Skip to main content

From Pluripotency to Differentiation: The Role of mtDNA in Stem Cell Models of Mitochondrial Diseases

  • Chapter
  • First Online:
Mitochondrial DNA, Mitochondria, Disease and Stem Cells

Abstract

Embryonic stem cells (ESCs) are characterized by pluripotency, self-renewal and unlimited proliferation representing a limitless supply of cells for therapy. Moreover, ESCs represent a unique experimental model to investigate the basic principles of mammalian cell differentiation. ESCs are very useful for in-depth analysis of the development of the mitochondrial complement as the cells activate aerobic metabolism during differentiation. Induced pluripotent stem cells (iPSCs), which are reprogrammed somatic cells, appear to have identical properties to those of ESCs. They will certainly be a fundamental tool to establish human models for specific diseases. Nevertheless, the generation of iPSCs through reprogramming of mouse and human differentiated adult cells containing a mature mitochondrial complement requires a complete reprogramming of the cytoplasm to acquire the “pluripotent” mitochondrial network typical of undifferentiated ESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell cycle regulation. Nat Rev Genet 9:115–128

    Article  PubMed  CAS  Google Scholar 

  2. Zhang H, Wang ZZ (2008) Mechanisms that mediate stem cell self-renewal and differentiation. J Cell Biochem 103:709–718

    Article  PubMed  CAS  Google Scholar 

  3. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  4. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  5. Griffiths M, Bonnet JS, Janes SM (2005) Stem cells of the alveolar epithelium. Lancet 366:249–260

    Article  PubMed  Google Scholar 

  6. Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26:2201–2210

    Article  PubMed  Google Scholar 

  7. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  9. Yamanaka S (2009) A fresh look at iPS cells. Cell 137:13–17

    Article  PubMed  CAS  Google Scholar 

  10. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    Article  PubMed  CAS  Google Scholar 

  11. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  PubMed  CAS  Google Scholar 

  12. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  PubMed  CAS  Google Scholar 

  13. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    Article  PubMed  CAS  Google Scholar 

  14. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed  CAS  Google Scholar 

  15. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  PubMed  CAS  Google Scholar 

  16. Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13:497–505

    Article  PubMed  CAS  Google Scholar 

  17. Lensch MW, Schlaeger TM, Zon LI, Daley GQ (2007) Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell 1:253–258

    Article  PubMed  CAS  Google Scholar 

  18. Cho SW, Moon SH, Lee SH, Kang SW, Kim J, Lim JM, Kim HS, Kim BS, Chung HM (2007) Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation 116:2409–2419

    Article  PubMed  CAS  Google Scholar 

  19. Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5:140–158

    Article  PubMed  CAS  Google Scholar 

  20. Spikings EC, Alderson J, John JC (2007) Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod 76:327–335

    Article  PubMed  CAS  Google Scholar 

  21. Van Blerkom J, Davis PW, Lee J (1995) ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer. Hum Reprod 10:415–424

    PubMed  CAS  Google Scholar 

  22. Van Blerkom J, Davis P, Mathwig V, Alexander S (2002) Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod 17:393–406

    Article  PubMed  Google Scholar 

  23. Bowles EJ, Lee JH, Alberio R, Lloyd RE, Stekel D, Campbell KH, St John JC (2007) Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics 176:1511–1526

    Article  PubMed  CAS  Google Scholar 

  24. Houghton FD, Thompson JG, Kennedy CJ, Leese HJ (1996) Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 44:476–485

    Article  PubMed  CAS  Google Scholar 

  25. Jarrell VL, Day BN, Prather RS (1991) The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol Reprod 44:62–68

    Article  PubMed  CAS  Google Scholar 

  26. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL (2000) Oxidative phosphorylation-dependent and independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod 62:1866–1874

    Article  PubMed  CAS  Google Scholar 

  27. Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, Lombardi L, De Placido G (2001) Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod 16:909–917

