Skip to main content

Towards Personalized Medicine in Pediatric Cancer: Genome-Wide Strategies to Investigate Cancer Risk and Response to Therapy

  • Chapter
  • First Online:

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Cancer results from the complex actions and interactions of multiple genetic, epigenetic and environmental factors that lead to the acquisition of somatic alterations abrogating the function of a variety of normal regulatory networks. While there has been considerable progress in understanding the genetic basis of cancer, only rarely has this knowledge translated to the development of rational therapeutics. In fact, the majority of children with cancer are still treated with nonspecific cytotoxic agents, and the remarkable strides made in curing these diseases have come largely from improvements in chemotherapy, radiation, cellular transplantation, and supportive care rather than from the use of targeted therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 2008;121 Suppl 1:1–84. doi:121/Supplement_1/1 [pii]10.1242/jcs.025742.

    Article  PubMed  Google Scholar 

  2. Muller HJ. The production of mutations by X-rays. Proc Natl Acad Sci U S A. 1928;14:714–26.

    Article  PubMed  CAS  Google Scholar 

  3. Muller HJ. Radiation injuries of the genetic material. Strahlentherapie. 1951;85:509–36.

    PubMed  CAS  Google Scholar 

  4. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109.

    PubMed  CAS  Google Scholar 

  5. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    Article  PubMed  CAS  Google Scholar 

  6. Rowley JD. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet. 1973;16:109–12.

    PubMed  CAS  Google Scholar 

  7. Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68:820–3.

    Article  PubMed  Google Scholar 

  8. Groffen J, et al. The human c-abl oncogene in the Philadelphia translocation. J Cell Physiol Suppl. 1984;3:179–91.

    Article  PubMed  CAS  Google Scholar 

  9. Groffen J, et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36:93–9. doi:0092-8674(84)90077-1 [pii].

    Article  PubMed  CAS  Google Scholar 

  10. Kurzrock R, Gutterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med. 1988;319:990–8. doi:doi:10.1056/NEJM198810133191506.

    Article  PubMed  CAS  Google Scholar 

  11. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82.

    Article  PubMed  CAS  Google Scholar 

  12. Buchdunger E, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996;56:100–4.

    PubMed  CAS  Google Scholar 

  13. Branford S, et al. Imatinib produces significantly superior molecular responses compared to interferon alfa plus cytarabine in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Leukemia. 2003;17:2401–9. doi:10.1038/sj.leu.2403158 [pii].

    Article  PubMed  CAS  Google Scholar 

  14. Hahn EA, et al. Quality of life in patients with newly diagnosed chronic phase chronic myeloid leukemia on imatinib versus interferon alfa plus low-dose cytarabine: results from the IRIS Study. J Clin Oncol. 2003;21:2138–46. doi:10.1200/JCO.2003.12.154 [pii].

    Article  PubMed  CAS  Google Scholar 

  15. Burke MJ, Willert J, Desai S, Kadota R. The treatment of pediatric Philadelphia positive (Ph+) leukemias in the imatinib era. Pediatr Blood Cancer. 2009;53:992–5. doi:10.1002/pbc.22172.

    Article  PubMed  Google Scholar 

  16. Craze JL, Harrison G, Wheatley K, Hann IM, Chessells JM. Improved outcome of acute myeloid leukaemia in Down’s syndrome. Arch Dis Child. 1999;81:32–7.

    Article  PubMed  CAS  Google Scholar 

  17. Lange BJ, et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children’s Cancer Group Studies 2861 and 2891. Blood. 1998;91:608–15.

    PubMed  CAS  Google Scholar 

  18. George RE, et al. Relationship between histopathological features, MYCN amplification, and prognosis: a UKCCSG study. United Kingdom Children Cancer Study Group. Med Pediatr Oncol. 2001;36:169–76. doi:10.1002/1096-911X(20010101)36:1<169::AID-MPO1041>3.0.CO;2-U.

    Article  PubMed  CAS  Google Scholar 

  19. Bown N. Neuroblastoma tumour genetics: clinical and biological aspects. J Clin Pathol. 2001;54:897–910.

    Article  PubMed  CAS  Google Scholar 

  20. Lander ES, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi:10.1038/35057062.

    Article  PubMed  CAS  Google Scholar 

  21. Venter JC, et al. The sequence of the human genome. Science. 2001;291:1304–51. doi:10.1126/science.1058040291/5507/1304 [pii].

    Article  PubMed  CAS  Google Scholar 

  22. The International HapMap Consortium. The International HapMap Project. Nature. 2003;426:789–96. doi:10.1038/nature02168 [pii].

    Article  Google Scholar 

  23. Strachan T, Read AP. Human molecular genetics. 2nd ed. New York: Wiley-Liss, BIOS Scientific Publishers; 1999.

    Google Scholar 

  24. Caspersson T, Zech L, Johansson C. Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res. 1970;60:315–9.

    Article  PubMed  CAS  Google Scholar 

  25. Pardue ML, Gall JG. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A. 1969;64:600–4.

    Article  PubMed  CAS  Google Scholar 

  26. Speicher MR, Gwyn Ballard S, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet. 1996;12:368–75. doi:10.1038/ng0496-368.

    Article  PubMed  CAS  Google Scholar 

  27. Woods WG, et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood. 2001;97:56–62.

    Article  PubMed  CAS  Google Scholar 

  28. Burnett AK, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br J Haematol. 2002;118:385–400. doi:3724 [pii].

    Article  PubMed  Google Scholar 

  29. Cohn SL, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97. doi:10.1200/JCO.2008.16.6785 [pii].

    Article  PubMed  Google Scholar 

  30. Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet. 1988;80:235–46.

