Maris JM, Hogarty MD, et al. Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma. Cancer Res. 2001;61(2):679–86.PubMedGoogle Scholar
  49. 49.
    Maris JM, Mosse YP, Bradfield JP, et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med. 2008;358(24):2585–93.PubMedGoogle Scholar
  50. 50.
    Michels E, Vandesompele J, De Preter K, et al. ArrayCGH-based classification of neuroblastoma into genomic subgroups. Genes Chromosomes Cancer. 2007;46(12):1098–108.PubMedGoogle Scholar
  51. 51.
    Mosse YP, Diskin SJ, Wasserman N, et al. Neuroblastomas have distinct genomic DNA profiles that predict clinical phenotype and regional gene expression. Genes Chromosomes Cancer. 2007;46(10):936–49.PubMedGoogle Scholar
  52. 52.
    Tomioka N, Oba S, Ohira M, et al. Novel risk stratification of patients with neuroblastoma by genomic signature, which is independent of molecular signature. Oncogene. 2008;27(4):441–9.PubMedGoogle Scholar
  53. 53.
    Vandesompele J, Baudis M, De Preter K, et al. Unequivocal delineation of clinicogenetic subgroups and development of a new model for improved outcome prediction in neuroblastoma. J Clin Oncol. 2005;23(10):2280–99.PubMedGoogle Scholar
  54. 54.
    Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27(2):289–97.PubMedGoogle Scholar
  55. 55.
    Chen Y, Takita J, Choi YL, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455(7215):971–4.PubMedGoogle Scholar
  56. 56.
    George RE, Sanda T, Hanna M, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature. 2008;455(7215):975–8.PubMedGoogle Scholar
  57. 57.
    Janoueix-Lerosey I, Lequin D, Brugieres L, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455(7215):967–70.PubMedGoogle Scholar
  58. 58.
    Mosse YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930–5.PubMedGoogle Scholar
  59. 59.
    Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.PubMedGoogle Scholar
  60. 60.
    Iwahara T, Fujimoto J, Wen D, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14(4):439–49.PubMedGoogle Scholar
  61. 61.
    Webb TR, Slavish J, George RE, et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009;9(3):331–56.PubMedGoogle Scholar
  62. 62.
    Caren H, Abel F, Kogner P, Martinsson T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J. 2008;416(2):153–9.PubMedGoogle Scholar
  63. 63.
    Passoni L, Longo L, Collini P, et al. Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res. 2009;69(18):7338–46.PubMedGoogle Scholar
  64. 64.
    Wang Q, Diskin S, Rappaport E, et al. Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res. 2006;66(12):6050–62.PubMedGoogle Scholar
  65. 65.
    Janoueix-Lerosey I, Schleiermacher G, Delattre O. Molecular pathogenesis of peripheral neuroblastic tumors. Oncogene. 2010;29(11):1566–79.PubMedGoogle Scholar
  66. 66.
    Pillay V, Allaf L, Wilding AL, et al. The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia. 2009;11(5):448–458; 442p following 458.Google Scholar
  67. 67.
    Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science. 2002; 297(5578):63–4.PubMedGoogle Scholar
  68. 68.
    Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3(8):448–57.PubMedGoogle Scholar
  69. 69.
    Chen R, Gandhi V, Plunkett W. A sequential blockade strategy for the design of combination therapies to overcome oncogene addiction in chronic myelogenous leukemia. Cancer Res. 2006;66(22):10959–66.PubMedGoogle Scholar
  70. 70.
    Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol. 2001;11(3):272–80.PubMedGoogle Scholar
  71. 71.
    Kogner P, Barbany G, Dominici C, Castello MA, Raschella G, Persson H. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res. 1993;53(9):2044–50.PubMedGoogle Scholar
  72. 72.
    Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med. 1993;328(12):847–54.PubMedGoogle Scholar
  73. 73.
    Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC. Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst. 1993;85(5):377–84.PubMedGoogle Scholar
  74. 74.