    Article  PubMed  CAS  Google Scholar 

  28. Baharvand H, Matthaei KI (2003) The ultrastructure of mouse embryonic stem cells. Reprod Biomed Online 7:330–335

    Article  PubMed  Google Scholar 

  29. Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park do J, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478

    Article  PubMed  CAS  Google Scholar 

  30. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 4:S60–S67

    Article  PubMed  CAS  Google Scholar 

  31. Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120:4025–4034

    Article  PubMed  CAS  Google Scholar 

  32. St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7:141–153

    Article  PubMed  CAS  Google Scholar 

  33. Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:H2023–H2031

    Article  PubMed  CAS  Google Scholar 

  34. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  35. Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M, Moreno R, Przyborski S, Lako M (2010) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28:661–673

    Article  PubMed  CAS  Google Scholar 

  36. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related Mitochondrial/Oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733

    Article  PubMed  CAS  Google Scholar 

  37. Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D, Gil J, Beach D (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9:293–299

    Article  PubMed  CAS  Google Scholar 

  38. Piko L, Taylor KD (1987) Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 123:364–374

    Article  PubMed  CAS  Google Scholar 

  39. Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, Dahl HH, Chinnery PF (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40:249–254

    Article  PubMed  CAS  Google Scholar 

  40. Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, Barrière P, Malthièry Y (2001) Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod 7:425–429

    Article  PubMed  CAS  Google Scholar 

  41. Steuerwald N, Barritt JA, Adler R, Malter H, Schimmel T, Cohen J, Brenner CA (2000) Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 8:209–215

    Article  PubMed  CAS  Google Scholar 

  42. May-Panloup P, Vignon X, Chretien MF, Heyman Y, Tamassia M, Malthièry Y, Reynier P (2005) Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol 3:65

    Article  PubMed  CAS  Google Scholar 

  43. Thundathil J, Filion F, Smith LC (2005) Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev 71:405–413

    Article  PubMed  CAS  Google Scholar 

  44. Houghton FD (2006) Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74:11–18

    Article  PubMed  CAS  Google Scholar 

  45. Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87–111

    Article  PubMed  CAS  Google Scholar 

  46. Bavister BD (2006) The mitochondrial contribution to stem cell biology. Reprod Fertil Dev 18:829–838

    Article  PubMed  CAS  Google Scholar 

  47. Batten BE, Albertini DF, Ducibella T (1987) Patterns of organelle distribution in mouse embryos during preimplantation development. Am J Anat 178:204–213

    Article  PubMed  CAS  Google Scholar 

  48. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves PB, Wolf E (2001) Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 64:904–909

    Article  PubMed  CAS  Google Scholar 

  49. Squirrell JM, Schramm RD, Paprocki AM, Wokosin DL, Bavister BD (2003) Imaging mitochondrial organization in living primate oocytes and embryos using multiphoton microscopy. Microsc Microanal 9:190–201

    Article  PubMed  CAS  Google Scholar 

  50. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102:4783–4788

    Article  PubMed  CAS  Google Scholar 

  51. Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99:673–679

    Article  PubMed  CAS  Google Scholar 

  52. Varum S, Momcilovic O, Castro C, Ben-Yehudah A, Ramalho-Santos J, Navara CS (2009) Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res 3:142–156

    Article  PubMed  CAS  Google Scholar 

  53. Suhr ST, Chang EA, Tjong J, Alcasid N, Perkins GA, Goissis MD, Ellisman MH, Perez GI, Cibelli JB (2010) Mitochondrial rejuvenation after induced pluripotency. PLoS One 5:e14095

    Article  PubMed  CAS  Google Scholar 

  54. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  55. Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  PubMed  CAS  Google Scholar 

  56. Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Article  PubMed  CAS  Google Scholar 

  57. Filser N, Margue C, Richter C (1997) Quantification of wild-type mitochondrial DNA and its 4.8-kb deletion in rat organs. Biochem Biophys Res Commun 233:102–107

