Advertisement

Acute Leukemia

  • Zeba N. SinghEmail author
  • Margaret L. Gulley
Chapter
  • 832 Downloads
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Acute leukemia (AL) is the commonest malignancy in children less than 15 years of age (United States Cancer Statistics: 1999–2006 Incidence and Mortality Web-based Report, 2010). Approximately 3,000 new cases of AL occur annually in the USA, of which 80 % are acute lymphoblastic leukemia (ALL). The 5-year survival rates for childhood AL, and especially ALL has dramatically improved from 61 % in 1975–1978 to 89 % in 1999–2002 (Cancer Epidemiol 34: 659–666, 2010; J Natl Cancer Inst 100(18): 1301–1309, 2008; J Clin Oncol 28(15): 2625–2634, 2010). The remarkable success story of pediatric ALL is attributed to the exponential increase in knowledge of the molecular mechanisms of the disease and the impact of well-designed clinical trials adapted to risk-stratified subgroups based on prognostic indicators, including evaluation of early response to the treatment (minimal residual disease detection). This has been accomplished by genomic studies employing a host of modern techniques, for example, conventional cytogenetics, fluorescent in situ hybridization, DNA and gene expression arrays, and proteomics. Many of these methodologies have moved from the research bench to clinical molecular diagnostics allowing their routine use in the diagnosis, classification, prognostication, and follow-up of acute leukemia. In this chapter we describe the clinical features and associated genetic abnormalities of AL and discuss their impact on clinical management of AL. The subsequent chapter on AL in this volume describes molecular techniques routinely used in the diagnosis and prognostication of acute leukemia.

Keywords

Acute leukemia Risk stratification Chromosomal abnormalities Genomics Prognosis 

References

  1. 1.
    United States Cancer Statistics: 1999–2006 Incidence and Mortality Web-based Report. [Internet]. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. c2010. Available from: http://www.cdc.gov/uscs.
  2. 2.
    Johnston WT, Lightfoot TJ, Simpson J, Roman E. Childhood cancer survival: a report from the United Kingdom childhood cancer study. Cancer Epidemiol. 2010;34:659–66.PubMedGoogle Scholar
  3. 3.
    Pulte D, Gondos A, Brenner H. Trends in 5- and 10-year survival after diagnosis with childhood hematologic malignancies in the United States, 1990–2004. J Natl Cancer Inst. 2008;100(18):1301–9.PubMedGoogle Scholar
  4. 4.
    Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28(15):2625–34.PubMedGoogle Scholar
  5. 5.
    Linabery AM, Ross JA. Trends in childhood cancer incidence in the US (1992–2004). Cancer. 2008;112(2):416–32.PubMedGoogle Scholar
  6. 6.
    Schlis KD, Armstrong SA. Infant leukemias. In: Orkin SH, Fisher DE, Look AT, et al., editors. Oncology of infancy and childhood. 1st ed. Philadelphia: Saunders, Elsevier; 2009. p. 403.Google Scholar
  7. 7.
    Chessells JM, Harrison CJ, Kempski H, Webb DK, Wheatley K, Hann IM, et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC childhood leukaemia working party. Leukemia. 2002; 16(5):776–84.PubMedGoogle Scholar
  8. 8.
    Sinigaglia R, Gigante C, Bisinella G, Varotto S, Zanesco L, Turra S. Musculoskeletal manifestations in pediatric acute leukemia. J Pediatr Orthop. 2008;28(1):20–8.PubMedGoogle Scholar
  9. 9.
    Silverman LB. Acute lymphoblastic leukemia. In: Orkin SH, Fisher DE, Look AT, et al., editors. Oncology of infancy and childhood. 1st ed. Philadelphia: Saunders, Elsevier; 2009. p. 298.Google Scholar
  10. 10.
    Majhail NS, Lichtin AE. Acute leukemia with a very high leukocyte count: confronting a medical emergency. Cleve Clin J Med. 2004;71(8):633–7.PubMedGoogle Scholar
  11. 11.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8.PubMedGoogle Scholar
  12. 12.
    Brunning RD. Classification of acute leukemias. Semin Diagn Pathol. 2003;20(3):142–53.PubMedGoogle Scholar
  13. 13.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the world health organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.PubMedGoogle Scholar
  14. 14.
    Vardiman JW, Harris NL, Brunning RD. The world health organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–302.PubMedGoogle Scholar
  15. 15.
    Basso G, Case C, Dell’Orto MC. Diagnosis and genetic subtypes of leukemia combining gene expression and flow cytometry. Blood Cells Mol Dis. 2007;39(2):164–8.PubMedGoogle Scholar
  16. 16.
    Invernizzi R, D’Alessio A, Iannone AM, Pecci A, Bernuzzi S, Castello A. Bone marrow necrosis in acute lymphoblastic leukemia. Haematologica. 1995;80(6):572–3.PubMedGoogle Scholar
  17. 17.
    Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European group for the immunological characterization of leukemias (EGIL). Leukemia. 1995;9(10):1783–6.PubMedGoogle Scholar
  18. 18.
    Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ, et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a pediatric oncology group study. Blood. 1990;76(1):117–22.PubMedGoogle Scholar
  19. 19.
    De J, Zanjani R, Hibbard M, Davis BH. Immunophenotypic profile predictive of KIT activating mutations in AML1-ETO leukemia. Am J Clin Pathol. 2007;128(4):550–7.PubMedGoogle Scholar
  20. 20.
    Hrusak O, Porwit-MacDonald A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia. 2002;16(7):1233–58.PubMedGoogle Scholar
  21. 21.
    Kozlov I, Beason K, Yu C, Hughson M. CD79a expression in acute myeloid leukemia t(8;21) and the importance of cytogenetics in the diagnosis of leukemias with immunophenotypic ambiguity. Cancer Genet Cytogenet. 2005;163(1):62–7.PubMedGoogle Scholar
  22. 22.
    Paietta E, Goloubeva O, Neuberg D, Bennett JM, Gallagher R, Racevskis J, et al. A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry B Clin Cytom. 2004;59(1):1–9.PubMedGoogle Scholar
  23. 23.
    Borowitz MJ, Shuster JJ, Civin CI, Carroll AJ, Look AT, Behm FG, et al. Prognostic significance of CD34 expression in childhood B-precursor acute lymphocytic leukemia: a pediatric oncology group study. J Clin Oncol. 1990;8(8):1389–98.PubMedGoogle Scholar
  24. 24.
    Pui CH, Crist W, Look AT. Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood. 1990;76:1449–63.PubMedGoogle Scholar
  25. 25.
    Pui CH, Raimondi SC, Head DR, Schell MJ, Rivera GK, Mirro Jr J, et al. Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood. 1991;78(5):1327–37.PubMedGoogle Scholar
  26. 26.
    Pui CH, Rubnitz JE, Hancock ML, Downing JR, Raimondi SC, Rivera GK, et al. Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16(12):3768–73.PubMedGoogle Scholar
  27. 27.
    Khalidi HS, Chang KL, Medeiros LJ, Brynes RK, Slovak ML, Murata-Collins JL, et al. Acute lymphoblastic leukemia. Survey of immunophenotype, French-American-British classification, frequency of myeloid antigen expression, and karyotypic abnormalities in 210 pediatric and adult cases. Am J Clin Pathol. 1999;111(4):467–76.PubMedGoogle Scholar
  28. 28.
    Seegmiller AC, Kroft SH, Karandikar NJ, McKenna RW. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol. 2009; 132(6):940–9.PubMedGoogle Scholar
  29. 29.
    Vitale A, Guarini A, Ariola C, Meloni G, Perbellini O, Pizzuti M, et al. Absence of prognostic impact of CD13 and/or CD33 antigen expression in adult acute lymphoblastic leukemia. Results of the GIMEMA ALL 0496 trial. Haematologica. 2007;92(3):342–8.PubMedGoogle Scholar
  30. 30.
    Pui CH, Raimondi SC, Hancock ML, Rivera GK, Ribeiro RC, Mahmoud HH, et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19) (q23; p13) or its derivative. J Clin Oncol. 1994;12(12):2601–6.PubMedGoogle Scholar
  31. 31.
    Raimondi SC, Behm FG, Roberson PK, Williams DL, Pui CH, Crist WM, et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol. 1990;8(8):1380–8.PubMedGoogle Scholar
  32. 32.
    Buldini B, Zangrando A, Michielotto B, Veltroni M, Giarin E, Tosato F, et al. Identification of immunophenotypic signatures by clustering analysis in pediatric patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Am J Hematol. 2010; 85(2):138–41.PubMedGoogle Scholar
  33. 33.
    Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. J Clin Oncol. 2010;28(15):2529–37.PubMedGoogle Scholar
  34. 34.
    De Braekeleer E, Basinko A, Douet-Guilbert N, Morel F, Le Bris MJ, Berthou C, et al. Cytogenetics in pre-B and B-cell acute lymphoblastic leukemia: a study of 208 patients diagnosed between 1981 and 2008. Cancer Genet Cytogenet. 2010;200(1):8–15.PubMedGoogle Scholar
  35. 35.
    Forestier E, Johansson B, Gustafsson G, Borgstrom G, Kerndrup G, Johannsson J, et al. Prognostic impact of karyotypic findings in childhood acute lymphoblastic leukaemia: a Nordic series comparing two treatment periods. For the nordic society of paediatric haematology and oncology (NOPHO) leukaemia cytogenetic study group. Br J Haematol. 2000;110(1):147–53.PubMedGoogle Scholar
  36. 36.
    Forestier E, Heim S, Blennow E, Borgstrom G, Holmgren G, Heinonen K, et al. Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001. Br J Haematol. 2003; 121(4):566–77.PubMedGoogle Scholar
  37. 37.
    Harrison CJ. The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia. Blood Rev. 2001;15(1):49–59.PubMedGoogle Scholar
  38. 38.