    Acheson A, Conover JC, Fandl JP, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature. 1995;374(6521):450–3.PubMedGoogle Scholar
  75. 75.
    Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res. 1995;55(8):1798–806.PubMedGoogle Scholar
  76. 76.
    Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol. 1994;14(1):759–67.PubMedGoogle Scholar
  77. 77.
    Shimada H, Nakagawa A, Peters J, et al. TrkA expression in peripheral neuroblastic tumors: prognostic significance and biological relevance. Cancer. 2004;101(8):1873–81.PubMedGoogle Scholar
  78. 78.
    Ewing J. Classics in oncology. Diffuse endothelioma of bone. James Ewing. Proceedings of the New York Pathological Society, 1921. CA Cancer J Clin. 1972;22(2):95–8.PubMedGoogle Scholar
  79. 79.
    Banerjee SS, Eyden BP, McVey RJ, Bryden AA, Clarke NW. Primary peripheral primitive neuroectodermal tumour of urinary bladder. Histopathology. 1997;30(5):486–90.PubMedGoogle Scholar
  80. 80.
    Charney DA, Charney JM, Ghali VS, Teplitz C. Primitive neuroectodermal tumor of the myocardium: a case report, review of the literature, immunohistochemical, and ultrastructural study. Hum Pathol. 1996;27(12):1365–9.PubMedGoogle Scholar
  81. 81.
    Dedeurwaerdere F, Giannini C, Sciot R, et al. Primary peripheral PNET/Ewing’s sarcoma of the dura: a clinicopathologic entity distinct from central PNET. Mod Pathol. 2002;15(6):673–8.PubMedGoogle Scholar
  82. 82.
    Helsel JC, Mrak RE, Hanna E, Parham DH, Bardales RH. Peripheral primitive neuroectodermal tumor of the parotid gland region: report of a case with fine-needle aspiration findings. Diagn Cytopathol. 2000;22(3):161–6.PubMedGoogle Scholar
  83. 83.
    Horie Y, Kato M. Peripheral primitive neuroectodermal tumor of the small bowel mesentery: a case showing perforation at onset. Pathol Int. 2000;50(5):398–403.PubMedGoogle Scholar
  84. 84.
    Isotalo PA, Agbi C, Davidson B, Girard A, Verma S, Robertson SJ. Primary primitive neuroectodermal tumor of the cauda equina. Hum Pathol. 2000;31(8):999–1001.PubMedGoogle Scholar
  85. 85.
    Kato K, Kato Y, Ijiri R, et al. Ewing’s sarcoma family of tumor arising in the adrenal gland—possible diagnostic pitfall in pediatric pathology: histologic, immunohistochemical, ultrastructural, and molecular study. Hum Pathol. 2001;32(9):1012–6.PubMedGoogle Scholar
  86. 86.
    Kim KJ, Jang BW, Lee SK, Kim BK, Nam SL. A case of peripheral primitive neuroectodermal tumor of the ovary. Int J Gynecol Cancer. 2004;14(2):370–2.PubMedGoogle Scholar
  87. 87.
    Maesawa C, Iijima S, Sato N, et al. Esophageal extraskeletal Ewing’s sarcoma. Hum Pathol. 2002;33(1):130–2.PubMedGoogle Scholar
  88. 88.
    Movahedi-Lankarani S, Hruban RH, Westra WH, Klimstra DS. Primitive neuroectodermal tumors of the pancreas: a report of seven cases of a rare neoplasm. Am J Surg Pathol. 2002;26(8):1040–7.PubMedGoogle Scholar
  89. 89.
    O’Sullivan MJ, Perlman EJ, Furman J, Humphrey PA, Dehner LP, Pfeifer JD. Visceral primitive peripheral neuroectodermal tumors: a clinicopathologic and molecular study. Hum Pathol. 2001;32(10):1109–15.PubMedGoogle Scholar
  90. 90.
