Advertisement

Pediatric Bone Tumors

  • Roberto A. Leon-Ferre
  • Eduardo V. ZambranoEmail author
Chapter
  • 828 Downloads
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Primary bone tumors, benign and malignant, account for an important percentage of neoplasms in the pediatric population. According to the National Cancer Institute Surveillance Epidemiology and End Result 1975–1995 program, malignant bone tumors comprise approximately 6 % of childhood cancer, having an average annual incidence rate of 8.7 per million children younger than 20 years of age. According to the report, in the United States each year 650–700 children and adolescents younger than 20 years of age are diagnosed with malignant bone tumors.

Keywords

Osteoblastic tumors Osteosarcoma Cartilaginous neoplasms Exostosis Chondrosarcoma 

References

  1. 1.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet. 2003; 145(1):1–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Kransdorf MJ, Stull MA, Gilkey FW, Moser Jr RP. Osteoid osteoma. Radiographics. 1991; 11(4):671–96.PubMedGoogle Scholar
  3. 3.
    Kumar V, editor. Robbins and Cotran’s pathologic basis of disease. 8th ed. Philadelphia: Saunders; 2010.Google Scholar
  4. 4.
    Azouz EM, Kozlowski K, Marton D, Sprague P, Zerhouni A, Asselah F. Osteoid osteoma and osteoblastoma of the spine in children. Report of 22 cases with brief literature review. Pediatr Radiol. 1986;16(1):25–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Saccomanni B. Osteoid osteoma and osteoblastoma of the spine: a review of the literature. Curr Rev Musculoskelet Med. 2009;2(1):65–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Streitparth F, Teichgraber U, Walter T, Schaser KD, Gebauer B. Recurrent osteoid osteoma: interstitial laser ablation under magnetic resonance imaging guidance. Skeletal Radiol. 2010;39(11):1131–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Kan P, Schmidt MH. Osteoid osteoma and osteoblastoma of the spine. Neurosurg Clin N Am. 2008;19(1):65–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Raskas DS, Graziano GP, Herzenberg JE, Heidelberger KP, Hensinger RN. Osteoid osteoma and osteoblastoma of the spine. J Spinal Disord. 1992;5(2):204–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaye JJ, Arnold WD. Osteoid osteomas in siblings. Case reports. Clin Orthop Relat Res. 1977; 126:273–5.PubMedGoogle Scholar
  10. 10.
    Kalil RK, Antunes JS. Familial occurrence of osteoid osteoma. Skeletal Radiol. 2003; 32(7):416–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Baruffi MR, Volpon JB, Neto JB, Casartelli C. Osteoid osteomas with chromosome alterations involving 22q. Cancer Genet Cytogenet. 2001;124(2):127–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Dal Cin P, Sciot R, Samson I, De Wever I, Van den Berghe H. Osteoid osteoma and osteoblastoma with clonal chromosome changes. Br J Cancer. 1998;78(3):344–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Franchi A, Calzolari A, Zampi G. Immunohistochemical detection of c-fos and c-jun expression in osseous and cartilaginous tumours of the skeleton. Virchows Arch. 1998; 432(6):515–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Gamberi G, Benassi MS, Bohling T, et al. C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression. Oncology. 1998;55(6):556–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Greenspan A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical, imaging, pathologic, and differential considerations. Skeletal Radiol. 1993; 22(7): 485–500.PubMedCrossRefGoogle Scholar
  16. 16.
    Khurana JS. Bone pathology. 2nd ed. Totowa: Humana; 2009.CrossRefGoogle Scholar
  17. 17.
    Oliveira CR, Mendonca BB, Camargo OP, et al. Classical osteoblastoma, atypical osteoblastoma, and osteosarcoma: a comparative study based on clinical, histological, and biological parameters. Clinics (Sao Paulo). 2007;62(2):167–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Unni KK, Dahlin DCB. Dahlin’s bone tumors: general aspects and data on 11,087 cases. 5th ed. Philadelphia: Lippincott-Raven; 1996.Google Scholar
  19. 19.
