Advertisement

Children Are Not Small Adults: Importance of Molecular Analysis for Diagnosis, Prognosis, and Treatment of Pediatric CNS Tumors

  • Peter PytelEmail author
Chapter
  • 816 Downloads
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

CNS tumors account for 20–24 % of all pediatric neoplasms, making brain tumors the most common type of solid neoplasm in children and the leading cause of cancer-related deaths for children under the age of 14 years (Pediatrics 5:263–270, 2010). In overall frequency among pediatric neoplasms, CNS tumors are second only to leukemias, which account for 30 % of cases. Overall there are about 3,400 new cases a year within the USA (Curr Opin Pediatr 19:670–674, 2007). The biggest groups include gliomas (65 %), medulloblastomas and other embryonal tumors (26 %), and craniopharyngiomas (4 %) (J Child Neurol 24:1375–1386, 2009). There may be some variation in the frequency of specific tumors in different geographic areas. In Japan and Taiwan, for example, germ cell tumors and craniopharyngiomas are more common while medulloblastomas are rarer (Child’s Nerv Syst 26:1029–1034, 2010). The absolute number of cases presenting with a particular tumor is small because of the large diversity of pediatric brain tumors (Pediatrics 5:263–270, 2010).

Keywords

Medulloblastoma Astrocytoma Pilocytic Heterogeneity Molecular 

References

  1. 1.
    Faria C, Miguéns J, Antunes JL, et al. Pediatric brain tumors: genetics and clinical outcome. J Neurosurg Pediatr. 2010;5:263–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Partap S, Fisher PG. Update on new treatments and developments in childhood brain tumors. Curr Opin Pediatr. 2007;19:670–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Pfister S, Hartmann C, Korshunov A. Histology and molecular pathology of pediatric brain tumors. J Child Neurol. 2009;24:1375–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Makino K, Nakamura H, Yano S, Kuratsu J-I. Population-based epidemiological study of ­primary intracranial tumors in childhood. Childs Nerv Syst. 2010;26:1029–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Crawford JR, MacDonald TJ, Packer RJ. Medulloblastoma in childhood: new biological advances. Lancet Neurol. 2007;6:1073–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Sanders RP, Onar A, Boyett JM, et al. M1 Medulloblastoma: high risk at any age. J Neurooncol. 2008;90:351–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Ellison DW. Catenin status predicts a favorable outcome in childhood medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol. 2005;23:7951–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Ron E. Childhood cancer—treatment at a cost. J Natl Cancer Inst. 2006;98:1510–1.PubMedCrossRefGoogle Scholar
  9. 9.
    Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol. 2012;72(3):282–301.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48:31–43.PubMedCrossRefGoogle Scholar
  11. 11.
    ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250:1025–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. Annu Rev Pathol Mech Dis. 2008;3:341–65.CrossRefGoogle Scholar
  13. 13.
    Gibson P, Tong Y, Robinson G, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468:1095–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwalbe EC, Lindsey JC, Straughton D, et al. Rapid diagnosis of medulloblastoma molecular subgroups. Clin Cancer Res. 2011;17(7):1883–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee A, Kessler JD, Read TA, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8:723–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Gulino A, Arcella A, Giangaspero F. Pathological and molecular heterogeneity of medulloblastoma. Curr Opin Oncol. 2008;20:668–75.PubMedCrossRefGoogle Scholar
  17. 17.
    McManamy CS, Pears J, Weston CL, et al. Nodule formation and desmoplasia in medulloblastomas—defining the nodular/desmoplastic variant and its biological behavior. Brain Pathol. 2007;17:151–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Tabori U, Baskin B, Shago M, et al. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J Clin Oncol. 2010;28:1345–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Fattet S, Haberler C, Legoix P, et al. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol. 2009;218:86–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Dubuc AM, Northcott PA, Mack S, Witt H, Pfister S, Taylor MD. The genetics of pediatric brain tumors. Curr Neurol Neurosci Rep. 2010;10:215–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Pfister S, Remke M, Benner A, et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 2009;27:1627–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Lo KC, Ma C, Bundy BN, Pomeroy SL, Eberhart CG, Cowell JK. Gain of 1q is a potential univariate negative prognostic marker for survival in medulloblastoma. Clin Cancer Res. 2007;13:7022–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Ellison D. Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol. 2002;28:257–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Rossi MR, Conroy J, McQuaid D, Nowak NJ, Rutka JT, Cowell JK. Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer. 2006;45:290–303.PubMedCrossRefGoogle Scholar
  25. 25.
    de Haas T, Hasselt N, Troost D, et al. Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression. Clin Cancer Res. 2008;14:4154–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Ellison DW, Kocak M, Dalton J, et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol. 2011;29(11):1400–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415:436–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Phi JH, Kim JH, Eun KM, et al. Upregulation ofSOX2, NOTCH1, andID1in supratentorial primitive neuroectodermal tumors: a distinct differentiation pattern from that of medulloblastomas. J Neurosurg Pediatr. 2010;5:608–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Kazmi SA, Perry A, Pressey JG, Wellons JC, Hammers Y, Palmer CA. Primary Ewing sarcoma of the brain: a case report and literature review. Diagn Mol Pathol. 2007;16:108–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Delattre O, Zucman J, Melot T, et al. The Ewing family of tumors—a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331:294–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Ishii N, Hiraga H, Sawamura Y, Shinohe Y, Nagashima K. Alternative EWS-FLI1 fusion gene and MIC2 expression in peripheral and central primitive neuroectodermal tumors. Neuropathology. 2001;21:40–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Dedeurwaerdere F, Giannini C, Sciot R, et al. Primary peripheral PNET/Ewing’s sarcoma of the dura: a clinicopathologic entity distinct from central PNET. Mod Pathol. 2002;15:673–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Broniscer A, Baker SJ, West AN, et al. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol. 2007;25:682–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Parsa CF, Givrad S. Juvenile pilocytic astrocytomas do not undergo spontaneous malignant transformation: grounds for designation as hamartomas. Br J Ophthalmol. 2007;92:40–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.PubMedCrossRefGoogle Scholar
  36. 36.
    Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Weller M, Wick W, Hegi ME, Stupp R, Tabatabai G. Should biomarkers be used to design personalized medicine for the treatment of glioblastoma? Future Oncol. 2010;6:1407–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Riemenschneider MJ, Hegi ME, Reifenberger G. MGMT promoter methylation in malignant gliomas. Target Oncol. 2010;5:161–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Rodriguez FJ, Giannini C, Asmann YW, et al. Gene expression profiling of NF-1-associated and sporadic pilocytic astrocytoma identifies aldehyde dehydrogenase 1 family member L1 (ALDH1L1) as an underexpressed candidate biomarker in aggressive subtypes. J Neuropathol Exp Neurol. 2008;67:1194–204.PubMedCrossRefGoogle Scholar
  40. 40.
    Potter N, Karakoula A, Phipps KP, et al. Genomic deletions correlate with underexpression of novel candidate genes at six loci in pediatric pilocytic astrocytoma. Neoplasia. 2008;10:757–72.PubMedGoogle Scholar
  41. 41.
    Pfister S, Janzarik WG, Remke M, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118:1739–49.PubMedCrossRefGoogle Scholar
  42. 42.
    Tatevossian RG, Lawson ARJ, Forshew T, Hindley GFL, Ellison DW, Sheer D. MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J Cell Physiol. 2010;222(3):509–14.PubMedGoogle Scholar
  43. 43.
    Lawson ARJ, Tatevossian RG, Phipps KP, et al. RAF gene fusions are specific to pilocytic astrocytoma in a broad paediatric brain tumour cohort. Acta Neuropathol. 2010;120:271–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Deshmukh H, Yeh TH, Yu J, et al. High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene. 2008;27:4745–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Yu J, Deshmukh H, Gutmann RJ, et al. Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma. Neurology. 2009;73:1526–31.PubMedCrossRefGoogle Scholar