    Harrison CJ. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol. 2009;144(2):147–56.PubMedGoogle Scholar
  39. 39.
    Harrison CJ, Haas O, Harbott J, Biondi A, Stanulla M, Trka J, et al. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the biology and diagnosis committee of the international Berlin-Frankfurt-Munster study group. Br J Haematol. 2010;151(2):132–42.PubMedGoogle Scholar
  40. 40.
    Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the medical research council (MRC) UKALLXII/Eastern cooperative oncology group (ECOG) 2993 trial. Blood. 2007; 109(8):3189–97.PubMedGoogle Scholar
  41. 41.
    Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK medical research council ALL97/99 randomised trial. Lancet Oncol. 2010;11(5):429–38.PubMedGoogle Scholar
  42. 42.
    Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the pediatric oncology group (POG) and children’s cancer group (CCG). Blood. 2007;109(3):926–35.PubMedGoogle Scholar
  43. 43.
    Sutcliffe MJ, Shuster JJ, Sather HN, Camitta BM, Pullen J, Schultz KR, et al. High concordance from independent studies by the children’s cancer group (CCG) and pediatric oncology group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI standard-risk B-precursor acute lymphoblastic leukemia: a children’s oncology group (COG) initiative. Leukemia. 2005;19(5):734–40.PubMedGoogle Scholar
  44. 44.
    Harrison CJ, Hills RK, Moorman AV, Grimwade DJ, Hann I, Webb DK, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom medical research council treatment trials AML 10 and 12. J Clin Oncol. 2010;28(16):2674–81.PubMedGoogle Scholar
  45. 45.
    Konn ZJ, Wright SL, Barber KE, Harrison CJ. Fluorescence in situ hybridization (FISH) as a tool for the detection of significant chromosomal abnormalities in childhood leukaemia. Methods Mol Biol. 2009;538:29–55.PubMedGoogle Scholar
  46. 46.
    Moorman AV, Richards SM, Robinson HM, Strefford JC, Gibson BE, Kinsey SE, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–30.PubMedGoogle Scholar
  47. 47.
    Kowalczyk JR, Babicz M, Gaworczyk A, Lejman M, Winnicka D, Styka B, et al. Structural and numerical abnormalities resolved in one-step analysis: the most common chromosomal rearrangements detected by comparative genomic hybridization in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2010;200(2):161–6.PubMedGoogle Scholar
  48. 48.
    Ito C, Kumagai M, Manabe A, Coustan-Smith E, Raimondi SC, Behm FG, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood. 1999;93(1):315–20.PubMedGoogle Scholar
  49. 49.
    Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood. 2003;102(8):2756–62.PubMedGoogle Scholar
  50. 50.
    Whitehead VM, Vuchich MJ, Cooley LD, Lauer SJ, Mahoney DH, Shuster JJ, et al. Accumulation of methotrexate polyglutamates, ploidy and trisomies of both chromosomes 4 and 10 in lymphoblasts from children with B-progenitor cell acute lymphoblastic leukemia: a pediatric oncology group study. Leuk Lymphoma. 1998;31(5–6):507–19.PubMedGoogle Scholar
  51. 51.
    Harrison CJ, Moorman AV, Barber KE, Broadfield ZJ, Cheung KL, Harris RL, et al. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK cancer cytogenetics group study. Br J Haematol. 2005;129(4):520–30.PubMedGoogle Scholar
  52. 52.
    Heerema NA, Nachman JB, Sather HN, Sensel MG, Lee MK, Hutchinson R, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children’s cancer group. Blood. 1999;94(12):4036–45.PubMedGoogle Scholar
  53. 53.
    Nachman JB, Heerema NA, Sather H, Camitta B, Forestier E, Harrison CJ, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007; 110(4):1112–5.PubMedGoogle Scholar
  54. 54.
    Aricò M, Schrappe M, Hunger SP, Carroll WL, Conter V, Galimberti S, et al. Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol. 2010;28(31):4755–61.PubMedGoogle Scholar
  55. 55.
    Ribera JM, Ortega JJ, Oriol A, Granada I, Hernandez-Rivas JM, Parody R, et al. Prognostic value of karyotypic analysis in children and adults with high-risk acute lymphoblastic leukemia included in the PETHEMA ALL-93 trial. Haematologica. 2002;87(2):154–66.PubMedGoogle Scholar
  56. 56.
    Schultz KR, Prestidge T, Camitta B. Philadelphia chromosome-positive acute lymphoblastic leukemia in children: new and emerging treatment options. Expert Rev Hematol. 2010; 3(6):731–42.PubMedGoogle Scholar
  57. 57.
    Verma D, Kantarjian HM, Jones D, Luthra R, Borthakur G, Verstovsek S, et al. Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009;114(11):2232–5.PubMedGoogle Scholar
  58. 58.
    Westbrook CA, Hooberman AL, Spino C, Dodge RK, Larson RA, Davey F, et al. Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: a cancer and leukemia group B study. Blood. 1992;80:2983–90.PubMedGoogle Scholar
  59. 59.
    Melo JV. BCR-ABL gene variants. Baillieres Clin Haematol. 1997;10(2):203–22.PubMedGoogle Scholar
  60. 60.
    Kunieda Y, Okabe M, Kurosawa M, Itaya T, Kakinuma M, Miyazaki T. Chronic myeloid leukemia presenting ALL-type BCR/ABL transcript. Ann Hematol. 1994;69(4):189–93.PubMedGoogle Scholar
  61. 61.
    Lemes A, Gomez Casares MT, de la Iglesia S, Matutes E, Molero MT. p190 BCR-ABL rearrangement in chronic myeloid leukemia and acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1999;113(1):100–2.PubMedGoogle Scholar
  62. 62.
    Lichty BD, Keating A, Callum J, Yee K, Croxford R, Corpus G, et al. Expression of p210 and p190 BCR-ABL due to alternative splicing in chronic myelogenous leukaemia. Br J Haematol. 1998;103(3):711–5.PubMedGoogle Scholar
  63. 63.
    Saglio G, Pane F, Gottardi E, Frigeri F, Buonaiuto MR, Guerrasio A, et al. Consistent amounts of acute leukemia-associated P190BCR/ABL transcripts are expressed by chronic myelogenous leukemia patients at diagnosis. Blood. 1996;87(3):1075–80.PubMedGoogle Scholar
  64. 64.
    Solves P, Bolufer P, Lopez JA, Barragan E, Bellod L, Ferrer S, et al. Chronic myeloid leukemia with expression of ALL-type BCR/ABL transcript: a case-report and review of the literature. Leuk Res. 1999;23(9):851–4.PubMedGoogle Scholar
  65. 65.
    van Rhee F, Hochhaus A, Lin F, Melo JV, Goldman JM, Cross NC. p190 BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias. Blood. 1996;87(12):5213–7.PubMedGoogle Scholar
  66. 66.
    Volpe G, Cignetti A, Panuzzo C, Kuka M, Vitaggio K, Brancaccio M, et al. Alternative BCR/ABL splice variants in Philadelphia chromosome-positive leukemias result in novel tumor-specific fusion proteins that may represent potential targets for immunotherapy approaches. Cancer Res. 2007;67(11):5300–7.PubMedGoogle Scholar
  67. 67.
    Primo D, Tabernero MD, Rasillo A, Sayagues JM, Espinosa AB, Chillon MC, et al. Patterns of BCR/ABL gene rearrangements by interphase fluorescence in situ hybridization (FISH) in BCR/ABL+ leukemias: incidence and underlying genetic abnormalities. Leukemia. 2003; 17(6):1124–9.PubMedGoogle Scholar
  68. 68.
    Robinson HM, Martineau M, Harris RL, Barber KE, Jalali GR, Moorman AV, et al. Derivative chromosome 9 deletions are a significant feature of childhood Philadelphia chromosome positive acute lymphoblastic leukaemia. Leukemia. 2005;19(4):564–71.PubMedGoogle Scholar
  69. 69.
    Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009;23(8):1490–9.PubMedGoogle Scholar
  70. 70.
    Jansen MW, van der Velden VH, van Dongen JJ. Efficient and easy detection of MLL-AF4, MLL-AF9 and MLL-ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and LightCycler. Leukemia. 2005;19(11):2016–8.PubMedGoogle Scholar
  71. 71.
    De Braekeleer E, Meyer C, Douet-Guilbert N, Morel F, Le Bris MJ, Berthou C, et al. Complex and cryptic chromosomal rearrangements involving the MLL gene in acute leukemia: a study of 7 patients and review of the literature. Blood Cells Mol Dis. 2010;44(4):268–74.PubMedGoogle Scholar
  72. 72.
    Navid F, Mosijczuk AD, Head D, Borowitz MJ, Carroll AJ, Brandt JM, et al. Acute lymphoblastic leukemia with the (8;14)(q24;q32) translocation and FAB L3 morphology associated with a B-precursor immunophenotype: the pediatric oncology group experience. Leukemia. 1999;13(1):135–41.PubMedGoogle Scholar
  73. 73.
    Davey FR, Lawrence D, MacCallum J, Varney J, Hutchison R, Wurster-Hill D, et al. Morphologic characteristics of acute lymphoblastic leukemia (ALL) with abnormalities of chromosome 8, band q24. Am J Hematol. 1992;40(3):183–91.PubMedGoogle Scholar
  74. 74.
    Gupta AA, Grant R, Shago M, Abdelhaleem M. Occurrence of t(8;22)(q24.1;q11.2) involving the MYC locus in a case of pediatric acute lymphoblastic leukemia with a precursor B cell immunophenotype. J Pediatr Hematol Oncol. 2004;26(8):532–4.PubMedGoogle Scholar
  75. 75.
    Hammami A, Chan WC, Michels SD, Nassar VH. Mature B-cell acute leukemia: a clinical, morphological, immunological, and cytogenetic study of nine cases. Hematol Pathol. 1991; 5(3):109–18.PubMedGoogle Scholar
  76. 76.