    Simmons MA, Luff DA, Banerjee SS, Ramsden RT. Peripheral primitive neuroectodermal tumour (pPNET) of the cerebellopontine angle presenting in adult life. J Laryngol Otol. 2001;115(10):848–52.PubMedGoogle Scholar
  91. 91.
    Varghese L, Arnesen M, Boente M. Primitive neuroectodermal tumor of the uterus: a case report and review of literature. Int J Gynecol Pathol. 2006;25(4):373–7.PubMedGoogle Scholar
  92. 92.
    Peters MS, Reiman HM, Muller SA. Cutaneous extraskeletal Ewing’s sarcoma. J Cutan Pathol. 1985;12(6):476–85.PubMedGoogle Scholar
  93. 93.
    May WA, Gishizky ML, Lessnick SL, et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A. 1993;90(12):5752–6.PubMedGoogle Scholar
  94. 94.
    Downing JR, Head DR, Parham DM, et al. Detection of the (11;22)(q24;q12) translocation of Ewing’s sarcoma and peripheral neuroectodermal tumor by reverse transcription polymerase chain reaction. Am J Pathol. 1993;143(5):1294–300.PubMedGoogle Scholar
  95. 95.
    de Alava E, Gerald WL. Molecular biology of the Ewing’s sarcoma/primitive neuroectodermal tumor family. J Clin Oncol. 2000;18(1):204–13.PubMedGoogle Scholar
  96. 96.
    Aurias A, Rimbaut C, Buffe D, Zucker JM, Mazabraud A. Translocation involving chromosome 22 in Ewing’s sarcoma. A cytogenetic study of four fresh tumors. Cancer Genet Cytogenet. 1984;12(1):21–5.PubMedGoogle Scholar
  97. 97.
    Khoury JD. Ewing sarcoma family of tumors. Adv Anat Pathol. 2005;12(4):212–20.PubMedGoogle Scholar
  98. 98.
    Folpe AL, Goldblum JR, Rubin BP, et al. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29(8):1025–33.PubMedGoogle Scholar
  99. 99.
    Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M. MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer. 1991;67(7):1886–93.PubMedGoogle Scholar
  100. 100.
    Fellinger EJ, Garin-Chesa P, Su SL, DeAngelis P, Lane JM, Rettig WJ. Biochemical and genetic characterization of the HBA71 Ewing’s sarcoma cell surface antigen. Cancer Res. 1991;51(1):336–40.PubMedGoogle Scholar
  101. 101.
    Fellinger EJ, Garin-Chesa P, Triche TJ, Huvos AG, Rettig WJ. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol. 1991;139(2):317–25.PubMedGoogle Scholar
  102. 102.
    Folpe AL, Hill CE, Parham DM, O’Shea PA, Weiss SW. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol. 2000;24(12): 1657–62.PubMedGoogle Scholar
  103. 103.
    Llombart-Bosch A, Navarro S. Immunohistochemical detection of EWS and FLI-1 proteinss in Ewing sarcoma and primitive neuroectodermal tumors: comparative analysis with CD99 (MIC-2) expression. Appl Immunohistochem Mol Morphol. 2001;9(3):255–60.PubMedGoogle Scholar
  104. 104.
    Rossi S, Orvieto E, Furlanetto A, Laurino L, Ninfo V, Dei Tos AP. Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody. Mod Pathol. 2004;17(5):547–52.PubMedGoogle Scholar
  105. 105.
    Peter M, Gilbert E, Delattre O. A multiplex real-time PCR assay for the detection of gene fusions observed in solid tumors. Lab Invest. 2001;81(6):905–12.PubMedGoogle Scholar
  106. 106.
    Qian X, Jin L, Shearer BM, Ketterling RP, Jalal SM, Lloyd RV. Molecular diagnosis of Ewing’s sarcoma/primitive neuroectodermal tumor in formalin-fixed paraffin-embedded tissues by RT-PCR and fluorescence in situ hybridization. Diagn Mol Pathol. 2005;14(1):23–8.PubMedGoogle Scholar
  107. 107.
    Ladanyi M. EWS-FLI1 and Ewing’s sarcoma: recent molecular data and new insights. Cancer Biol Ther. 2002;1(4):330–6.PubMedGoogle Scholar
  108. 108.
    Ladanyi M, Lewis R, Garin-Chesa P, et al. EWS rearrangement in Ewing’s sarcoma and peripheral neuroectodermal tumor. Molecular detection and correlation with cytogenetic analysis and MIC2 expression. Diagn Mol Pathol. 1993;2(3):141–6.PubMedGoogle Scholar
  109. 109.
    Arvand A, Denny CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene. 2001;20(40):5747–54.PubMedGoogle Scholar
  110. 110.
    Delattre O, Zucman J, Plougastel B, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359(6391):162–5.PubMedGoogle Scholar
  111. 111.
    Ohno T, Ouchida M, Lee L, Gatalica Z, Rao VN, Reddy ES. The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene. 1994; 9(10):3087–97.PubMedGoogle Scholar
  112. 112.
    May WA, Lessnick SL, Braun BS, et al. The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993;13(12):7393–8.PubMedGoogle Scholar
  113. 113.
    Rossow KL, Janknecht R. The Ewing’s sarcoma gene product functions as a transcriptional activator. Cancer Res. 2001;61(6):2690–5.PubMedGoogle Scholar
  114. 114.
    Zucman J, Delattre O, Desmaze C, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer. 1992;5(4):271–7.PubMedGoogle Scholar
  115. 115.
    Lin PP, Brody RI, Hamelin AC, Bradner JE, Healey JH, Ladanyi M. Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing’s sarcoma. Cancer Res. 1999;59(7):1428–32.PubMedGoogle Scholar
  116. 116.
    Zoubek A, Dockhorn-Dworniczak B, Delattre O, et al. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol. 1996;14(4):1245–51.PubMedGoogle Scholar
  117. 117.
    van Doorninck JA, Ji L, Schaub B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2010;28(12):1989–94.PubMedGoogle Scholar
  118. 118.
    Le Deley MC, Delattre O, Schaefer KL, et al. Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol. 2010;28(12):1982–8.PubMedGoogle Scholar
  119. 119.
    Jeon IS, Davis JN, Braun BS, et al. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995;10(6):1229–34.PubMedGoogle Scholar
  120. 120.
    Kaneko Y, Yoshida K, Handa M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer. 1996;15(2):115–21.PubMedGoogle Scholar
  121. 121.
    Peter M, Couturier J, Pacquement H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 1997;14(10):1159–64.PubMedGoogle Scholar
  122. 122.
    Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6(2):146–51.PubMedGoogle Scholar
  123. 123.
    Urano F, Umezawa A, Hong W, Kikuchi H, Hata J. A novel chimera gene between EWS and E1A-F, encoding the adenovirus E1A enhancer-binding protein, in extraosseous Ewing’s sarcoma. Biochem Biophys Res Commun. 1996;219(2):608–12.PubMedGoogle Scholar
  124. 124.
    Zucman J, Melot T, Desmaze C, et al. Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J. 1993;12(12):4481–7.PubMedGoogle Scholar
  125. 125.
    Shing DC, McMullan DJ, Roberts P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res. 2003;63(15):4568–76.PubMedGoogle Scholar
  126. 126.
    Ordonez JL, Osuna D, Herrero D, de Alava E, Madoz-Gurpide J. Advances in Ewing’s sarcoma research: where are we now and what lies ahead? Cancer Res. 2009;69(18):7140–50.PubMedGoogle Scholar
  127. 127.
    Hattinger CM, Potschger U, Tarkkanen M, et al. Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer. 2002;86(11):1763–9.PubMedGoogle Scholar
  128. 128.
    Kullendorff CM, Mertens F, Donner M, Wiebe T, Akerman M, Mandahl N. Cytogenetic aberrations in Ewing sarcoma: are secondary changes associated with clinical outcome? Med Pediatr Oncol. 1999;32(2):79–83.PubMedGoogle Scholar
  129. 129.