    Giannico G, Holt GE, Homlar KC, Johnson J, Pinnt J, Bridge JA. Osteoblastoma characterized by a three-way translocation: report of a case and review of the literature. Cancer Genet Cytogenet. 2009;195(2):168–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Mascarello JT, Krous HF, Carpenter PM. Unbalanced translocation resulting in the loss of the chromosome 17 short arm in an osteoblastoma. Cancer Genet Cytogenet. 1993;69(1):65–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006;32(6):423–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Dorfman HD, Czerniak B. Bone cancers. Cancer. 1995;75(1 Suppl):203–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Wiklund TA, Blomqvist CP, Raty J, Elomaa I, Rissanen P, Miettinen M. Postirradiation sarcoma. Analysis of a nationwide cancer registry material. Cancer. 1991;68(3):524–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Fletcher CDM, Unni KK, Mertens F, editors. Pathology and genetics of tumours of soft tissue and bone. Lyon: IARC Press; 2002. World Health Organization Classification of Tumours.Google Scholar
  25. 25.
    Gorlick R. Current concepts on the molecular biology of osteosarcoma. Cancer Treat Res. 2010;152:467–78.CrossRefGoogle Scholar
  26. 26.
    Bridge JA, Nelson M, McComb E, et al. Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet Cytogenet. 1997;95(1):74–87.PubMedCrossRefGoogle Scholar
  27. 27.
    Bakhshi S, Radhakrishnan V. Prognostic markers in osteosarcoma. Expert Rev Anticancer Ther. 2010;10(2):271–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Yan T, Wunder JS, Gokgoz N, et al. COPS3 amplification and clinical outcome in osteosarcoma. Cancer. 2007;109(9):1870–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Yokoyama R, Schneider-Stock R, Radig K, Wex T, Roessner A. Clinicopathologic implications of MDM2, p53 and K-ras gene alterations in osteosarcomas: MDM2 amplification and p53 mutations found in progressive tumors. Pathol Res Pract. 1998;194(9):615–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healey JH. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res. 1993;53(1):16–8.PubMedGoogle Scholar
  31. 31.
    Kim H, Kwak NJ, Lee JY, et al. Merlin neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem. 2004;279(9):7812–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Henriksen J, Aagesen TH, Maelandsmo GM, Lothe RA, Myklebost O, Forus A. Amplification and overexpression of COPS3 in osteosarcomas potentially target TP53 for proteasome-mediated degradation. Oncogene. 2003;22(34):5358–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Noble-Topham SE, Burrow SR, Eppert K, et al. SAS is amplified predominantly in surface osteosarcoma. J Orthop Res. 1996;14(5):700–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Robertson KD, Jones PA. Tissue-specific alternative splicing in the human INK4a/ARF cell cycle regulatory locus. Oncogene. 1999;18(26):3810–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Maitra A, Roberts H, Weinberg AG, Geradts J. Loss of p16(INK4a) expression correlates with decreased survival in pediatric osteosarcomas. Int J Cancer. 2001;95(1):34–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Feugeas O, Guriec N, Babin-Boilletot A, et al. Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J Clin Oncol. 1996;14(2):467–72.PubMedGoogle Scholar
  37. 37.
    Heinsohn S, Evermann U, Zur Stadt U, Bielack S, Kabisch H. Determination of the prognostic value of loss of heterozygosity at the retinoblastoma gene in osteosarcoma. Int J Oncol. 2007;30(5):1205–14.PubMedGoogle Scholar
  38. 38.
    Molendini L, Benassi MS, Magagnoli G, et al. Prognostic significance of cyclin expression in human osteosarcoma. Int J Oncol. 1998;12(5):1007–11.PubMedGoogle Scholar
  39. 39.
    Kaseta MK, Gomatos IP, Khaldi L, et al. Prognostic value of bax, cytochrome C, and caspase-8 protein expression in primary osteosarcoma. Hybridoma (Larchmt). 2007;26(6):355–62.CrossRefGoogle Scholar
  40. 40.
    Nedelcu T, Kubista B, Koller A, et al. Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res Clin Oncol. 2008;134(2):237–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Osaka E, Suzuki T, Osaka S, et al. Survivin as a prognostic factor for osteosarcoma patients. Acta Histochem Cytochem. 2006;39(3):95–100.PubMedCrossRefGoogle Scholar
  42. 42.
    Tufan NL, Lian Z, Liu J, et al. Hepatitis Bx antigen stimulates expression of a novel cellular gene, URG4, that promotes hepatocellular growth and survival. Neoplasia. 2002; 4(4):355–68.PubMedCrossRefGoogle Scholar
  43. 43.
    Huang J, Zhu B, Lu L, et al. The expression of novel gene URG4 in osteosarcoma: correlation with patients’ prognosis. Pathology. 2009;41(2):149–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999;1(4):193–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Liao QD, Zhong D, Chen Q. Protein expression of Skp2 in osteosarcoma and its relation with prognosis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2008;33(7):606–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Li Y, Tanaka K, Li X, et al. Cyclin-dependent kinase inhibitor, flavopiridol, induces apoptosis and inhibits tumor growth in drug-resistant osteosarcoma and Ewing’s family tumor cells. Int J Cancer. 2007;121(6):1212–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Honoki K, Yoshitani K, Tsujiuchi T, et al. Growth inhibition and induction of apoptosis by flavopiridol in rat lung adenocarcinoma, osteosarcoma and malignant fibrous histiocytoma cell lines. Oncol Rep. 2004;11(5):1025–30.PubMedGoogle Scholar
  48. 48.
    Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer. 2006;6(8):637–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Scotlandi K, Baldini N, Oliviero M, et al. Expression of Met/hepatocyte growth factor receptor gene and malignant behavior of musculoskeletal tumors. Am J Pathol. 1996;149(4):1209–19.PubMedGoogle Scholar
  50. 50.
    Li YG, Geng X. A meta-analysis on the association of HER-2 overexpression with prognosis in human osteosarcoma. Eur J Cancer Care (Engl). 2010;19(3):313–6.CrossRefGoogle Scholar
  51. 51.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Smith I, Procter M, Gelber RD, et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet. 2007; 369 (9555):29–36.PubMedCrossRefGoogle Scholar
  53. 53.
    Geller DS, Gorlick R. HER-2 targeted treatment of osteosarcoma: the challenges of developing targeted therapy and prognostic factors for rare malignancies. Expert Opin Pharmacother. 2010;11(1):51–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004;341:19–39.PubMedCrossRefGoogle Scholar
  55. 55.
    Chen K, Fallen S, Abaan HO, et al. Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatr Blood Cancer. 2008;51(3):349–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Daino K, Ugolin N, Altmeyer-Morel S, Guilly MN, Chevillard S. Gene expression profiling of alpha-radiation-induced rat osteosarcomas: identification of dysregulated genes involved in radiation-induced tumorigenesis of bone. Int J Cancer. 2009;125(3):612–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Fauci AS. Harrison’s principles of internal medicine. 17th ed. New York: McGraw-Hill Medical; 2008.Google Scholar
  58. 58.
    Sangiorgi L, Gobbi GA, Lucarelli E, et al. Presence of telomerase activity in different musculoskeletal tumor histotypes and correlation with aggressiveness. Int J Cancer. 2001;95(3):156–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Ulaner GA, Huang HY, Otero J, et al. Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res. 2003;63(8):1759–63.PubMedGoogle Scholar
  60. 60.
    Pakos EE, Ioannidis JP. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer. 2003;98(3):581–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Serra M, Pasello M, Manara MC, et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol. 2006;29(6):1459–68.PubMedGoogle Scholar
  62. 62.
    Baldini N, Scotlandi K, Serra M, et al. P-glycoprotein expression in osteosarcoma: a basis for risk-adapted adjuvant chemotherapy. J Orthop Res. 1999;17(5):629–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Selvarajah S, Yoshimoto M, Ludkovski O, et al. Genomic signatures of chromosomal instability and osteosarcoma progression detected by high resolution array CGH and interphase FISH. Cytogenet Genome Res. 2008;122(1):5–15.PubMedCrossRefGoogle Scholar
  64. 64.
    Tarkkanen M, Elomaa I, Blomqvist C, et al. DNA sequence copy number increase at 8q: a potential new prognostic marker in high-grade osteosarcoma. Int J Cancer. 1999;84(2):114–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Holzbeierlein JM, Windsperger A, Vielhauer G. Hsp90: a drug target? Curr Oncol Rep. 2010; 12(2):95–101.PubMedCrossRefGoogle Scholar
  66. 66.
    Sandberg AA. Genetics of chondrosarcoma and related tumors. Curr Opin Oncol. 2004; 16(4):342–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: chondrosarcoma and other cartilaginous neoplasms. Cancer Genet Cytogenet. 2003;143(1):1–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Bovee JV, van Royen M, Bardoel AF, et al. Near-haploidy and subsequent polyploidization characterize the progression of peripheral chondrosarcoma. Am J Pathol. 2000;157(5): 1587–95.PubMedCrossRefGoogle Scholar
  69. 69.
    Masui F, Ushigome S, Kamitani K, Asanuma K, Fujii K. Chondroblastoma: a study of 11 cases. Eur J Surg Oncol. 2002;28(8):869–74.PubMedCrossRefGoogle Scholar
  70. 70.
    van Zelderen-Bhola SL, Bovee JV, Wessels HW, et al. Ring chromosome 4 as the sole cytogenetic anomaly in a chondroblastoma: a case report and review of the literature. Cancer Genet Cytogenet. 1998;105(2):109–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Swarts SJ, Neff JR, Johansson SL, Nelson M, Bridge JA. Significance of abnormalities of chromosomes 5 and 8 in chondroblastoma. Clin Orthop Relat Res Apr. 1998;349:189–93.CrossRefGoogle Scholar
  72. 72.
    Romeo S, Szuhai K, Nishimori I, et al. A balanced t(5;17) (p15;q22-23) in chondroblastoma: frequency of the re-arrangement and analysis of the candidate genes. BMC Cancer. 2009;9:393.PubMedCrossRefGoogle Scholar
  73. 73.
    Davis DA, Cohen PR. Subungual exostosis: case report and review of the literature. Pediatr Dermatol. 1996;13(3):212–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Letts M, Davidson D, Nizalik E. Subungual exostosis: diagnosis and treatment in children. J Trauma. 1998;44(2):346–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Zambrano E, Nose V, Perez-Atayde AR, et al. Distinct chromosomal rearrangements in subungual (Dupuytren) exostosis and bizarre parosteal osteochondromatous proliferation (Nora lesion). Am J Surg Pathol. 2004;28(8):1033–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Dal Cin P, Pauwels P, Poldermans LJ, Sciot R, Van den Berghe H. Clonal chromosome abnormalities in a so-called Dupuytren’s subungual exostosis. Genes Chromosomes Cancer. 1999;24(2):162–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Storlazzi CT, Wozniak A, Panagopoulos I, et al. Rearrangement of the COL12A1 and COL4A5 genes in subungual exostosis: molecular cytogenetic delineation of the tumor-specific translocation t(X;6)(q13-14;q22). Int J Cancer. 2006;118(8):1972–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Yasuda T, Nishio J, Sumegi J, et al. Aberrations of 6q13 mapped to the COL12A1 locus in chondromyxoid fibroma. Mod Pathol. 2009;22(11):1499–506.PubMedCrossRefGoogle Scholar
  79. 79.
    Mertens F, Moller E, Mandahl N, et al. The t(X;6) in subungual exostosis results in transcriptional deregulation of the gene for insulin receptor substrate 4. Int J Cancer. 2011; 128(2):487–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Romeo S, Hogendoorn PC, Dei Tos AP. Benign cartilaginous tumors of bone: from morphology to somatic and germ-line genetics. Adv Anat Pathol. 2009;16(5):307–15.PubMedCrossRefGoogle Scholar
  81. 81.
    Zibis AH, Wade Shrader M, Segal LS. Case report: mesenchymal chondrosarcoma of the lumbar spine in a child. Clin Orthop Relat Res. 2010;468(8):2288–94.PubMedCrossRefGoogle Scholar
  82. 82.
    Chow WA. Update on chondrosarcomas. Curr Opin Oncol. 2007;19(4):371–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Naumann S, Krallman PA, Unni KK, Fidler ME, Neff JR, Bridge JA. Translocation der(13;21)(q10;q10) in skeletal and extraskeletal mesenchymal chondrosarcoma. Mod Pathol. 2002;15(5): 572–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Gatter KM, Olson S, Lawce H, Rader AE. Trisomy 8 as the sole cytogenetic abnormality in a case of extraskeletal mesenchymal chondrosarcoma. Cancer Genet Cytogenet. 2005;159(2): 151–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang L, Motoi T, Khanin R, Socci N, Olshen A, Mertens F, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Mod Pathol. 2011;24 Suppl 1:23A.Google Scholar
  86. 86.
    Steidl C, Leimeister C, Klamt B, Maier M, Nanda I, Dixon M, et al. Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene family. Genomics. 2000;66:195–203.PubMedCrossRefGoogle Scholar
  87. 87.
    Carapeti M, Aguiar RC, Goldman JM, Cross NCP. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998;91:3127–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of Iowa Hospitals and ClinicsIowa CityUSA
  2. 2.Department of PathologyFroedtert Hospital/Medical College of WisconsinMilwaukeeUSA

Personalised recommendations