    Kaplinsky C, Rechavi G. Acute lymphoblastic leukemia of burkitt type (L3 ALL) with t(8;14) lacking surface and cytoplasmic immunoglobulins. Med Pediatr Oncol. 1998;31(1):36–8.PubMedGoogle Scholar
  77. 77.
    Komrokji R, Lancet J, Felgar R, Wang N, Bennett JM. Burkitt’s leukemia with precursor B-cell immunophenotype and atypical morphology (atypical burkitt’s leukemia/lymphoma): case report and review of literature. Leuk Res. 2003;27(6):561–6.PubMedGoogle Scholar
  78. 78.
    Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350(15):1535–48.PubMedGoogle Scholar
  79. 79.
    Goldberg JM, Silverman LB, Levy DE, Dalton VK, Gelber RD, Lehmann L, et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber cancer institute acute lymphoblastic leukemia consortium experience. J Clin Oncol. 2003;21(19):3616–22.PubMedGoogle Scholar
  80. 80.
    Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20(9):1496–510.PubMedGoogle Scholar
  81. 81.
    Raimondi SC. Cytogenetics of acute leukemias. In: Pui CH, editor. Childhood leukemias. Cambridge: Press syndicate of the University of Cambridge; 1999. p. 168.Google Scholar
  82. 82.
    Rubnitz JE, Look AT. Molecular genetics of acute lymphoblastic leukemia. In: Pui CH, editor. Childhood leukemias. 1st ed. Cambridge: Press Syndicate of the University of Cambridge; 1999. p. 197.Google Scholar
  83. 83.
    Bellido M, Martino R, Aventin A, Carnicer MJ, Rubiol E, Lopez O, et al. Leukemic relapse as T-acute lymphoblastic leukemia in a patient with acute myeloid leukemia and a minor T-cell clone at diagnosis. Haematologica. 2000;85(10):1083–6.PubMedGoogle Scholar
  84. 84.
    Cauwelier B, Dastugue N, Cools J, Poppe B, Herens C, De Paepe A, et al. Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRbeta locus rearrangements and putative new T-cell oncogenes. Leukemia. 2006;20(7):1238–44.PubMedGoogle Scholar
  85. 85.
    Ellison DA, Parham DM, Sawyer JR. Cytogenetic findings in pediatric T-lymphoblastic lymphomas: one institution’s experience and a review of the literature. Pediatr Dev Pathol. 2005;8(5):550–6.PubMedGoogle Scholar
  86. 86.
    Szczepanski T, Langerak AW, Willemse MJ, Wolvers-Tettero IL, van Wering ER, van Dongen JJ. T cell receptor gamma (TCRG) gene rearrangements in T cell acute lymphoblastic leukemia refelct ‘end-stage’ recombinations: implications for minimal residual disease monitoring. Leukemia. 2000;14(7):1208–14.PubMedGoogle Scholar
  87. 87.
    Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C, et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood. 2003;102(3):1000–6.PubMedGoogle Scholar
  88. 88.
    Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia. 2001;15(10):1495–504.PubMedGoogle Scholar
  89. 89.
    Raimondi SC. Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood. 1993;81(9):2237–51.PubMedGoogle Scholar
  90. 90.
    Aster JC. Deregulated NOTCH signaling in acute T-cell lymphoblastic leukemia/lymphoma: new insights, questions, and opportunities. Int J Hematol. 2005;82(4):295–301.PubMedGoogle Scholar
  91. 91.
    Rao SS, O’Neil J, Liberator CD, Hardwick JS, Dai X, Zhang T, et al. Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res. 2009;69(7):3060–8.PubMedGoogle Scholar
  92. 92.
    Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8.PubMedGoogle Scholar
  93. 93.
    Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA, et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia. 2005;19(11):1948–57.PubMedGoogle Scholar
  94. 94.
    Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ, et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood. 2003;102:262–8.PubMedGoogle Scholar
  95. 95.
    Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H, et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005;106(1):274–86.PubMedGoogle Scholar
  96. 96.
    Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B, et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia. 2005;19(3):358–66.PubMedGoogle Scholar
  97. 97.
    Van Vlierberghe P, Homminga I, Zuurbier L, Gladdines-Buijs J, van Wering ER, Horstmann M, et al. Cooperative genetic defects in TLX3 rearranged pediatric T-ALL. Leukemia. 2008; 22(4):762–70.PubMedGoogle Scholar
  98. 98.
    Ballerini P, Blaise A, Busson-Le Coniat M, Su XY, Zucman-Rossi J, Adam M, et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood. 2002;100(3):991–7.PubMedGoogle Scholar
  99. 99.
    Ballerini P, Landman-Parker J, Cayuela JM, Asnafi V, Labopin M, Gandemer V, et al. Impact of genotype on survival of children with T-cell acute lymphoblastic leukemia treated according to the French protocol FRALLE-93: the effect of TLX3/HOX11L2 gene expression on outcome. Haematologica. 2008;93(11):1658–65.PubMedGoogle Scholar
  100. 100.
    Berger R, Dastugue N, Busson M, Van Den Akker J, Perot C, Ballerini P, et al. t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Leukemia. 2003;17(9):1851–7.PubMedGoogle Scholar
  101. 101.
    Cave H, Suciu S, Preudhomme C, Poppe B, Robert A, Uyttebroeck A, et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood. 2004;103(2):442–50.PubMedGoogle Scholar
  102. 102.
    Ferrando AA, Neuberg DS, Dodge RK, Paietta E, Larson RA, Wiernik PH, et al. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet. 2004;363(9408):535–6.PubMedGoogle Scholar
  103. 103.
    van Grotel M, Meijerink JP, Beverloo HB, Langerak AW, Buys-Gladdines JG, Schneider P, et al. The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica. 2006;91(9):1212–21.PubMedGoogle Scholar
  104. 104.
    van Grotel M, Meijerink JP, van Wering ER, Langerak AW, Beverloo HB, Buijs-Gladdines JG, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia. 2008;22(1):124–31.PubMedGoogle Scholar
  105. 105.
    Janssen JW, Ludwig WD, Sterry W, Bartram CR. SIL-TAL1 deletion in T-cell acute lymphoblastic leukemia. Leukemia. 1993;7(8):1204–10.PubMedGoogle Scholar
  106. 106.
    Kikuchi A, Hayashi Y, Kobayashi S, Hanada R, Moriwaki K, Yamamoto K, et al. Clinical significance of TAL1 gene alteration in childhood T-cell acute lymphoblastic leukemia and lymphoma. Leukemia. 1993;7(7):933–8.PubMedGoogle Scholar
  107. 107.
    Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukaemia. Cancer Cell. 2002;1:75–87.PubMedGoogle Scholar
  108. 108.
    De Keersmaecker K, Graux C, Odero MD, Mentens N, Somers R, Maertens J, et al. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). Blood. 2005;105(12):4849–52.PubMedGoogle Scholar
  109. 109.
    Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004; 36(10):1084–9.PubMedGoogle Scholar
  110. 110.
    Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L, et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med. 2008;205(4):751–8.PubMedGoogle Scholar
  111. 111.
    Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood. 1997;90(7):2535–40.PubMedGoogle Scholar
  112. 112.
    Attarbaschi A, Pisecker M, Inthal A, Mann G, Janousek D, Dworzak M, et al. Prognostic relevance of TLX3 (HOX11L2) expression in childhood T-cell acute lymphoblastic leukaemia treated with Berlin-Frankfurt-Munster (BFM) protocols containing early and late re-intensification elements. Br J Haematol. 2010;148(2):293–300.PubMedGoogle Scholar
  113. 113.
    Szczepanski T, Harrison CJ, van Dongen JJ. Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol. 2010;11(9):880–9.PubMedGoogle Scholar
  114. 114.
    Pullen J, Shuster JJ, Link M, Borowitz M, Amylon M, Carroll AJ, et al. Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A pediatric oncology group (POG) study. Leukemia. 1999;13(11):1696–707.PubMedGoogle Scholar
  115. 115.
    Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.PubMedGoogle Scholar
  116. 116.
    Gorello P, La Starza R, Varasano E, Chiaretti S, Elia L, Pierini V, et al. Combined interphase fluorescence in situ hybridization elucidates the genetic heterogeneity of T-cell acute lymphoblastic leukemia in adults. Haematologica. 2010;95(1):79–86.PubMedGoogle Scholar
  117. 117.
    Burmeister T, Gökbuget N, Reinhardt R, Rieder H, Hoelzer D, Schwartz S. NUP214-ABL1 in adult T-ALL: the GMALL study group experience. Blood. 2006;1081(10):3556–9.Google Scholar
  118. 118.
    Kaspers GJ, Zwaan CM. Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica. 2007;92(11):1519–32.PubMedGoogle Scholar
  119. 119.
    Manola KN. Cytogenetics of pediatric acute myeloid leukemia. Eur J Haematol. 2009; 83(5):391–405.PubMedGoogle Scholar
  120. 120.
    Rubnitz JE. Childhood acute myeloid leukemia. Curr Treat Options Oncol. 2008; 9(1):95–105.PubMedGoogle Scholar
  121. 121.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. World health organization classification of tumours. 4th ed. Lyon, France: IARC Press; 2008. p. 262.Google Scholar
  122. 122.
    Lange BJ, Smith FO, Feusner J, Barnard DR, Dinndorf P, Feig S, et al. Outcomes in CCG-2961, a children’s oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children’s oncology group. Blood. 2008;111(3):1044–53.PubMedGoogle Scholar
  123. 123.
    Meshinchi S, Arceci RJ. Prognostic factors and risk-based therapy in pediatric acute myeloid leukemia. Oncologist. 2007;12(3):341–55.PubMedGoogle Scholar
  124. 124.