    Article  PubMed  CAS  Google Scholar 

  58. Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61

    Article  PubMed  CAS  Google Scholar 

  59. Moyes CD, Battersby BJ, Leary SC (1998) Regulation of muscle mitochondrial design. J Exp Biol 201:299–307

    CAS  Google Scholar 

  60. Williams RS (1986) Mitochondrial gene expression in mammalian striated muscle. Evidence that variation in gene dosage is the major regulatory event. J Biol Chem 261:12390–12394

    PubMed  CAS  Google Scholar 

  61. Leahy A, Xiong JW, Kuhnert F, Stuhlmann H (1999) Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J Exp Zool 284:67–81

    Article  PubMed  CAS  Google Scholar 

  62. Hance N, Ekstrand MI, Trifunovic A (2005) Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet 14:1775–1783

    Article  PubMed  CAS  Google Scholar 

  63. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    Article  PubMed  CAS  Google Scholar 

  64. Ma J, Svoboda P, Schultz RM, Stein P (2001) Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol Reprod 64:1713–1721

    Article  PubMed  CAS  Google Scholar 

  65. Huo L, Scarpulla RC (2001) Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 21:644–654

    Article  PubMed  CAS  Google Scholar 

  66. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  PubMed  CAS  Google Scholar 

  67. Rohwedel J, Guan K, Wobus AM (1999) Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165:190–202

    Article  PubMed  CAS  Google Scholar 

  68. Strubing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 53:275–287

    Article  PubMed  CAS  Google Scholar 

  69. Sharova LV, Sharov AA, Piao Y, Shaik N, Sullivan T, Stewart CL, Hogan BL, Ko MS (2007) Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains. Dev Biol 307:446–459

    Article  PubMed  CAS  Google Scholar 

  70. Bain G, Ray WJ, Yao M, Gottlieb DI (1996) Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun 223:691–694

    Article  PubMed  CAS  Google Scholar 

  71. Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA (2004) Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 7:1003–1009

    Article  PubMed  CAS  Google Scholar 

  72. Gajovic S, St-Onge L, Yokota Y, Gruss P (1997) Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells. Differentiation 62:187–192

    PubMed  CAS  Google Scholar 

  73. St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R (2010) Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 16:488–509

    Google Scholar 

  74. Demonacos CV, Karayanni N, Hatzoglou E, Tsiriyiotis C, Spandidos DA, Sekeris CE (1996) Mitochondrial genes as sites of primary action of steroid hormones. Steroids 61:226–232

    Article  PubMed  CAS  Google Scholar 

  75. Wrutniak C, Cassar-Malek I, Marchal S, Rascle A, Heusser S, Keller JM, Flechon J, Dauca M, Samarut J, Ghysdael J, Cabello G (1995) A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270:16347–16354

    Article  PubMed  CAS  Google Scholar 

  76. Berdanier CD, Everts HB, Hermoyian C, Mathews CE (2001) Role of vitamin A in mitochondrial gene expression. Diabetes Res Clin Pract 54:S11–S27

    Article  PubMed  CAS  Google Scholar 

  77. Gaemers IC, Van Pelt AM, Themmen AP, De Rooij DG (1998) Isolation and characterization of all-trans-retinoic acid-responsive genes in the rat testis. Mol Reprod Dev 50:1–6

    Article  PubMed  CAS  Google Scholar 

  78. Li G, Liu Y, Tsang SS (1994) Expression of a retinoic acid-inducible mitochondrial ND5 gene is regulated by cell density in bovine papillomavirus DNA-transformed mouse C127 cells but not in revertant cells. Int J Oncol 5:301–307

    PubMed  CAS  Google Scholar 

  79. Chang DD, Clayton DA (1985) Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci USA 82:351–355

    Article  PubMed  CAS  Google Scholar 

  80. Xu B, Clayton DA (1996) RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA-DNA hybrids serving as primers. EMBO J 15:3135–3143

    PubMed  CAS  Google Scholar 

  81. Hondares E, Mora O, Yubero P, Rodriguez de la Concepción M, Iglesias R, Giralt M, Villarroya F (2006) Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology 147:2829–2838