    Gerald WL, Rosai J. Case 2. Desmoplastic small cell tumor with divergent differentiation. Pediatr Pathol. 1989;9(2):177–83.PubMedGoogle Scholar
  130. 130.
    Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J. Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol. 1991;15(6):499–513.PubMedGoogle Scholar
  131. 131.
    Ordonez NG. Desmoplastic small round cell tumor: I: a histopathologic study of 39 cases with emphasis on unusual histological patterns. Am J Surg Pathol. 1998;22(11):1303–13.PubMedGoogle Scholar
  132. 132.
    Ordonez NG. Desmoplastic small round cell tumor: II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol. 1998;22(11):1314–27.PubMedGoogle Scholar
  133. 133.
    Adsay V, Cheng J, Athanasian E, Gerald W, Rosai J. Primary desmoplastic small cell tumor of soft tissues and bone of the hand. Am J Surg Pathol. 1999;23(11):1408–13.PubMedGoogle Scholar
  134. 134.
    Bertoldin R, Drei N, D’Inca G, Camuffo MC, Guazzieri S. A paratesticular localization of desmoplastic small cell tumor. A case report. Tumori. 1996;82(5):497–8.PubMedGoogle Scholar
  135. 135.
    Bland AE, Shah AA, Piscitelli JT, Bentley RC, Secord AA. Desmoplastic small round cell tumor masquerading as advanced ovarian cancer. Int J Gynecol Cancer. 2008;18(4):847–50.PubMedGoogle Scholar
  136. 136.
    Cummings OW, Ulbright TM, Young RH, Dei Tos AP, Fletcher CD, Hull MT. Desmoplastic small round cell tumors of the paratesticular region. A report of six cases. Am J Surg Pathol. 1997;21(2):219–25.PubMedGoogle Scholar
  137. 137.
    da Silva RC, Medeiros Filho P, Chioato L, Silva TR, Ribeiro SM, Bacchi CE. Desmoplastic small round cell tumor of the kidney mimicking Wilms tumor: a case report and review of the literature. Appl Immunohistochem Mol Morphol. 2009;17(6):557–62.PubMedGoogle Scholar
  138. 138.
    Doros L, Kaste SC, Rodriguez-Galindo C. Sister Mary Joseph’s nodule as presenting sign of a desmoplastic small round cell tumor. Pediatr Blood Cancer. 2008;50(2):388–90.PubMedGoogle Scholar
  139. 139.
    Finke NM, Lae ME, Lloyd RV, Gehani SK, Nascimento AG. Sinonasal desmoplastic small round cell tumor: a case report. Am J Surg Pathol. 2002;26(6):799–803.PubMedGoogle Scholar
  140. 140.
    Huang Y, Huang WQ, Mao WB, Gong W, Gu CF. Paratesticular desmoplastic small round cell tumor: report of a case. Zhonghua Bing Li Xue Za Zhi. 2009;38(8):559–60.PubMedGoogle Scholar
  141. 141.
    Janssens E, Desprechins B, Ernst C, De Smet K, De Mey J. Desmoplastic small round cell tumor of the kidney. JBR-BTR. 2009;92(1):60.PubMedGoogle Scholar
  142. 142.
    Karavitakis EM, Moschovi M, Stefanaki K, et al. Desmoplastic small round cell tumor of the pleura. Pediatr Blood Cancer. 2007;49(3):335–8.PubMedGoogle Scholar
  143. 143.
    Mihok NA, Cha I. Desmoplastic small round cell tumor presenting as a neck mass: a case report. Diagn Cytopathol. 2001;25(1):68–72.PubMedGoogle Scholar
  144. 144.
    Murosaki N, Matsumiya K, Kokado Y, et al. Retrovesical desmoplastic small round cell tumor in a patient with urinary frequency. Int J Urol. 2001;8(5):245–8.PubMedGoogle Scholar
  145. 145.
    Murphy A, Stallings RL, Howard J, et al. Primary desmoplastic small round cell tumor of bone: report of a case with cytogenetic confirmation. Cancer Genet Cytogenet. 2005; 156(2):167–71.PubMedGoogle Scholar
  146. 146.
    Murray JC, Minifee PK, Trautwein LM, Hicks MJ, Langston C, Morad AB. Intraabdominal desmoplastic small round cell tumor presenting as a gastric mural mass with hepatic metastases. J Pediatr Hematol Oncol. 1996;18(3):289–92.PubMedGoogle Scholar
  147. 147.
    Ryan A, Razak A, Graham J, et al. Desmoplastic small round-cell tumor of the pancreas. J Clin Oncol. 2007;25(11):1440–2.PubMedGoogle Scholar
  148. 148.
    Tison V, Cerasoli S, Morigi F, Ladanyi M, Gerald WL, Rosai J. Intracranial desmoplastic small-cell tumor. Report of a case. Am J Surg Pathol. 1996;20(1):112–7.PubMedGoogle Scholar
  149. 149.
    Wolf AN, Ladanyi M, Paull G, Blaugrund JE, Westra WH. The expanding clinical spectrum of desmoplastic small round-cell tumor: a report of two cases with molecular confirmation. Hum Pathol. 1999;30(4):430–5.PubMedGoogle Scholar
  150. 150.
    Yin WH, Guo SP, Yang HY, Chan JK. Desmoplastic small round cell tumor of the submandibular gland—a rare but distinctive primary salivary gland neoplasm. Hum Pathol. 2010;41(3):438–42.PubMedGoogle Scholar
  151. 151.
    Yoon M, Desai K, Fulton R, et al. Desmoplastic small round cell tumor: a potentially lethal neoplasm manifesting in the orbit with associated visual symptoms. Arch Ophthalmol. 2005;123(4):565–7.PubMedGoogle Scholar
  152. 152.
    Young RH, Eichhorn JH, Dickersin GR, Scully RE. Ovarian involvement by the intra-abdominal desmoplastic small round cell tumor with divergent differentiation: a report of three cases. Hum Pathol. 1992;23(4):454–64.PubMedGoogle Scholar
  153. 153.
    Mead M, Jones MA, Decain M, Tarraza HM. Intra-abdominal desmoplastic small round-cell tumor in a postmenopausal female. Report of a case and review of the literature. Eur J Gynaecol Oncol. 1994;15(4):267–71.PubMedGoogle Scholar
  154. 154.
    Reich O, Justus J, Tamussino KF. Intra-abdominal desmoplastic small round cell tumor in a 68-year-old female. Eur J Gynaecol Oncol. 2000;21(2):126–7.PubMedGoogle Scholar
  155. 155.
    Lal DR, Su WT, Wolden SL, Loh KC, Modak S, La Quaglia MP. Results of multimodal treatment for desmoplastic small round cell tumors. J Pediatr Surg. 2005;40(1):251–5.PubMedGoogle Scholar
  156. 156.
    Lae ME, Roche PC, Jin L, Lloyd RV, Nascimento AG. Desmoplastic small round cell tumor: a clinicopathologic, immunohistochemical, and molecular study of 32 tumors. Am J Surg Pathol. 2002;26(7):823–35.PubMedGoogle Scholar
  157. 157.
    Miettinen M, Chatten J, Paetau A, Stevenson A. Monoclonal antibody NB84 in the differential diagnosis of neuroblastoma and other small round cell tumors. Am J Surg Pathol. 1998;22(3):327–32.PubMedGoogle Scholar
  158. 158.
    Zhang PJ, Goldblum JR, Pawel BR, Fisher C, Pasha TL, Barr FG. Immunophenotype of desmoplastic small round cell tumors as detected in cases with EWS-WT1 gene fusion product. Mod Pathol. 2003;16(3):229–35.PubMedGoogle Scholar
  159. 159.
    Barnoud R, Sabourin JC, Pasquier D, et al. Immunohistochemical expression of WT1 by desmoplastic small round cell tumor: a comparative study with other small round cell tumors. Am J Surg Pathol. 2000;24(6):830–6.PubMedGoogle Scholar
  160. 160.
    Hill DA, Pfeifer JD, Marley EF, et al. WT1 staining reliably differentiates desmoplastic small round cell tumor from Ewing sarcoma/primitive neuroectodermal tumor. An immunohistochemical and molecular diagnostic study. Am J Clin Pathol. 2000;114(3):345–53.PubMedGoogle Scholar
  161. 161.
    Khalbuss WE, Bui M, Loya A. A 19-year-old woman with a cervicovaginal mass and elevated serum CA 125. Desmoplastic small round cell tumor. Arch Pathol Lab Med. 2006; 130(4):e59–61.PubMedGoogle Scholar
  162. 162.
    Ordonez NG, Sahin AA. CA 125 production in desmoplastic small round cell tumor: report of a case with elevated serum levels and prominent signet ring morphology. Hum Pathol. 1998;29(3):294–9.PubMedGoogle Scholar
  163. 163.
    Yang SF, Wang SL, Chai CY, Su YC, Fu OY, Chen CY. Intra-abdominal desmoplastic small round cell tumor with elevated serum CA 125: a case report. Kaohsiung J Med Sci. 2003;19(10):531–6.PubMedGoogle Scholar
  164. 164.
    Yoshizawa J, Maie M, Eto T, et al. A case of intra-abdominal desmoplastic small-round-cell tumor with elevated serum CA125. Pediatr Surg Int. 2002;18(4):238–40.PubMedGoogle Scholar
  165. 165.
    Biegel JA, Conard K, Brooks JJ. Translocation (11;22)(p13;q12): primary change in intra-abdominal desmoplastic small round cell tumor. Genes Chromosomes Cancer. 1993; 7(2):119–21.PubMedGoogle Scholar
  166. 166.
    Rodriguez E, Sreekantaiah C, Gerald W, Reuter VE, Motzer RJ, Chaganti RS. A recurring translocation, t(11;22)(p13;q11.2), characterizes intra-abdominal desmoplastic small round-cell tumors. Cancer Genet Cytogenet. 1993;69(1):17–21.PubMedGoogle Scholar
  167. 167.
    Sawyer JR, Tryka AF, Lewis JM. A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol. 1992;16(4):411–6.PubMedGoogle Scholar
  168. 168.
    Shen WP, Towne B, Zadeh TM. Cytogenetic abnormalities in an intraabdominal desmoplastic small cell tumor. Cancer Genet Cytogenet. 1992;64(2):189–91.PubMedGoogle Scholar
  169. 169.
    Argatoff LH, O’Connell JX, Mathers JA, Gilks CB, Sorensen PH. Detection of the EWS/WT1 gene fusion by reverse transcriptase-polymerase chain reaction in the diagnosis of intra-abdominal desmoplastic small round cell tumor. Am J Surg Pathol. 1996;20(4):406–12.PubMedGoogle Scholar
  170. 170.
    Brodie SG, Stocker SJ, Wardlaw JC, et al. EWS and WT-1 gene fusion in desmoplastic small round cell tumor of the abdomen. Hum Pathol. 1995;26(12):1370–4.PubMedGoogle Scholar
  171. 171.
    de Alava E, Ladanyi M, Rosai J, Gerald WL. Detection of chimeric transcripts in desmoplastic small round cell tumor and related developmental tumors by reverse transcriptase polymerase chain reaction. A specific diagnostic assay. Am J Pathol. 1995;147(6):1584–91.PubMedGoogle Scholar
  172. 172.
    Gerald WL, Rosai J, Ladanyi M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci U S A. 1995;92(4):1028–32.PubMedGoogle Scholar
  173. 173.
    Finkeltov I, Kuhn S, Glaser T, et al. Transcriptional regulation of IGF-I receptor gene expression by novel isoforms of the EWS-WT1 fusion protein. Oncogene. 2002;21(12):1890–8.PubMedGoogle Scholar
  174. 174.
    Gerald WL, Haber DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol. 2005;15(3):197–205.PubMedGoogle Scholar
  175. 175.
    Ito E, Honma R, Imai J, et al. A tetraspanin-family protein, T-cell acute lymphoblastic leukemia-associated antigen 1, is induced by the Ewing’s sarcoma-Wilms’ tumor 1 fusion protein of desmoplastic small round-cell tumor. Am J Pathol. 2003;163(6):2165–72.PubMedGoogle Scholar
  176. 176.
    Palmer RE, Lee SB, Wong JC, et al. Induction of BAIAP3 by the EWS-WT1 chimeric fusion implicates regulated exocytosis in tumorigenesis. Cancer Cell. 2002;2(6):497–505.PubMedGoogle Scholar
  177. 177.
    Reynolds PA, Smolen GA, Palmer RE, et al. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev. 2003;17(17): 2094–107.PubMedGoogle Scholar
  178. 178.
    Wong JC, Lee SB, Bell MD, et al. Induction of the interleukin-2/15 receptor beta-chain by the EWS-WT1 translocation product. Oncogene. 2002;21(13):2009–19.PubMedGoogle Scholar
  179. 179.
    Gerald WL, Ladanyi M, de Alava E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J Clin Oncol. 1998;16(9):3028–36.PubMedGoogle Scholar
  180. 180.
    Ye Y, Raychaudhuri B, Gurney A, Campbell CE, Williams BR. Regulation of WT1 by phosphorylation: inhibition of DNA binding, alteration of transcriptional activity and cellular translocation. EMBO J. 1996;15(20):5606–15.PubMedGoogle Scholar
  181. 181.
    Haber DA, Park S, Maheswaran S, et al. WT1-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant. Science. 1993;262(5142):2057–9.PubMedGoogle Scholar
  182. 182.
    Park S, Tomlinson G, Nisen P, Haber DA. Altered trans-activational properties of a mutated WT1 gene product in a WAGR-associated Wilms’ tumor. Cancer Res. 1993;53(20): 4757–60.PubMedGoogle Scholar
  183. 183.
    Englert C, Hou X, Maheswaran S, et al. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J. 1995;14(19):4662–75.PubMedGoogle Scholar
  184. 184.
    Lee SB, Kolquist KA, Nichols K, et al. The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour. Nat Genet. 1997;17(3):309–13.PubMedGoogle Scholar
  185. 185.
    Li H, Smolen GA, Beers LF, et al. Adenosine transporter ENT4 is a direct target of EWS/WT1 translocation product and is highly expressed in desmoplastic small round cell tumor. PLoS One. 2008;3(6):e2353.PubMedGoogle Scholar
  186. 186.
    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.PubMedGoogle Scholar
  187. 187.
    Adair TH. Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol. 2005;289(2):R283–96.PubMedGoogle Scholar
  188. 188.
    Kong W, Engel K, Wang J. Mammalian nucleoside transporters. Curr Drug Metab. 2004; 5(1):63–84.PubMedGoogle Scholar
  189. 189.
    Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002;3(7):415–24.PubMedGoogle Scholar
  190. 190.
    Hoffman MA, Janson D, Rose E, Rai KR. Treatment of hairy-cell leukemia with cladribine: response, toxicity, and long-term follow-up. J Clin Oncol. 1997;15(3):1138–42.PubMedGoogle Scholar
  191. 191.
    Saven A, Piro L. Newer purine analogues for the treatment of hairy-cell leukemia. N Engl J Med. 1994;330(10):691–7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Pathology, Great Lakes Pathologists, S.C.Aurora Baycare Medical CenterGreen BayUSA
  2. 2.Department of PathologyFroedtert Hospital/Medical College of WisconsinMilwaukeeUSA

Personalised recommendations