    Bernstein J, Dastugue N, Haas OA, Harbott J, Heerema NA, Huret JL, et al. Nineteen cases of the t(1;22)(p13;q13) acute megakaryblastic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia. 2000;14(1):216–8.PubMedGoogle Scholar
  125. 125.
    Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X, et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet. 2001;28(3):220–1.PubMedGoogle Scholar
  126. 126.
    Brown P, McIntyre E, Rau R, Meshinchi S, Lacayo N, Dahl G, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood. 2007;110(3):979–85.PubMedGoogle Scholar
  127. 127.
    Hollink IH, Zwaan CM, Zimmermann M, Arentsen-Peters TC, Pieters R, Cloos J, et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia. 2009;23(2):262–70.PubMedGoogle Scholar
  128. 128.
    Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(10):4011–20.PubMedGoogle Scholar
  129. 129.
    Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747–54.PubMedGoogle Scholar
  130. 130.
    Meshinchi S, Woods W, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97(1):89–94.PubMedGoogle Scholar
  131. 131.
    Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002;100(1):59–66.PubMedGoogle Scholar
  132. 132.
    Zwaan CM, Meshinchi S, Radich JP, Veerman AJ, Huismans DR, Munske L, Podleschny M, Hählen K, Pieters R, Zimmermann M, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood. 2003;102(7):2387–94. Epub 2003 Jun 19 102(7):2387–94.Google Scholar
  133. 133.
    Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776–84.PubMedGoogle Scholar
  134. 134.
    Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108(12):3654–61.PubMedGoogle Scholar
  135. 135.
    Rau R, Brown P. Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematol Oncol. 2009;27(4):171–81.PubMedGoogle Scholar
  136. 136.
    Tucker MA, Meadows AT, Boice JDJ, Stovall M, Oberlin O, Stone BJ, et al. Leukemia after therapy with alkylating agents for childhood cancer. J Natl Cancer Inst. 1987;78(3):459–64.PubMedGoogle Scholar
  137. 137.
    Bhatia S, Sather HN, Pabustan OB, Trigg ME, Gaynon PS, Robison LL. Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983. Blood. 2002;99(12):4257–64.PubMedGoogle Scholar
  138. 138.
    Cohen RJ, Curtis RE, Inskip PD, Fraumeni JFJ. The risk of developing second cancers among survivors of childhood soft tissue sarcoma. Cancer. 2005;103(11):2391–6.PubMedGoogle Scholar
  139. 139.
    Bogni A, Cheng C, Liu W, Yang W, Pfeffer J, Mukatira S, et al. Genome-wide approach to identify risk factors for therapy-related myeloid leukemia. Leukemia. 2006;20(2):239–46.PubMedGoogle Scholar
  140. 140.
    Kreissman SG, Gelber RD, Cohen HJ, Clavell LA, Leavitt P, Sallan SE. Incidence of secondary acute myelogenous leukemia after treatment of childhood acute lymphoblastic leukemia. Cancer. 1992;70(8):2208–13.PubMedGoogle Scholar
  141. 141.
    Kushner BH, Zauber A, Tan CT. Second malignancies after childhood Hodgkin’s disease. The memorial Sloan-Kettering cancer center experience. Cancer. 1988;62(7):1364–70.PubMedGoogle Scholar
  142. 142.
    Leung W, Sandlund JT, Hudson MM, Zhou Y, Hancock ML, Zhu Y, et al. Second malignancy after treatment of childhood non-Hodgkin lymphoma. Cancer. 2001;92(7):1959–66.PubMedGoogle Scholar
  143. 143.
    Neglia JP, Meadows AT, Robison LL, Kim TH, Newton WA, Ruymann FB, et al. Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;325(19):1330–6.PubMedGoogle Scholar
  144. 144.
    Chen H, Sandler DP, Taylor JA, Shore DL, Liu E, Bloomfield CD, et al. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet. 1996;347(8997):295–7.PubMedGoogle Scholar
  145. 145.
    Blanco JG, Edick MJ, Hancock ML, Winick NJ, Dervieux T, Amylon MD, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics. 2002;12(8):605–11.PubMedGoogle Scholar
  146. 146.
    Relling MV, Boyett JM, Blanco JG, Raimondi SC, Behm FG, Sandlund JT, et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood. 2003;101(10):3862–7.PubMedGoogle Scholar
  147. 147.
    Fonatsch C. The role of chromosome 21 in hematology and oncology. Genes Chromosomes Cancer. 2010;49(6):497–508.PubMedGoogle Scholar
  148. 148.
    Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumors in individuals with Down’s syndrome. Lancet. 2000;355:165–9.PubMedGoogle Scholar
  149. 149.
    Zipursky A. Transient leukemia-a benign form of leukemia in ewborn infants with trisomy 21. Br J Haematol. 2003;120:930–8.PubMedGoogle Scholar
  150. 150.
    Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32(1):148–52.PubMedGoogle Scholar
  151. 151.