    Article  PubMed  CAS  Google Scholar 

  82. Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286:81–89

    Article  PubMed  CAS  Google Scholar 

  83. Scarpulla RC (1997) Nuclear control of respiratory chain expression in mammalian cells. J Bioenerg Biomembr 29:109–119

    Article  PubMed  CAS  Google Scholar 

  84. Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    Article  PubMed  CAS  Google Scholar 

  85. Mehrabian Z, Liu LI, Fiskum G, Rapoport SI, Chandrasekaran K (2005) Regulation of mitochondrial gene expression by energy demand in neural cells. J Neurochem 93:850–860

    Article  PubMed  CAS  Google Scholar 

  86. Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB (2007) Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol 225:214–220

    Article  PubMed  CAS  Google Scholar 

  87. Khoo ML, McQuade LR, Smith MS, Lees JG, Sidhu KS, Tuch BE (2005) Growth and differentiation of embryoid bodies derived from human embryonic stem cells: effect of glucose and basic fibroblast growth factor. Biol Reprod 73:1147–1156

    Article  PubMed  CAS  Google Scholar 

  88. Crespo FL, Sobrado VR, Gomez L, Cervera AM, McCreath KJ (2010) Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose. Stem Cells 28:1132–1142

    PubMed  CAS  Google Scholar 

  89. Mizuno K, Tokumasu A, Nakamura A, Hayashi Y, Kojima Y, Kohri K, Noce T (2006) Genes associated with the formation of germ cells from embryonic stem cells in cultures containing different glucose concentrations. Mol Reprod Dev 73:437–445

    Article  PubMed  CAS  Google Scholar 

  90. Guillemain G, Filhoulaud G, Da Silva-Xavier G, Rutter GA, Scharfmann R (2007) Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J Biol Chem 282:15228–15237

    Article  PubMed  CAS  Google Scholar 

  91. Aghayan M, Rao LV, Smith RM, Jarett L, Charron MJ, Thorens B, Heyner S (1992) Developmental expression and cellular localization of glucose transporter molecules during mouse preimplantation development. Development 115:305–312

    PubMed  CAS  Google Scholar 

  92. Hogan A, Heyner S, Charron MJ, Copeland NG, Gilbert DJ, Jenkins NA, Thorens B, Schultz GA (1991) Glucose transporter gene expression in early mouse embryos. Development 113:363–372

    PubMed  CAS  Google Scholar 

  93. Tonack S, Rolletschek A, Wobus AM, Fischer B, Santos AN (2006) Differential expression of glucose transporter isoforms during embryonic stem cell differentiation. Differentiation 74:499–509

    Article  PubMed  CAS  Google Scholar 

  94. Spitkovsky D, Sasse P, Kolossov E, Bottinger C, Fleischmann BK, Hescheler J, Wiesner RJ (2004) Activity of complex III of the mitochondrial electron transport chain is essential for early heart muscle cell differentiation. FASEB J 18:1300–1302

    PubMed  CAS  Google Scholar 

  95. Ellis J, Bruneau BG, Keller G, Lemischka IR, Nagy A, Rossant J, Srivastava D, Zandstra PW, Stanford WL (2009) Alternative induced pluripotent stem cell characterisation criteria for in vitro applications. Cell Stem Cell 4:198–199

    Article  PubMed  CAS  Google Scholar 

  96. Gertow K, Przyborski S, Loring JF, Auerbach JM, Epifano O, Otonkoski T, Damjanov I, Ahrlund-Richter L (2007) Isolation of human embryonic stem cell derived teratomas for the assessment of pluripotency. Curr Protoc Stem Cell Biol Chapter 1: Unit1B.4

    Google Scholar 

  97. Fussner E, Djuric U, Strauss M, Hotta A, Perez-Iratxeta C, Lanner F, Dilworth FJ, Ellis J, Bazett-Jones DP (2011) Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J 30:1778–1789

    Article  PubMed  CAS  Google Scholar 

  98. Guenther MG (2011) Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics 3:323–343

    Article  PubMed  CAS  Google Scholar 

  99. Mattout A, Biran A, Meshorer E (2011) Global epigenetic changes during somatic cell reprogramming to iPS cells. J Mol Cell Biol 3:341–350

    Article  PubMed  CAS  Google Scholar 

  100. Barthelemy C, Ogier de Baulny H, Diaz J, Cheval MA, Frachon P, Romero N, Goutieres F, Fardeau M, Lombès A (2001) Late-onset mitochondrial DNA depletion: DNA copy number, multiple deletions, and compensation. Ann Neurol 49:607–617

    Article  PubMed  CAS  Google Scholar 

  101. Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513

    Article  PubMed  CAS  Google Scholar 

  102. Shmookler Reis RJ, Goldstein S (1983) Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem 258:9078–9085

    PubMed  CAS  Google Scholar 

  103. Kelly RD, Sumer H, McKenzie M, Facucho-Oliveira J, Trounce IA, Verma PJ, St John JC (2011) The effects of Nuclear reprogramming on Mitochondrial DNA replication. Stem Cell Rev doi:10.1007/s12015-011-9318-9327

  104. Zeuschner D, Mildner K, Zaehres H, Schöler HR (2010) Induced pluripotent stem cells at nanoscale. Stem Cells Dev 19:615–620

    Article  PubMed  CAS  Google Scholar 

  105. Sumer H, Jones KL, Liu J, Heffernan C, Tat PA, Upton KR, Verma PJ (2010) Reprogramming of somatic cells after fusion with induced pluripotent stem cells and nuclear transfer embryonic stem cells. Stem Cells Dev 19:239–246

    Article  PubMed  CAS  Google Scholar 

  106. Sumer H, Nicholls C, Pinto AR, Indraharan D, Liu J, Lim ML, Liu JP, Verma PJ (2010) Chromosomal and telomeric reprogramming following ES-somatic cell fusion. Chromosoma 119:167–176

    Article  PubMed  Google Scholar 

  107. Munsie MJ, Michalska AE, O’Brien CM, Trounson AO, Pera MF, Mountford PS (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10:989–992

    Article  PubMed  CAS  Google Scholar 

  108. Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–525

    Article  PubMed  CAS  Google Scholar 

  109. Kim IY, Shin JH, Seong JK (2010) Mouse phenogenomics, toolbox for functional annotation of human genome. BMB Rep 43:79–90

    Article  PubMed  CAS  Google Scholar 

  110. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, Mckinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  PubMed  CAS  Google Scholar 

  111. Kelly RD, St John JC (2011) Role of mitochondrial DNA replication during differentiation of reprogrammed stem cells. Int J Dev Biol 54:1659–1670

    Article  CAS  Google Scholar 

  112. Groot GS, Kroon AM (1979) Mitochondrial DNA from various organisms does not contain internally methylated cytosine in –CCGG- sequences. Biochim Biophys Acta 564:355–357

    Article  PubMed  CAS  Google Scholar 

  113. Huang S, Leung V, Peng S, Li L, Lu FJ, Wang T, Lu W, Cheung KM, Zhou G (2011) Developmental definition of MSCs: new insights into pending questions. Cell Reprogram 13:465–472

    Article  PubMed  CAS  Google Scholar 

  114. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968

    Article  PubMed  CAS  Google Scholar 

  115. Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I Krogh’s model Biophys J 81:675–684

    CAS  Google Scholar 

  116. Swartz HM, Dunn JF (2003) Measurements of oxygen in tissues: overview and perspectives on methods. Adv Exp Med Biol 530:1–12

    Article  PubMed  CAS  Google Scholar 

  117. Piccoli C, Ria R, Scrima R, Cela O, D’Aprile A, Boffoli D, Falzetti F, Tabilio A, Capitanio N (2005) Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 280:26467–26476

    Article  PubMed  CAS  Google Scholar 

  118. Rae PC, Kelly RD, Egginton S, St John JC (2011) Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vasc Cell 3:11–25

    Article  PubMed  CAS  Google Scholar 

  119. Lonergan T, Brenner C, Bavister B (2006) Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J Cell Physiol 208:149–153

    Article  PubMed  CAS  Google Scholar 

  120. Sauer H, Wartenberg M (2005) Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 7:1423–1434

    Article  PubMed  CAS  Google Scholar 

  121. Saretzki G, Armstrong L, Leake A, Lako M, von Zglinicki T (2004) Stress defence in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22:962–971

    Article  PubMed  CAS  Google Scholar 

  122. Saretzki G, Walter T, Atkinson S, Passos JF, Bareth B, Keith WN, Stewart R, Hoare S, Stojkovic M, Armstrong L, von Zglinicki T, Lako M (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26:455–464

    Article  PubMed  CAS  Google Scholar 

  123. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71–79

    Article  PubMed  CAS  Google Scholar 

  124. Prasad SM, Czepiel M, Cetinkaya C, Smigielska K, Weli SC, Lysdahl H, Gabrielsen A, Petersen K, Ehlers N, Fink T, Minger SL, Zachar V (2009) Continuous hypoxic culturing maintains activation of Notch and allows long term propagation of human embryonic stem cells without spontaneous differentiation. Cell Prolif 42:63–74

    Article  PubMed  CAS  Google Scholar 

  125. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    Article  PubMed  CAS  Google Scholar 

  126. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells and cancer. Cell 129:465–472

    Article  PubMed  CAS  Google Scholar 

  127. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9:285–296

    Article  PubMed  CAS  Google Scholar 

  128. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241

    Article  PubMed  CAS  Google Scholar 

  129. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:1–9

    Article  Google Scholar 

  130. Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Article  PubMed  CAS  Google Scholar 

  131. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402

    Article  PubMed  CAS  Google Scholar 

  132. Wallace DC, Ye JH, Neckelmann SN, Singh G, Webster KA, Greenberg BD (1987) Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr Genet 12:81–90

    Article  PubMed  CAS  Google Scholar 

  133. Larsen NB, Rasmussen M, Rasmussen LJ (2005) Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5:89–108

    Article  PubMed  CAS  Google Scholar 

  134. Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 283:26349–26356

    Article  PubMed  CAS  Google Scholar 

  135. Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212

    Article  PubMed  CAS  Google Scholar 

  136. Shoubridge EA (2001) Nuclear genetic defects of oxidative phosphorylation. Hum Mol Genet 10:2277–2284

    Article  PubMed  CAS  Google Scholar 

  137. Zeviani M, Carelli V (2007) Mitochondrial disorders. Curr Opin Neurol 20:564–571

    Article  PubMed  CAS  Google Scholar 

  138. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  139. Tyynismaa H, Suomalainen A (2009) Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO 10:137–143

    Article  CAS  Google Scholar 

  140. Prigione A, Cortopassi G (2007) Mitochondrial DNA deletions induce the adenosine monophosphate-activated protein kinase energy stress pathway and result in decreased secretion of some proteins. Aging Cell 6:619–630

    Article  PubMed  CAS  Google Scholar 

  141. Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden A, Yanuka O, Benvenisty N, Ben-Yosef D (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1:568–577

    Article  PubMed  CAS  Google Scholar 

  142. Mateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde H, De Rycke M, Degreef E, Devroey P, Liebaers I, Van Steirteghem A (2006) Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 21:503–511

    Article  PubMed  CAS  Google Scholar 

  143. Mateizel I, Spits C, De Rycke M, Liebaers I, Sermon K (2010) Derivation, culture, and characterization of VUB hESC lines. In Vitro Cell Dev Biol Anim 46:300–308

    Article  PubMed  Google Scholar 

  144. Banoei MM, Houshmand M, Panahi MS, Shariati P, Rostami M, Manshadi MD, Majidizadeh T (2007) Huntington’s disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?! Cell Mol Neurobiol 27:867–875

    Article  PubMed  CAS  Google Scholar 

  145. Ross-Inta C, Omanska-Klusek A, Wong S, Barrow C, Garcia-Arocena D, Iwahashi C, Berry-Kravis E, Hagerman RJ, Hagerman PJ, Giulivi C (2010) Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem J 429:545–552

    Article  PubMed  CAS  Google Scholar 

  146. Urbach A, Schuldiner M, Benvenisty N (2004) Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22:635–641

    Article  PubMed  CAS  Google Scholar 

  147. Karumbayaram S, Kelly TK, Paucar AA, Roe AJT, Umbach JA, Charles A, Goldman SA, Kornblum HI, Wiedau-Pazos M (2009) Human embryonic stem cell-derived motor neurons expressing SOD1 mutants exhibit typical signs of motor neuron degeneration linked to ALS. Dis Model Mech 2:189–195

    Article  PubMed  CAS  Google Scholar 

  148. Banci L, Bertini I, Boca M, Calderone V, Cantini F, Girotto S, Vieru M (2009) Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Proc Natl Acad Sci USA 106:6980–6985

    Article  PubMed  CAS  Google Scholar 

  149. Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31:5970–5976

    Article  PubMed  CAS  Google Scholar 

  150. Ku S, Soragni E, Campau E, Thomas EA, Altun G, Laurent LC, Loring JF, Napierala M, Gottesfeld JM (2010) Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAA-TTC triplet repeat instability. Cell Stem Cell 7:631–637

    Article  PubMed  CAS  Google Scholar 

  151. Liu J, Verma PJ, Evans-Galea MV, Delatycki MB, Michalska A, LeungJ, Crombie D, Sarsero JP, Williamson R, Dottori M, Pe′ bay A (2010) Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev. Published online 22 Dec 2010. 10. 1007/s12015-010-9210-x (in press)

    Google Scholar 

  152. Amabile G, Meissner A (2009) Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 15:59–68

    Article  PubMed  CAS  Google Scholar 

  153. Gasser T (2007) Update on the genetics of Parkinson’s disease. Mov Disord 22:S343–S350

    Article  PubMed  Google Scholar 

  154. Klein C, Schlossmacher MG (2007) Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology 69:2093–2104

    Article  PubMed  Google Scholar 

  155. Hoepken HH, Gispert S, Morales B, Wingerter O, Del Turco D, Mu¨lsch A, Nussbaum RL, Mu¨ller K, Dro¨se S, Brandt U, Deller T, Wirth B, Kudin AP, Kunz WS, Auburger G (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 25:401–411

    Google Scholar 

  156. Wood-Kaczmar A, Gandhi S, Yao Z, Abramov AY, Miljan EA, Keen G, Stanyer L, Hargreaves I, Klupsch K, Deas E, Downward J, Mansfield L, Jat P, Taylor J, Heales S, Duchen MR, Latchman D, Tabrizi SJ, Wood NW (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One 3:e2455

    Article  PubMed  CAS  Google Scholar 

  157. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  CAS  Google Scholar 

  158. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane′ J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1- dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    Article  PubMed  CAS  Google Scholar 

  159. Campuzano V, Montermini L, Molto MD, Pianese L, Cosse′ e M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Cañizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  160. Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256:9–17

    Article  PubMed  CAS  Google Scholar 

  161. Wells RD (2008) DNA triplexes and Friedreich ataxia. FASEB J 22:1625–1634

    Article  PubMed  CAS  Google Scholar 

  162. Ye H, Rouault TA (2010) Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49:4945–4956

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Victorian Government's Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Facucho-Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Facucho-Oliveira, J., Kulkarni, T., Machado-Oliveira, G., St. John, J.C. (2013). From Pluripotency to Differentiation: The Role of mtDNA in Stem Cell Models of Mitochondrial Diseases. In: St. John, J. (eds) Mitochondrial DNA, Mitochondria, Disease and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-101-1_5

Download citation

Publish with us

Policies and ethics