  46. 46.
    Sharma MK, Watson MA, Lyman M, et al. Matrilin-2 expression distinguishes clinically relevant subsets of pilocytic astrocytoma. Neurology. 2006;66:127–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Paugh BS, Qu C, Jones C, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28:3061–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Fangusaro J. Pediatric high-grade gliomas and diffuse intrinsic pontine gliomas. J Child Neurol. 2009;24:1409–17.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakamura M, Shimada K, Ishida E, et al. Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol. 2007;9:113–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Pollack IF, Hamilton RL, James CD, et al. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J Neurosurg. 2006;105:418–24.PubMedCrossRefGoogle Scholar
  51. 51.
    Rood BR, MacDonald TJ. Pediatric high-grade glioma: molecular genetic clues for innovative therapeutic approaches. J Neurooncol. 2005;75:267–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Suri V, Das P, Jain A, et al. Pediatric glioblastomas: a histopathological and molecular genetic study. Neuro Oncol. 2008;11:274–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Ganigi PM, Santosh V, Anandh B, Chandramouli BA, Sastry Kolluri VR. Expression of p53, EGFR, pRb and bcl-2 proteins in pediatric glioblastoma multiforme: a study of 54 patients. Pediatr Neurosurg. 2005;41:292–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Faury D, Nantel A, Dunn SE, et al. Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol. 2007;25:1196–208.PubMedCrossRefGoogle Scholar
  55. 55.
    Haque T, Faury D, Albrecht S, et al. Gene expression profiling from formalin-fixed paraffin-embedded tumors of pediatric glioblastoma. Clin Cancer Res. 2007;13:6284–92.PubMedCrossRefGoogle Scholar
  56. 56.
    Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK. MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer. 2007;48:403–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Buttarelli FR, Massimino M, Antonelli M, et al. Evaluation status and prognostic significance of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in pediatric high grade gliomas. Childs Nerv Syst. 2010;26:1051–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Schlosser S, Wagner S, Muhlisch J, et al. MGMT as a potential stratification marker in relapsed high-grade glioma of children: the HIT-GBM experience. Pediatr Blood Cancer. 2010;54:228–37.PubMedGoogle Scholar
  59. 59.
    Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116:597–602.PubMedCrossRefGoogle Scholar
  61. 61.
    Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Korshunov A, Meyer J, Capper D, et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 2009;118:401–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Pollack IF, Hamilton RL, Sobol RW, et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst. 2011;27(1):87–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Eberhart CG, Kratz J, Wang Y, et al. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol. 2004;63:441–9.PubMedGoogle Scholar
  65. 65.
    Mueller S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics. 2009;6:570–86.PubMedCrossRefGoogle Scholar
  66. 66.
    Adamson DC, Shi Q, Wortham M, et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 2010;70:181–91.PubMedCrossRefGoogle Scholar
  67. 67.
    de Haas T, Oussoren E, Grajkowska W, et al. OTX1 and OTX2 expression correlates with the clinicopathologic classification of medulloblastomas. J Neuropathol Exp Neurol. 2006;65:176–86.PubMedCrossRefGoogle Scholar
  68. 68.
    Fangusaro JR, Jiang Y, Holloway MP, et al. Survivin, Survivin-2B, and Survivin-deItaEx3 expression in medulloblastoma: biologic markers of tumour morphology and clinical outcome. Br J Cancer. 2005;92:359–65.PubMedGoogle Scholar
  69. 69.
    Haberler C, Slavc I, Czech T, et al. Histopathological prognostic factors in medulloblastoma: high expression of survivin is related to unfavourable outcome. Eur J Cancer. 2006;42:2996–3003.PubMedCrossRefGoogle Scholar
  70. 70.
    De Bortoli M, Castellino RC, Lu XY, et al. Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8. BMC Cancer. 2006;6:223.PubMedCrossRefGoogle Scholar
  71. 71.
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Chicago Medical CenterChicagoUSA

Personalised recommendations