    Article  PubMed  CAS  Google Scholar 

  31. Kallioniemi A, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    Article  PubMed  CAS  Google Scholar 

  32. Pinkel D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20:207–11. doi:10.1038/2524.

    Article  PubMed  CAS  Google Scholar 

  33. Mosse Y, Greshock J, Weber B, Maris J. Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era. Cancer Lett. 2005;228:83–90. doi:10.1016/j.canlet.2005.02.052.

    Article  PubMed  CAS  Google Scholar 

  34. Zitterbart K, et al. Low-level copy number changes of MYC genes have a prognostic impact in medulloblastoma. J Neurooncol. 2010. doi:10.1007/s11060-010-0289-3.

  35. Kang HJ, et al. High transcript level of FLT3 associated with high risk of relapse in pediatric acute myeloid leukemia. J Korean Med Sci. 2010;25:841–5. doi:10.3346/jkms.2010.25.6.841.

    Article  PubMed  CAS  Google Scholar 

  36. Kuiper RP, et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia. 2010;24:1258–64. doi:10.1038/leu.2010.87 [pii].

    Article  PubMed  CAS  Google Scholar 

  37. Pasic I, et al. Recurrent focal copy-number changes and loss of heterozygosity implicate two noncoding RNAs and one tumor suppressor gene at chromosome 3q13.31 in osteosarcoma. Cancer Res. 2010;70:160–71. doi:doi:10.1158/0008-5472.CAN-09-1902 [pii].

    Article  PubMed  CAS  Google Scholar 

  38. Barr FG, et al. Genomic and clinical analyses of 2p24 and 12q13-q14 amplification in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Genes Chromosomes Cancer. 2009;48:661–72. doi:10.1002/gcc.20673.

    Article  PubMed  CAS  Google Scholar 

  39. Bilke S, Chen QR, Wei JS, Khan J. Whole chromosome alterations predict survival in high-risk neuroblastoma without MYCN amplification. Clin Cancer Res. 2008;14:5540–7. doi:14/17/5540 [pii] 10.1158/1078-0432.CCR-07-4461.

    Article  PubMed  CAS  Google Scholar 

  40. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.

    PubMed  CAS  Google Scholar 

  41. Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N. Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer. 2000;82:1218–22. doi:S0007092099910662 [pii] 10.1054/bjoc.1999.1066.

    Article  PubMed  CAS  Google Scholar 

  42. Orr LC, et al. Cytogenetics in pediatric low-grade astrocytomas. Med Pediatr Oncol. 2002;38:173–7. doi:10.1002/mpo.1305 [pii].

    Article  PubMed  Google Scholar 

  43. Yunoue S, et al. Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem. 2003;278:26958–69. doi:10.1074/jbc.M209413200 [pii].

    Article  PubMed  CAS  Google Scholar 

  44. Vose JM. Current approaches to the management of non-Hodgkin’s lymphoma. Semin Oncol. 1998;25:483–91.

    PubMed  CAS  Google Scholar 

  45. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89:3909–3918.

    Google Scholar 

  46. Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11. doi:10.1038/35000501.

    Article  PubMed  CAS  Google Scholar 

  47. Patte C, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109:2773–80. doi:10.1182/blood-2006-07-036673 [pii].

    PubMed  CAS  Google Scholar 

  48. Miles RR, et al. Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: report of the French-American-British (FAB) international study group. Pediatr Blood Cancer. 2008;51:369–74. doi:10.1002/pbc.21619.

    Article  PubMed  Google Scholar 

  49. Capasso M, et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet. 2009;41:718–23. doi:10.1038/ng.374.

    Article  PubMed  CAS  Google Scholar 

  50. Treviño LR, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41:1001–5. doi:10.1038/ng.432.

    Article  PubMed  Google Scholar 

  51. Wiegand KC, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43. doi:10.1056/NEJMoa1008433.

    Article  PubMed  CAS  Google Scholar 

  52. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286:487–91. doi:7906 [pii].

    Article  PubMed  CAS  Google Scholar 

  53. Yang JJ, et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA. 2009;301:393–403. doi:doi:10.1001/jama.2009.7.

    Article  PubMed  CAS  Google Scholar 

  54. Fruhwald MC, Witt O. The epigenetics of cancer in children. Klin Padiatr. 2008;220:333–41. doi:10.1055/s-0028-1086026.

    Article  PubMed  CAS  Google Scholar 

  55. Davidsson J, et al. The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet. 2009;18:4054–65. doi:10.1093/hmg/ddp354.

    Article  PubMed  CAS  Google Scholar 

  56. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. doi:S0092-8674(09)00008-7 [pii] 10.1016/j.cell.2009.01.002.

    Article  PubMed  CAS  Google Scholar 

  57. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi:10.1101/gr.082701.108 [pii].

    Article  PubMed  CAS  Google Scholar 

  58. McManus MT. MicroRNAs and cancer. Semin Cancer Biol. 2003;13:253–8.

    Article  PubMed  CAS  Google Scholar 

  59. Wei JS, et al. microRNA profiling identifies cancer-specific and prognostic signatures in pediatric malignancies. Clin Cancer Res. 2009;15:5560–8. doi:10.1158/1078-0432.ccr-08-3287.

    Article  PubMed  CAS  Google Scholar 

  60. Chen QR, et al. Global genomic and proteomic analysis identifies biological pathways related to high-risk neuroblastoma. J Proteome Res. 2010;9:373–82. doi:10.1021/pr900701v.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Pinto MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pinto, N., Onel, K. (2012). Towards Personalized Medicine in Pediatric Cancer: Genome-Wide Strategies to Investigate Cancer Risk and Response to Therapy. In: Mackinnon Jr, A. (eds) Pediatric Neoplasia. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-116-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-116-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-115-8

  • Online ISBN: 978-1-62703-116-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics