Skip to main content

From Oocytes and Pluripotent Stem Cells to Fully Differentiated Fates: (Also) a Mitochondrial Odyssey

  • Chapter
  • First Online:
Mitochondrial DNA, Mitochondria, Disease and Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

In the pluripotent cellular state, characteristic of preimplantation embryos and embryonic stem cells (ESCs), metabolic activity in general, and mitochondrial function in particular, seems to be subdued; increasing upon differentiation, possibly to avoid oxidative stress-mediated damage. A crucial but overlooked aspect of development is related to how mitochondrial differentiation follows somatic differentiation in terms of producing specific cell fates with very distinct metabolic profiles and energy requirements, notably in two of the most sought after cell fates in the field of regenerative medicine, the neuronal and muscular lineages. Finally, recent evidence suggests that, although induced pluripotent stem (iPS) cells obtained from somatic cells show hallmarks of pluripotency from a mitochondrial standpoint, these characteristics are not as pronounced as those shown by ESCs. Thus, incomplete reprograming might also be reflected in terms of iPS mitochondrial status, with possible implications for the derivation of patient-specific cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motta PM, Nottola SA, Makabe S, Heyn R (2000) Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 15(Suppl 2):129–147

    PubMed  Google Scholar 

  2. Sathananthan AH, Trounson AO (2000) Mitochondrial morphology during preimplantational human embryogenesis. Hum Reprod 15(Suppl 2):148–159

    PubMed  Google Scholar 

  3. Cummins JM (2001) Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Hum Reprod Update 7:217–228

    PubMed  CAS  Google Scholar 

  4. Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859–13863

    PubMed  CAS  Google Scholar 

  5. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372

    PubMed  CAS  Google Scholar 

  6. Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5:140–158

    PubMed  CAS  Google Scholar 

  7. St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R (2010) Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 16:488–509

    PubMed  CAS  Google Scholar 

  8. Dumollard R, Duchen M, Sardet C (2006) Calcium signals and mitochondria at fertilisation. Semin Cell Dev Biol 17:314–323

    PubMed  CAS  Google Scholar 

  9. Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA (1995) Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 57:239–247

    PubMed  CAS  Google Scholar 

  10. Jansen RP, de Boer K (1998) The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol 145:81–88

    PubMed  CAS  Google Scholar 

  11. Jansen RP (2000) Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum Reprod 15(Suppl 2):112–128

    PubMed  Google Scholar 

  12. Wassarman PM, Josefowicz WJ (1978) Oocyte development in the mouse: an ultrastructural comparison of oocytes isolated at various stages of growth and meiotic competence. J Morphol 156:209–235

    PubMed  CAS  Google Scholar 

  13. Au HK, Yeh TS, Kao SH, Tzeng CR, Hsieh RH (2005) Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos. Ann N Y Acad Sci 1042:177–185

    PubMed  Google Scholar 

  14. Bavister BD, Squirrell JM (2000) Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod 15(Suppl 2):189–198

    PubMed  Google Scholar 

  15. Van Blerkom J, Davis P (2007) Mitochondrial signaling and fertilization. Mol Hum Reprod 13:759–770

    PubMed  Google Scholar 

  16. Van Blerkom J, Davis P, Mathwig V, Alexander S (2002) Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod 17:393–406

    PubMed  Google Scholar 

  17. Van Blerkom J, Davis P, Alexander S (2003) Inner mitochondrial membrane potential (DeltaPsim), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes. Hum Reprod 18:2429–2440

    PubMed  Google Scholar 

  18. Van Blerkom J, Davis P (2006) High-polarized (Delta Psi m(HIGH)) mitochondria are spatially polarized in human oocytes and early embryos in stable subplasmalemmal domains: developmental significance and the concept of vanguard mitochondria. Reprod Biomed Online 13:246–254

    PubMed  Google Scholar 

  19. Van Blerkom J (2008) Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod Biomed Online 16:553–569

    PubMed  Google Scholar 

  20. Barnett DK, Kimura J, Bavister BD (1996) Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy. Dev Dyn 205:64–72

    PubMed  CAS  Google Scholar 

  21. Van Blerkom J, Cox H, Davis P (2006) Regulatory roles for mitochondria in the peri-implantation mouse blastocyst: possible origins and developmental significance of differential DeltaPsim. Reproduction 131:961–976

    PubMed  Google Scholar 

  22. Houghton FD (2006) Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74:11–18

    PubMed  CAS  Google Scholar 

  23. Biggers JD, Whittingham DG, Donahue RP (1967) The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA 58:560–567

    PubMed  CAS  Google Scholar 

  24. Boland NI, Humpherson PG, Leese HJ, Gosden RG (1993) Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod 48:798–806

    PubMed  CAS  Google Scholar 

  25. Wycherley G, Kane MT, Hynes AC (2005) Oxidative phosphorylation and the tricarboxylic acid cycle are essential for normal development of mouse ovarian follicles. Hum Reprod 20:2757–2763

    PubMed  CAS  Google Scholar 

  26. Jansen RP, Burton GJ (2004) Mitochondrial dysfunction in reproduction. Mitochondrion 4:577–600

    PubMed  CAS  Google Scholar 

  27. Harris SE, Leese HJ, Gosden RG, Picton HM (2009) Pyruvate and oxygen consumption throughout the growth and development of murine oocytes. Mol Reprod Dev 76:231–238

    PubMed  CAS  Google Scholar 

  28. Dumollard R, Marangos P, Fitzharris G, Swann K, Duchen M, Carroll J (2004) Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131:3057–3067

    PubMed  CAS  Google Scholar 

  29. Leese HJ (1995) Metabolic control during preimplantation mammalian development. Hum Reprod Update 1:63–72

    PubMed  CAS  Google Scholar 

  30. Leese HJ, Barton AM (1984) Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil 72:9–13

    PubMed  CAS  Google Scholar 

  31. Slotte H, Gustafson O, Nylund L, Pousette A (1990) ATP and ADP in human pre-embryos. Hum Reprod 5:319–322

    PubMed  CAS  Google Scholar 

  32. Van Blerkom J, Davis PW, Lee J (1995) ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer. Hum Reprod 10:415–424

    PubMed  CAS  Google Scholar 

  33. Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49

    PubMed  CAS  Google Scholar 

  34. Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ (1996) Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 106:299–306

    PubMed  CAS  Google Scholar 

  35. Gardner DK, Leese HJ (1986) Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embryos. Hum Reprod 1:25–27

    PubMed  CAS  Google Scholar 

  36. Hardy K, Hooper MA, Handyside AH, Rutherford AJ, Winston RM, Leese HJ (1989) Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod 4:188–191

    PubMed  CAS  Google Scholar 

  37. Gott AL, Hardy K, Winston RM, Leese HJ (1990) Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod 5:104–108

    PubMed  CAS  Google Scholar 

  38. Gardner DK, Leese HJ (1987) Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool 242:103–105

    PubMed  CAS  Google Scholar 

  39. Lane M, Gardner DK (1996) Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod 11:1975–1978

    PubMed  CAS  Google Scholar 

  40. Leese HJ (2002) Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24:845–849

    PubMed  Google Scholar 

  41. Leese HJ, Sturmey RG, Baumann CG, McEvoy TG (2007) Embryo viability and metabolism: obeying the quiet rules. Hum Reprod 22:3047–3050

    PubMed  Google Scholar 

  42. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    PubMed  CAS  Google Scholar 

  43. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    PubMed  CAS  Google Scholar 

  44. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    PubMed  CAS  Google Scholar 

  45. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    PubMed  CAS  Google Scholar 

  46. Pan G, Thomson JA (2007) Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17:42–49

    PubMed  CAS  Google Scholar 

  47. Dhara SK, Stice SL (2008) Neural differentiation of human embryonic stem cells. J Cell Biochem 105:633–640

    PubMed  CAS  Google Scholar 

  48. Gepstein L (2002) Derivation and potential applications of human embryonic stem cells. Circ Res 91:866–876

    PubMed  CAS  Google Scholar 

  49. Raikwar SP, Zavazava N (2009) Insulin producing cells derived from embryonic stem cells: are we there yet? J Cell Physiol 218:256–263

    PubMed  CAS  Google Scholar 

  50. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, Hirabayashi M, Nakauchi H. (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787–799

    PubMed  CAS  Google Scholar 

  51. Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park do J, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478

    PubMed  CAS  Google Scholar 

  52. Oh SK et al (2005) Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23:211–219

    PubMed  Google Scholar 

  53. St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7:141–153

    PubMed  CAS  Google Scholar 

  54. Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D, Gil J, Beach D (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Sign 9:293–299

    CAS  Google Scholar 

  55. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A (2009) Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 15:553–572

    PubMed  CAS  Google Scholar 

  56. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102:4783–4788

    PubMed  CAS  Google Scholar 

  57. Varum S, Momcilovic O, Castro C, Ben-Yehudah A, Ramalho-Santos J, Navara CS (2009) Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res 3:142–156

    PubMed  CAS  Google Scholar 

  58. Mandal, S., Lindgren, A.G., Srivastava, A.S., Clark, A.T., Banerjee, U (2011) Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells 29:486–495

    PubMed  CAS  Google Scholar 

  59. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  60. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    PubMed  CAS  Google Scholar 

  61. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    PubMed  CAS  Google Scholar 

  62. Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    PubMed  CAS  Google Scholar 

  63. Bock C et al (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452

    PubMed  CAS  Google Scholar 

  64. Lister R et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73

    PubMed  CAS  Google Scholar 

  65. Gore A et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67

    PubMed  CAS  Google Scholar 

  66. Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M, Moreno R, Przyborski S, Lako M (2009) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28:661–673

    Google Scholar 

  67. Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V (2009) Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 27:693–702

    PubMed  CAS  Google Scholar 

  68. Suhr ST et al (2010) Mitochondrial rejuvenation after induced pluripotency. PLoS One 5:e14095

    PubMed  CAS  Google Scholar 

  69. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241

    PubMed  CAS  Google Scholar 

  70. Esteban MA et al (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71–79

    PubMed  CAS  Google Scholar 

  71. Varum S, Rodrigues AS, Michelle BM, Momcilovic O, Easley C, Ramalho-Santos J, Van Houten B, Schatten G (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6:e20914

    PubMed  CAS  Google Scholar 

  72. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802:2–10

    PubMed  CAS  Google Scholar 

  73. Judge S, Leeuwenburgh C (2007) Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 292:C1983–C1992

    PubMed  CAS  Google Scholar 

  74. Lemieux H, Hoppel CL (2009) Mitochondria in the human heart. J Bioenerg Biomembr 41:99–106

    PubMed  CAS  Google Scholar 

  75. Bugger H et al (2009) Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes 58:1986–1997

    PubMed  CAS  Google Scholar 

  76. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    PubMed  CAS  Google Scholar 

  77. Benard G et al (2006) Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol 291:C1172–C1182

    PubMed  CAS  Google Scholar 

  78. Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG, Wang M, Balaban RS (2007) Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol 292:C689–C697

    PubMed  CAS  Google Scholar 

  79. Moyes CD, Hood DA (2003) Origins and consequences of mitochondrial variation in vertebrate muscle. Annu Rev Physiol 65:177–201

    PubMed  CAS  Google Scholar 

  80. Minai L, Martinovic J, Chretien D, Dumez F, Razavi F, Munnich A, Rotig A (2008) Mitochondrial respiratory chain complex assembly and function during human fetal development. Mol Genet Metab 94:120–126

    PubMed  CAS  Google Scholar 

  81. Leary SC, Battersby BJ, Hansford RG, Moyes CD (1998) Interactions between bioenergetics and mitochondrial biogenesis. Biochim Biophys Acta 1365:522–530

    PubMed  CAS  Google Scholar 

  82. Shimada T, Horita K, Murakami M, Ogura R (1984) Morphological studies of different mitochondrial populations in monkey myocardial cells. Cell Tissue Res 238:577–582

    PubMed  CAS  Google Scholar 

  83. Lenka N, Vijayasarathy C, Mullick J, Avadhani NG (1998) Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex. Prog Nucleic Acid Res Mol Biol 61:309–344

    PubMed  CAS  Google Scholar 

  84. Hom J, Sheu SS (2009) Morphological dynamics of mitochondria–a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 46:811–820

    PubMed  CAS  Google Scholar 

  85. Kolwicz SC Jr, Tian R (2009) Metabolic therapy at the crossroad: how to optimize myocardial substrate utilization? Trends Cardiovasc Med 19:201–207

    PubMed  CAS  Google Scholar 

  86. Shepard TH, Muffley LA, Smith LT (1998) Ultrastructural study of mitochondria and their cristae in embryonic rats and primate (N. nemistrina). Anat Rec 252:383–392

    PubMed  CAS  Google Scholar 

  87. Hood DA (1990) Co-ordinate expression of cytochrome c oxidase subunit III and VIc mRNAs in rat tissues. Biochem J 269:503–506

    PubMed  CAS  Google Scholar 

  88. Liu L, Trimarchi JR, Keefe DL (2000) Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod 62:1745–1753

    PubMed  CAS  Google Scholar 

  89. Rebrin I, Kamzalov S, Sohal RS (2003) Effects of age and caloric restriction on glutathione redox state in mice. Free Radic Biol Med 35:626–635

    PubMed  CAS  Google Scholar 

  90. Palmer JW, Tandler B, Hoppel CL (1985) Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. Arch Biochem Biophys 236:691–702

    PubMed  CAS  Google Scholar 

  91. Coffman JA (2009) Mitochondria and metazoan epigenesis. Semin Cell Dev Biol 20:321–329

    PubMed  CAS  Google Scholar 

  92. Hitchler MJ, Domann FE (2007) An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43:1023–1036

    PubMed  CAS  Google Scholar 

  93. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S60–S67

    PubMed  CAS  Google Scholar 

  94. Saretzki G et al (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26:455–464

    PubMed  CAS  Google Scholar 

  95. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968

    PubMed  CAS  Google Scholar 

  96. Piccoli C et al (2005) Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 280:26467–26476

    PubMed  CAS  Google Scholar 

  97. Birket MJ, Orr AL, Gerencser AA, Madden DT, Vitelli C, Swistowski A, Brand MD, Zeng X (2011) A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci 124:348–358

    PubMed  CAS  Google Scholar 

  98. Spitkovsky D, Sasse P, Kolossov E, Bottinger C, Fleischmann BK, Hescheler J, Wiesner RJ (2004) Activity of complex III of the mitochondrial electron transport chain is essential for early heart muscle cell differentiation. FASEB J 18:1300–1302

    PubMed  CAS  Google Scholar 

  99. Carriere A, Carmona MC, Fernandez Y, Rigoulet M, Wenger RH, Penicaud L, Casteilla L (2004) Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 279:40462–40469

    PubMed  CAS  Google Scholar 

  100. Schieke SM et al (2008) Mitochondrial metabolism modulates differentiation and teratoma formation capacity in mouse embryonic stem cells. J Biol Chem 283:28506–28512

    PubMed  CAS  Google Scholar 

  101. Kirby DM et al (2009) Transmitochondrial embryonic stem cells containing pathogenic mtDNA mutations are compromised in neuronal differentiation. Cell Prolif 42:413–424

    PubMed  CAS  Google Scholar 

  102. Geijsen N, Hochedlinger K (2009) gPS navigates germ cells to pluripotency. Cell Stem Cell 5:3–4

    PubMed  CAS  Google Scholar 

  103. Zimmermann WH, Didie M, Doker S, Melnychenko I, Naito H, Rogge C, Tiburcy M, Eschenhagen T (2006) Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res 71:419–429

    PubMed  CAS  Google Scholar 

  104. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617

    PubMed  CAS  Google Scholar 

  105. Spence JR et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    PubMed  Google Scholar 

  106. Zimmermann WH, Cesnjevar R (2009) Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr Cardiol 30:716–723

    PubMed  Google Scholar 

  107. Mignone JL, Kreutziger KL, Paige SL, Murry CE (2010) Cardiogenesis from human embryonic stem cells. Circ J 74:2517–2526

    PubMed  CAS  Google Scholar 

  108. Vidarsson H, Hyllner J, Sartipy P (2010) Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev 2010(6):108–120

    Google Scholar 

  109. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    PubMed  CAS  Google Scholar 

  110. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    PubMed  CAS  Google Scholar 

  111. Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:390–393

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All Ramalho-Santos Lab members, both past and current, are gratefully thanked for input and discussions, especially Ana Paula Sousa, Sandra Varum, Sandro Pereira, Alexandra Amaral, Sandra Amaral, and Paula Mota. Paula I. Moreira (University of Coimbra) is especially thanked for suggestions and critical reading of the manuscript. Paulo Oliveira, António Moreno, Sancha Santos, Rui de Carvalho (University of Coimbra), Gerald Schatten (University of Pittsburgh, USA), Christopher Navara (University of Texas-San Antonio, USA), Stefan Schlatt (University of Muenster, Germany) are thanked for insights. Ana Sofia Rodrigues is enrolled in the PhD Program in Biomedicine and Experimental Biology (PDBEB) at the University of Coimbra, and was supported by a fellowship from Fundação para a Ciência e Tecnologia (FCT, Portugal).Work in our lab was supported by grants from Fundação para a Ciência e Tecnologia, Portugal (PTDC/EBB-EBI/101114/2008; PTDC/EBB-EBI/120634/2010; PTDC/QUI-BIQ/120652/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ramalho-Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramalho-Santos, J., Rodrigues, A.S. (2013). From Oocytes and Pluripotent Stem Cells to Fully Differentiated Fates: (Also) a Mitochondrial Odyssey. In: St. John, J. (eds) Mitochondrial DNA, Mitochondria, Disease and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-101-1_4

Download citation

Publish with us

Policies and ethics