    Xavier AC, Ge Y, Taub JW. Down syndrome and malignancies: a unique clinical relationship: a paper from the 2008 William Beaumont hospital symposium on molecular pathology. J Mol Diagn. 2009;11(5):371–80.PubMedGoogle Scholar
  152. 152.
    Maloney KW, Carroll WL, Carroll AJ, Devidas M, Borowitz MJ, Martin PL, et al. Down syndrome childhood acute lymphoblastic leukemia has a unique spectrum of sentinel cytogenetic lesions that influences treatment outcome: a report from the children’s oncology group. Blood. 2010;116(7):1045–50.PubMedGoogle Scholar
  153. 153.
    Tigay JH. A comparison of acute lymphoblastic leukemia in Down syndrome and non-Down syndrome children: the role of trisomy 21. J Pediatr Oncol Nurs. 2009;26(6):362–8.PubMedGoogle Scholar
  154. 154.
    Whitlock JA, Sather HN, Gaynon P, Robison LL, Wells RJ, Trigg M, et al. Clinical characteristics and outcome of children with Down syndrome and acute lymphoblastic leukemia: a children’s cancer group study. Blood. 2005;106(13):4043–9.PubMedGoogle Scholar
  155. 155.
    Whitlock JA. Down syndrome and acute lymphoblastic leukaemia. Br J Haematol. 2006; 135:595–602.PubMedGoogle Scholar
  156. 156.
    Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y, Elimelech A, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008; 372(9648):1484–91.PubMedGoogle Scholar
  157. 157.
    Kearney L, Gonzalez De Castro D, Yeung J, Procter J, Horsley SW, Eguchi-Ishimae M, et al. Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood. 2009;113(3):646–8.PubMedGoogle Scholar
  158. 158.
    Hertzberg L, Vendramini E, Ganmore I, Cazzaniga G, Schmitz M, Chalker J, et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the international BFM study group. Blood. 2010;115(5):1006–17.PubMedGoogle Scholar
  159. 159.
    Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114(13):2688–98.PubMedGoogle Scholar
  160. 160.
    Kudo K, Hama A, Kojima S, Ishii R, Morimoto A, Bessho F, et al. Mosaic Down syndrome-associated acute myeloid leukemia does not require high-dose cytarabine treatment for induction and consolidation therapy. Int J Hematol. 2010;91(4):630–5.PubMedGoogle Scholar
  161. 161.
    Stepensky P, Brooks R, Waldman E, Revel-Vilk S, Izraeli S, Resnick I, et al. A rare case of GATA1 negative chemoresistant acute megakaryocytic leukemia in an 8-month-old infant with trisomy 21. Pediatr Blood Cancer. 2010;54(7):1048–9.PubMedGoogle Scholar
  162. 162.
    Jegalian AG, Buxbaum NP, Facchetti F, Raffeld M, Pittaluga S, Wayne AS, et al. Blastic plasmacytoid dendritic cell neoplasm in children: diagnostic features and clinical implications. Haematologica. 2010;95(11):1873–9.PubMedGoogle Scholar
  163. 163.
    Hama A, Kudo K, Itzel BV, Muramatsu H, Nishio N, Yoshida N, et al. Plasmacytoid dendritic cell leukemia in children. J Pediatr Hematol Oncol. 2009;31(5):339–43.PubMedGoogle Scholar
  164. 164.
    Garnache-Ottou F, Feuillard J, Ferrand C, Biichle S, Trimoreau F, Seilles E, et al. Extended diagnostic criteria for plasmacytoid dendritic cell leukaemia. Br J Haematol. 2009;145(5):624–36.PubMedGoogle Scholar
  165. 165.
    Dijkman R, van Doorn R, Szuhai K, Willemze R, Vermeer MH, Tensen CP. Gene-expression profiling and array-based CGH classify CD4+ CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood. 2007;109(4):1720–7.PubMedGoogle Scholar
  166. 166.
    Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2007:29–39.Google Scholar
  167. 167.
    Alter BP, Giri N, Savage SA, Peters JA, Loud JT, Leathwood L, et al. Malignancies and survival patterns in the national cancer institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150(2):179–88.PubMedGoogle Scholar
  168. 168.
    Dror Y. Shwachman-diamond syndrome: implications for understanding the molecular basis of leukaemia. Expert Rev Mol Med. 2008;10:e38.PubMedGoogle Scholar
  169. 169.
    Jongmans MC, Kuiper RP, Carmichael CL, Wilkins EJ, Dors N, Carmagnac A, et al. Novel RUNX1 mutations in familial platelet disorder with enhanced risk for acute myeloid leukemia: clues for improved identification of the FPD/AML syndrome. Leukemia. 2010;24(1):242–6.PubMedGoogle Scholar
  170. 170.
    Rosenberg PS, Alter BP, Ebell W. Cancer risks in fanconi anemia: findings from the German fanconi anemia registry. Haematologica. 2008;93(4):511–7.PubMedGoogle Scholar
  171. 171.
    Shimamura A. Inherited bone marrow failure syndromes: molecular features. Hematology Am Soc Hematol Educ Program. 2006:63–71.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations