Skip to main content

Mitochondrial DNA Mutations and Their Effects on Complex I Biogenesis: Implications for Metabolic Disease

  • Chapter
  • First Online:
Mitochondrial DNA, Mitochondria, Disease and Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

NADH-ubiquinone oxidoreductase (complex I) is a large, multimeric enzyme complex involved in the generation of ATP by oxidative phosphorylation (OXPHOS). It is comprised of 45 different polypeptide subunits, seven of which are encoded by the mitochondrial genome. For complex I to function efficiently it must be assembled correctly from these subunits in a coordinated manner. Disruption of this assembly process can result in complex I deficiency and a wide range of different mitochondrial disorders, including ophthalmological syndromes and fatal childhood encephalomyopathies. This chapter will describe our current understanding of complex I structure, function, and assembly. In particular, how mutations in mtDNA-encoded subunits disrupt complex I assembly and contribute to human disease pathogenesis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912

    Article  PubMed  Google Scholar 

  2. Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352

    Article  PubMed  CAS  Google Scholar 

  3. Distelmaier F, Koopman WJH, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PHGM, Smeitink JAM (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833–842

    Article  PubMed  Google Scholar 

  4. Rutter J, Winge DR, Schiffman JD (2010) Succinate dehydrogenase-assembly, regulation and role in human disease. Mitochondrion 10:393–401

    Article  PubMed  CAS  Google Scholar 

  5. Haut S, Brivet M, Touati G, Rustin P, Lebon S, Garcia-Cazorla A, Saudubray JM, Boutron A, Legrand A, Slama A (2003) A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet 113:118–122

    PubMed  CAS  Google Scholar 

  6. Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, Finer G, Shalev H, Nasasra A, Saada A, Birk OS (2008) Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. Am J Hum Genet 82:1211–1216

    Article  PubMed  CAS  Google Scholar 

  7. Massa V, Fernandez-Vizarra E, Alshahwan S, Bakhsh E, Goffrini P, Ferrero I, Mereghetti P, D’Adamo P, Gasparini P, Zeviani M (2008) Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet 82:1281–1289

    Article  PubMed  CAS  Google Scholar 

  8. Mayr JA, Havlickova V, Zimmermann F, Magler I, Kaplanova V, Jesina P, Pecinova A, Nuskova H, Koch J, Sperl W, Houstek J (2010) Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum Mol Genet 19:3430–3439

    Article  PubMed  CAS  Google Scholar 

  9. Dunning CJ, McKenzie M, Sugiana C, Lazarou M, Silke J, Connelly A, Fletcher JM, Kirby DM, Thorburn DR, Ryan MT (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 26:3227–3237

    Article  PubMed  CAS  Google Scholar 

  10. Ogilvie I, Kennaway NG, Shoubridge EA (2005) A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 115:2784–2792

    Article  PubMed  CAS  Google Scholar 

  11. Saada A, Vogel RO, Hoefs SJ, van den Brand MA, Wessels HJ, Willems PH, Venselaar H, Shaag A, Barghuti F, Reish O, Shohat M, Huynen MA, Smeitink JA, van den Heuvel LP, Nijtmans LG (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 84:718–727

    Article  PubMed  CAS  Google Scholar 

  12. Sugiana C, Pagliarini DJ, McKenzie M, Kirby DM, Salemi R, Abu-Amero KK, Dahl HH, Hutchison WM, Vascotto KA, Smith SM, Newbold RF, Christodoulou J, Calvo S, Mootha VK, Ryan MT, Thorburn DR (2008) Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 83:468–478

    Article  PubMed  CAS  Google Scholar 

  13. Nouws J, Nijtmans L, Houten SM, van den Brand M, Huynen M, Venselaar H, Hoefs S, Gloerich J, Kronick J, Hutchin T, Willems P, Rodenburg R, Wanders R, van den Heuvel L, Smeitink J, Vogel RO (2010) Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12:283–294

    Article  PubMed  CAS  Google Scholar 

  14. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  PubMed  CAS  Google Scholar 

  15. Saada A, Edvardson S, Rapoport M, Shaag A, Amry K, Miller C, Lorberboum-Galski H, Elpeleg O (2008) C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 82:32–38

    Article  PubMed  CAS  Google Scholar 

  16. Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Redman MC, Wiltshire E, Wilson CJ, Altshuler D, Gabriel SB, Daly MJ, Thorburn DR, Mootha VK (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42:851–858

    Article  PubMed  CAS  Google Scholar 

  17. McKenzie M, Tucker EJ, Compton AG, Lazarou M, George C, Thorburn DR, Ryan MT (2011) Mutations in the gene encoding C8 or f38 block complex I assembly by inhibiting production of the mitochondria-encoded subunit ND1. J Mol Biol 414:413–426

    Article  PubMed  CAS  Google Scholar 

  18. Ghezzi D, Goffrini P, Uziel G, Horvath R, Klopstock T, Lochmuller H, D’Adamo P, Gasparini P, Strom TM, Prokisch H, Invernizzi F, Ferrero I, Zeviani M (2009) SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet 41:654–656

    Article  PubMed  CAS  Google Scholar 

  19. Moran M, Marin-Buera L, Gil-Borlado MC, Rivera H, Blazquez A, Seneca S, Vazquez-Lopez M, Arenas J, Martin MA, Ugalde C (2010) Cellular pathophysiological consequences of BCS1L mutations in mitochondrial complex III enzyme deficiency. Hum Mutat 31:930–941

    Article  PubMed  CAS  Google Scholar 

  20. Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, D’Adamo P, Diodato D, Costa R, Mariotti C, Uziel G, Smiderle C, Zeviani M (2011) Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43:259–263

    Article  PubMed  CAS  Google Scholar 

  21. de Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW, Benayoun E, Chretien D, Kadhom N, Lombes A, de Baulny HO, Niaudet P, Munnich A, Rustin P, Rotig A (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60

    Article  PubMed  CAS  Google Scholar 

  22. Tiranti V, Hoertnagel K, Carrozzo R, Galimberti C, Munaro M, Granatiero M, Zelante L, Gasparini P, Marzella R, Rocchi M, Bayona-Bafaluy MP, Enriquez JA, Uziel G, Bertini E, Dionisi-Vici C, Franco B, Meitinger T, Zeviani M (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 63:1609–1621

    Article  PubMed  CAS  Google Scholar 

  23. Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker W, Selby J, Glerum DM, Coster RV, Lyon G, Scalais E, Lebel R, Kaplan P, Shanske S, De Vivo DC, Bonilla E, Hirano M, DiMauro S, Schon EA (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23:333–337

    Article  PubMed  CAS  Google Scholar 

  24. Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V, Munnich A, Bonnefont JP, Rustin P, Rotig A (2000) Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67:1104–1109

    PubMed  CAS  Google Scholar 

  25. Valnot I, von Kleist-Retzow JC, Barrientos A, Gorbatyuk M, Taanman JW, Mehaye B, Rustin P, Tzagoloff A, Munnich A, Rotig A (2000) A mutation in the human heme A: farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum Mol Genet 9:1245–1249

    Article  PubMed  CAS  Google Scholar 

  26. Antonicka H, Mattman A, Carlson CG, Glerum DM, Hoffbuhr KC, Leary SC, Kennaway NG, Shoubridge EA (2003) Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 72:101–114

    Article  PubMed  CAS  Google Scholar 

  27. Huigsloot M, Nijtmans LG, Szklarczyk R, Baars MJ, van den Brand MA, Hendriksfranssen MG, van den Heuvel LP, Smeitink JA, Huynen MA, Rodenburg RJ (2011) A mutation in c2 or f64 causes impaired cytochrome C oxidase assembly and mitochondrial cardiomyopathy. Am J Hum Genet 88:488–493

    Article  PubMed  CAS  Google Scholar 

  28. De Meirleir L, Seneca S, Lissens W, De Clercq I, Eyskens F, Gerlo E, Smet J, Van Coster R (2004) Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J Med Genet 41:120–124

    Article  PubMed  CAS  Google Scholar 

  29. Spinazzola A, Zeviani M (2009) Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J Intern Med 265:174–192

    Article  PubMed  CAS  Google Scholar 

  30. Wong LJ (2010) Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev 16:154–162

    Article  PubMed  Google Scholar 

  31. Riley LG, Cooper S, Hickey P, Rudinger-Thirion J, McKenzie M, Compton A, Lim SC, Thorburn D, Ryan MT, Giege R, Bahlo M, Christodoulou J (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia–MLASA syndrome. Am J Hum Genet 87:52–59

    Article  PubMed  CAS  Google Scholar 

  32. Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, Shoubridge EA, Consortium L (2010) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323

    Article  PubMed  CAS  Google Scholar 

  33. Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B, Kolesar JE, Lochmuller H, Chevrette M, Kaufman BA, Horvath R, Shoubridge EA (2009) Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 41:833–837

    Article  PubMed  CAS  Google Scholar 

  34. Gotz A, Tyynismaa H, Euro L, Ellonen P, Hyotylainen T, Ojala T, Hamalainen RH, Tommiska J, Raivio T, Oresic M, Karikoski R, Tammela O, Simola KO, Paetau A, Tyni T, Suomalainen A (2011) Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 88:635–642

    Article  PubMed  CAS  Google Scholar 

  35. Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, Segel R, Elpeleg O, Nassar S, Frishberg Y (2011) Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 88:193–200

    Article  PubMed  CAS  Google Scholar 

  36. Antonicka H, Ostergaard E, Sasarman F, Weraarpachai W, Wibrand F, Pedersen AM, Rodenburg RJ, van der Knaap MS, Smeitink JA, Chrzanowska-Lightowlers ZM, Shoubridge EA (2010) Mutations in C12 or f65 in patients with encephalomyopathy and a mitochondrial translation defect. Am J Hum Genet 87:115–122

    Article  PubMed  CAS  Google Scholar 

  37. Christodoulou J, McInnes RR, Jay V, Wilson G, Becker LE, Lehotay DC, Platt BA, Bridge PJ, Robinson BH, Clarke JT (1994) Barth syndrome: clinical observations and genetic linkage studies. Am J Med Genet 50:255–264

    Article  PubMed  CAS  Google Scholar 

  38. McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in barth syndrome patients. J Mol Biol 361:462–469

    Article  PubMed  CAS  Google Scholar 

  39. Clayton DA (2000) Transcription and replication of mitochondrial DNA. Hum Reprod 15(Suppl 2):11–17

    Article  PubMed  Google Scholar 

  40. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430

    Article  PubMed  CAS  Google Scholar 

  41. Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    Article  PubMed  CAS  Google Scholar 

  42. Zeviani M, Moraes CT, DiMauro S, Nakase H, Bonilla E, Schon EA, Rowland LP (1988) Deletions of mitochondrial DNA in kearns-sayre syndrome. Neurology 38:1339–1346

    PubMed  CAS  Google Scholar 

  43. Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, Nakase H, Bonilla E, Werneck LC, Servidei S (1989) Mitochondrial DNA deletions in progressive external ophthalmoplegia and kearns-sayre syndrome. N Engl J Med 320:1293–1299

    Article  PubMed  CAS  Google Scholar 

  44. Filosto M, Mancuso M, Vives-Bauza C, Vila MR, Shanske S, Hirano M, Andreu AL, DiMauro S (2003) Lack of paternal inheritance of muscle mitochondrial DNA in sporadic mitochondrial myopathies. Ann Neurol 54:524–526

    Article  PubMed  CAS  Google Scholar 

  45. Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K, Pallotti F, Iwata S, Bonilla E, Lach B, Morgan-Hughes J, DiMauro S (1999) Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341:1037–1044

    Article  PubMed  CAS  Google Scholar 

  46. Legros F, Chatzoglou E, Frachon P, Ogier De Baulny H, Laforet P, Jardel C, Godinot C, Lombes A (2001) Functional characterization of novel mutations in the human cytochrome b gene. Eur J Hum Genet 9:510–518

    Article  PubMed  CAS  Google Scholar 

  47. Taivassalo T, Shoubridge EA, Chen J, Kennaway NG, DiMauro S, Arnold DL, Haller RG (2001) Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 50:133–141

    Article  PubMed  CAS  Google Scholar 

  48. Keightley JA, Anitori R, Burton MD, Quan F, Buist NR, Kennaway NG (2000) Mitochondrial encephalomyopathy and complex III deficiency associated with a stop-codon mutation in the cytochrome b gene. Am J Hum Genet 67:1400–1410

    Article  PubMed  CAS  Google Scholar 

  49. Andreu AL, Checcarelli N, Iwata S, Shanske S, DiMauro S (2000) A missense mutation in the mitochondrial cytochrome b gene in a revisited case with histiocytoid cardiomyopathy. Pediatr Res 48:311–314

    Article  PubMed  CAS  Google Scholar 

  50. De Coo IF, Renier WO, Ruitenbeek W, Ter Laak HJ, Bakker M, Schagger H, Van Oost BA, Smeets HJ (1999) A 4-base pair deletion in the mitochondrial cytochrome b gene associated with parkinsonism/MELAS overlap syndrome. Ann Neurol 45:130–133

    Article  PubMed  Google Scholar 

  51. Wibrand F, Ravn K, Schwartz M, Rosenberg T, Horn N, Vissing J (2001) Multisystem disorder associated with a missense mutation in the mitochondrial cytochrome b gene. Ann Neurol 50:540–543

    Article  PubMed  CAS  Google Scholar 

  52. Lamantea E, Carrara F, Mariotti C, Morandi L, Tiranti V, Zeviani M (2002) A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul Disord 12:49–52

    Article  PubMed  Google Scholar 

  53. Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, Bruno C, Moraes CT, Enriquez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815

    Article  PubMed  CAS  Google Scholar 

  54. Gil Borlado MC, Moreno Lastres D, Gonzalez Hoyuela M, Moran M, Blazquez A, Pello R, Marin Buera L, Gabaldon T, Garcia Penas JJ, Martin MA, Arenas J, Ugalde C (2010) Impact of the mitochondrial genetic background in complex III deficiency. PLoS One 5(9):e12801

    Article  PubMed  CAS  Google Scholar 

  55. Rana M, de Coo I, Diaz F, Smeets H, Moraes CT (2000) An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production. Ann Neurol 48:774–781

    Article  PubMed  CAS  Google Scholar 

  56. Bruno C, Martinuzzi A, Tang Y, Andreu AL, Pallotti F, Bonilla E, Shanske S, Fu J, Sue CM, Angelini C, DiMauro S, Manfredi G (1999) A stop-codon mutation in the human mtDNA cytochrome c oxidase I gene disrupts the functional structure of complex IV. Am J Hum Genet 65:611–620

    Article  PubMed  CAS  Google Scholar 

  57. D’Aurelio M, Pallotti F, Barrientos A, Gajewski CD, Kwong JQ, Bruno C, Beal MF, Manfredi G (2001) In vivo regulation of oxidative phosphorylation in cells harboring a stop-codon mutation in mitochondrial DNA-encoded cytochrome c oxidase subunit I. J Biol Chem 276:46925–46932

    Article  PubMed  Google Scholar 

  58. Rahman S, Taanman JW, Cooper JM, Nelson I, Hargreaves I, Meunier B, Hanna MG, Garcia JJ, Capaldi RA, Lake BD, Leonard JV, Schapira AH (1999) A missense mutation of cytochrome oxidase subunit II causes defective assembly and myopathy. Am J Hum Genet 65:1030–1039

    Article  PubMed  CAS  Google Scholar 

  59. Keightley JA, Hoffbuhr KC, Burton MD, Salas VM, Johnston WS, Penn AM, Buist NR, Kennaway NG (1996) A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet 12:410–416

    Article  PubMed  CAS  Google Scholar 

  60. Hanna MG, Nelson IP, Rahman S, Lane RJ, Land J, Heales S, Cooper MJ, Schapira AH, Morgan-Hughes JA, Wood NW (1998) Cytochrome c oxidase deficiency associated with the first stop- codon point mutation in human mtDNA. Am J Hum Genet 63:29–36

    Article  PubMed  CAS  Google Scholar 

  61. Hoffbuhr KC, Davidson E, Filiano BA, Davidson M, Kennaway NG, King MP (2000) A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J Biol Chem 275:13994–14003

    Article  PubMed  CAS  Google Scholar 

  62. Tiranti V, Corona P, Greco M, Taanman JW, Carrara F, Lamantea E, Nijtmans L, Uziel G, Zeviani M (2000) A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by leigh-like syndrome. Hum Mol Genet 9:2733–2742

    Article  PubMed  CAS  Google Scholar 

  63. Houstek J, Pickova A, Vojtiskova A, Mracek T, Pecina P, Jesina P (2006) Mitochondrial diseases and genetic defects of ATP synthase. Biochim Biophys Acta 1757:1400–1405

    Article  PubMed  CAS  Google Scholar 

  64. Jonckheere AI, Hogeveen M, Nijtmans LG, van den Brand MA, Janssen AJ, Diepstra JH, van den Brandt FC, van den Heuvel LP, Hol FA, Hofste TG, Kapusta L, Dillmann U, Shamdeen MG, Smeitink JA, Rodenburg RJ (2008) A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. J Med Genet 45:129–133

    Article  PubMed  CAS  Google Scholar 

  65. Mkaouar-Rebai E, Kammoun F, Chamkha I, Kammoun N, Hsairi I, Triki C, Fakhfakh F (2010) A de novo mutation in the adenosine triphosphatase (ATPase) 8 gene in a patient with mitochondrial disorder. J Child Neurol 25:770–775

    Article  PubMed  Google Scholar 

  66. Jesina P, Tesarova M, Fornuskova D, Vojtiskova A, Pecina P, Kaplanova V, Hansikova H, Zeman J, Houstek J (2004) Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J 383:561–571

    Article  PubMed  CAS  Google Scholar 

  67. Houstek J, Klement P, Hermanska J, Houstkova H, Hansikova H, Van den Bogert C, Zeman J (1995) Altered properties of mitochondrial ATP-synthase in patients with a TG mutation in the ATPase 6 (subunit a) gene at position 8993 of mtDNA. Biochim Biophys Acta 1271:349–357

    Article  PubMed  Google Scholar 

  68. Nijtmans LG, Henderson NS, Attardi G, Holt IJ (2001) Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene. J Biol Chem 276:6755–6762

    Article  PubMed  CAS  Google Scholar 

  69. Carrozzo R, Wittig I, Santorelli FM, Bertini E, Hofmann S, Brandt U, Schagger H (2006) Subcomplexes of human ATP synthase mark mitochondrial biosynthesis disorders. Ann Neurol 59:265–275

    Article  PubMed  CAS  Google Scholar 

  70. Morava E, Rodenburg RJ, Hol F, de Vries M, Janssen A, van den Heuvel L, Nijtmans L, Smeitink J (2006) Clinical and biochemical characteristics in patients with a high mutant load of the mitochondrial T8993G/C mutations. Am J Med Genet A 140:863–868

    PubMed  Google Scholar 

  71. Clason T, Ruiz T, Schagger H, Peng G, Zickermann V, Brandt U, Michel H, Radermacher M (2010) The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169:81–88

    Article  PubMed  CAS  Google Scholar 

  72. Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    Article  PubMed  CAS  Google Scholar 

  73. Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE (2000) Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochemistry 39:7229–7235

    Article  PubMed  CAS  Google Scholar 

  74. Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2:117–126

    Article  PubMed  CAS  Google Scholar 

  75. Finel M, Skehel JM, Albracht SP, Fearnley IM, Walker JE (1992) Resolution of NADH:ubiquinone oxidoreductase from bovine heart mitochondria into two subcomplexes, one of which contains the redox centers of the enzyme. Biochemistry 31:11425–11434

    Article  PubMed  CAS  Google Scholar 

  76. Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  PubMed  CAS  Google Scholar 

  77. Malki S, Saimmaime I, De Luca G, Rousset M, Dermoun Z, Belaich JP (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177:2628–2636

    PubMed  CAS  Google Scholar 

  78. Tran-Betcke A, Warnecke U, Bocker C, Zaborosch C, Friedrich B (1990) Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 172:2920–2929

    PubMed  CAS  Google Scholar 

  79. Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur J Biochem 233:266–276

    Article  PubMed  CAS  Google Scholar 

  80. Bohm R, Sauter M, Bock A (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4:231–243

    Article  PubMed  CAS  Google Scholar 

  81. Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5

    Article  PubMed  CAS  Google Scholar 

  82. Mathiesen C, Hagerhall C (2003) The ‘antiporter module’ of respiratory chain complex I includes the MrpC/NuoK subunit—a revision of the modular evolution scheme. FEBS Lett 549:7–13

    Article  PubMed  CAS  Google Scholar 

  83. Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  PubMed  CAS  Google Scholar 

  84. Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    Article  PubMed  CAS  Google Scholar 

  85. Brandt U (2011) A two-state stabilization-change mechanism for proton-pumping complex I. Biochim Biophys Acta 1807:1364–1369

    Article  PubMed  CAS  Google Scholar 

  86. Angerer H, Zwicker K, Wumaier Z, Sokolova L, Heide H, Steger M, Kaiser S, Nubel E, Brutschy B, Radermacher M, Brandt U, Zickermann V (2011) A scaffold of accessory subunits links the peripheral arm and the distal proton pumping module of mitochondrial complex I. Biochem J 437(2):279–288

    Article  PubMed  CAS  Google Scholar 

  87. Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ, Triepels RH, Sengers RC, van den Heuvel LP (2000) Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat 15:123–134

    Article  PubMed  CAS  Google Scholar 

  88. Lazarou M, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta 1793:78–88

    Article  PubMed  CAS  Google Scholar 

  89. McKenzie M, Ryan MT (2010) Assembly factors of human mitochondrial complex I and their defects in disease. IUBMB Life 62:497–502

    Article  PubMed  CAS  Google Scholar 

  90. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF (2009) Inherited mitochondrial optic neuropathies. J Med Genet 46:145–158

    Article  PubMed  CAS  Google Scholar 

  91. Huoponen K, Vilkki J, Aula P, Nikoskelainen EK, Savontaus ML (1991) A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy. Am J Hum Genet 48:1147–1153

    PubMed  CAS  Google Scholar 

  92. Brown MD, Torroni A, Reckord CL, Wallace DC (1995) Phylogenetic analysis of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple independent occurrences of the common mutations. Hum Mutat 6:311–325

    Article  PubMed  CAS  Google Scholar 

  93. Jun AS, Brown MD, Wallace DC (1994) A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and dystonia. Proc Natl Acad Sci U S A 91:6206–6210

    Article  PubMed  CAS  Google Scholar 

  94. Novotny EJ Jr, Singh G, Wallace DC, Dorfman LJ, Louis A, Sogg RL, Steinman L (1986) Leber’s disease and dystonia: a mitochondrial disease. Neurology 36:1053–1060

    Article  PubMed  Google Scholar 

  95. Shoffner JM, Brown MD, Stugard C, Jun AS, Pollock S, Haas RH, Kaufman A, Koontz D, Kim Y, Graham JR, Smith E, Dixon J, Wallace DC (1995) Leber’s hereditary optic neuropathy plus dystonia is caused by a mitochondrial DNA point mutation. Ann Neurol 38:163–169

    Article  PubMed  CAS  Google Scholar 

  96. Harding AE, Sweeney MG, Govan GG, Riordan-Eva P (1995) Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet 57:77–86

    PubMed  CAS  Google Scholar 

  97. Kirby DM, McFarland R, Ohtake A, Dunning C, Ryan MT, Wilson C, Ketteridge D, Turnbull DM, Thorburn DR, Taylor RW (2004) Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet 41:784–789

    Article  PubMed  CAS  Google Scholar 

  98. McKenzie M, Liolitsa D, Akinshina N, Campanella M, Sisodiya S, Hargreaves I, Nirmalananthan N, Sweeney MG, Abou-Sleiman PM, Wood NW, Hanna MG, Duchen MR (2007) Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption. J Biol Chem 282:36845–36852

    Article  PubMed  CAS  Google Scholar 

  99. Ravn K, Wibrand F, Hansen FJ, Horn N, Rosenberg T, Schwartz M (2001) An mtDNA mutation, 14453GA, in the NADH dehydrogenase subunit 6 associated with severe MELAS syndrome. Eur J Hum Genet 9:805–809

    Article  PubMed  CAS  Google Scholar 

  100. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP (1984) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 16:481–488

    Article  PubMed  CAS  Google Scholar 

  101. Blakely EL, de Silva R, King A, Schwarzer V, Harrower T, Dawidek G, Turnbull DM, Taylor RW (2005) LHON/MELAS overlap syndrome associated with a mitochondrial MTND1 gene mutation. Eur J Hum Genet 13:623–627

    Article  PubMed  CAS  Google Scholar 

  102. Pulkes T, Eunson L, Patterson V, Siddiqui A, Wood NW, Nelson IP, Morgan-Hughes JA, Hanna MG (1999) The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol 46:916–919

    Article  PubMed  CAS  Google Scholar 

  103. Valente L, Piga D, Lamantea E, Carrara F, Uziel G, Cudia P, Zani A, Farina L, Morandi L, Mora M, Spinazzola A, Zeviani M, Tiranti V (2009) Identification of novel mutations in five patients with mitochondrial encephalomyopathy. Biochim Biophys Acta 1787:491–501

    Article  PubMed  CAS  Google Scholar 

  104. Ugalde C, Hinttala R, Timal S, Smeets R, Rodenburg RJ, Uusimaa J, van Heuvel LP, Nijtmans LG, Majamaa K, Smeitink JA (2007) Mutated ND2 impairs mitochondrial complex I assembly and leads to Leigh syndrome. Mol Genet Metab 90:10–14

    Article  PubMed  CAS  Google Scholar 

  105. McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, Fletcher JM, Dixon JW, Collins FA, Turnbull DM, Taylor RW, Thorburn DR (2004) De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann Neurol 55:58–64

    Article  PubMed  CAS  Google Scholar 

  106. Komaki H, Akanuma J, Iwata H, Takahashi T, Mashima Y, Nonaka I, Goto Y (2003) A novel mtDNA C11777A mutation in Leigh syndrome. Mitochondrion 2:293–304

    Article  PubMed  CAS  Google Scholar 

  107. Taylor RW, Morris AA, Hutchinson M, Turnbull DM (2002) Leigh disease associated with a novel mitochondrial DNA ND5 mutation. Eur J Hum Genet 10:141–144

    Article  PubMed  CAS  Google Scholar 

  108. Ugalde C, Triepels RH, Coenen MJ, van den Heuvel LP, Smeets R, Uusimaa J, Briones P, Campistol J, Majamaa K, Smeitink JA, Nijtmans LG (2003) Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Ann Neurol 54:665–669

    Article  PubMed  CAS  Google Scholar 

  109. Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39:223–235

    Article  PubMed  Google Scholar 

  110. Crimi M, Galbiati S, Moroni I, Bordoni A, Perini MP, Lamantea E, Sciacco M, Zeviani M, Biunno I, Moggio M, Scarlato G, Comi GP (2003) A missense mutation in the mitochondrial ND5 gene associated with a Leigh-MELAS overlap syndrome. Neurology 60:1857–1861

    Article  PubMed  Google Scholar 

  111. Santorelli FM, Tanji K, Kulikova R, Shanske S, Vilarinho L, Hays AP, DiMauro S (1997) Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem Biophys Res Commun 238:326–328

    Article  PubMed  CAS  Google Scholar 

  112. Liolitsa D, Rahman S, Benton S, Carr LJ, Hanna MG (2003) Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations? Ann Neurol 53:128–132

    Article  PubMed  CAS  Google Scholar 

  113. Wallace DC, Bunn CL, Eisenstadt JM (1975) Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J Cell Biol 67:174–188

    Article  PubMed  CAS  Google Scholar 

  114. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246:500–503

    Article  PubMed  CAS  Google Scholar 

  115. Jun AS, Trounce IA, Brown MD, Shoffner JM, Wallace DC (1996) Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol Cell Biol 16:771–777

    PubMed  CAS  Google Scholar 

  116. Brown MD, Trounce IA, Jun AS, Allen JC, Wallace DC (2000) Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation. J Biol Chem 275:39831–39836

    Article  PubMed  CAS  Google Scholar 

  117. Hofhaus G, Johns DR, Hurko O, Attardi G, Chomyn A (1996) Respiration and growth defects in transmitochondrial cell lines carrying the 11778 mutation associated with Leber’s hereditary optic neuropathy. J Biol Chem 271:13155–13161

    Article  PubMed  CAS  Google Scholar 

  118. Degli Esposti M, Carelli V, Ghelli A, Ratta M, Crimi M, Sangiorgi S, Montagna P, Lenaz G, Lugaresi E, Cortelli P (1994) Functional alterations of the mitochondrially encoded ND4 subunit associated with Leber’s hereditary optic neuropathy. FEBS Lett 352:375–379

    Article  PubMed  CAS  Google Scholar 

  119. Wong A, Cavelier L, Collins-Schramm HE, Seldin MF, McGrogan M, Savontaus ML, Cortopassi GA (2002) Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Hum Mol Genet 11:431–438

    Article  PubMed  CAS  Google Scholar 

  120. Danielson SR, Wong A, Carelli V, Martinuzzi A, Schapira AH, Cortopassi GA (2002) Cells bearing mutations causing Leber’s hereditary optic neuropathy are sensitized to fas-induced apoptosis. J Biol Chem 277:5810–5815

    Article  PubMed  CAS  Google Scholar 

  121. Ghelli A, Zanna C, Porcelli AM, Schapira AH, Martinuzzi A, Carelli V, Rugolo M (2003) Leber’s hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium. J Biol Chem 278:4145–4150

    Article  PubMed  CAS  Google Scholar 

  122. Porcelli AM, Angelin A, Ghelli A, Mariani E, Martinuzzi A, Carelli V, Petronilli V, Bernardi P, Rugolo M (2009) Respiratory complex I dysfunction due to mitochondrial DNA mutations shifts the voltage threshold for opening of the permeability transition pore toward resting levels. J Biol Chem 284:2045–2052

    Article  PubMed  CAS  Google Scholar 

  123. Brown MD, Sun F, Wallace DC (1997) Clustering of caucasian leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage. Am J Hum Genet 60:381–387

    Article  PubMed  CAS  Google Scholar 

  124. Hofmann S, Jaksch M, Bezold R, Mertens S, Aholt S, Paprotta A, Gerbitz KD (1997) Population genetics and disease susceptibility: characterization of central European haplogroups by mtDNA gene mutations, correlation with D loop variants and association with disease. Hum Mol Genet 6:1835–1846

    Article  PubMed  CAS  Google Scholar 

  125. Carelli V, Achilli A, Valentino ML, Rengo C, Semino O, Pala M, Olivieri A, Mattiazzi M, Pallotti F, Carrara F, Zeviani M, Leuzzi V, Carducci C, Valle G, Simionati B, Mendieta L, Salomao S, Belfort R Jr, Sadun AA, Torroni A (2006) Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am J Hum Genet 78:564–574

    Article  PubMed  CAS  Google Scholar 

  126. Torroni A, Petrozzi M, D’Urbano L, Sellitto D, Zeviani M, Carrara F, Carducci C, Leuzzi V, Carelli V, Barboni P, De Negri A, Scozzari R (1997) Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet 60:1107–1121

    PubMed  CAS  Google Scholar 

  127. Hudson G, Carelli V, Spruijt L, Gerards M, Mowbray C, Achilli A, Pyle A, Elson J, Howell N, La Morgia C, Valentino ML, Huoponen K, Savontaus ML, Nikoskelainen E, Sadun AA, Salomao SR, Belfort R Jr, Griffiths P, Man PY, de Coo RF, Horvath R, Zeviani M, Smeets HJ, Torroni A, Chinnery PF (2007) Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am J Hum Genet 81:228–233

    Article  PubMed  CAS  Google Scholar 

  128. Brown MD, Starikovskaya E, Derbeneva O, Hosseini S, Allen JC, Mikhailovskaya IE, Sukernik RI, Wallace DC (2002) The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup. J Hum Genet 110:130–138

    Article  CAS  Google Scholar 

  129. Gomez-Duran A, Pacheu-Grau D, Lopez-Gallardo E, Diez-Sanchez C, Montoya J, Lopez-Perez MJ, Ruiz-Pesini E (2010) Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet 19:3343–3353

    Article  PubMed  CAS  Google Scholar 

  130. Pello R, Martin MA, Carelli V, Nijtmans LG, Achilli A, Pala M, Torroni A, Gomez-Duran A, Ruiz-Pesini E, Martinuzzi A, Smeitink JA, Arenas J, Ugalde C (2008) Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Hum Mol Genet 17:4001–4011

    Article  PubMed  CAS  Google Scholar 

  131. Hofhaus G, Attardi G (1993) Lack of assembly of mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase and loss of enzyme activity in a human cell mutant lacking the mitochondrial ND4 gene product. EMBO J 12:3043–3048

    PubMed  CAS  Google Scholar 

  132. Bai Y, Attardi G (1998) The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme. EMBO J 17:4848–4858

    Article  PubMed  CAS  Google Scholar 

  133. Hofhaus G, Attardi G (1995) Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase. Mol Cell Biol 15:964–974

    PubMed  CAS  Google Scholar 

  134. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  CAS  Google Scholar 

  135. Klement P, Nijtmans LG, Van den Bogert C, Houstek J (1995) Analysis of oxidative phosphorylation complexes in cultured human fibroblasts and amniocytes by blue-native-electrophoresis using mitoplasts isolated with the help of digitonin. Anal Biochem 231:218–224

    Article  PubMed  CAS  Google Scholar 

  136. Kirby DM, Boneh A, Chow CW, Ohtake A, Ryan MT, Thyagarajan D, Thorburn DR (2003) Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh’s disease. Ann Neurol 54:473–478

    Article  PubMed  CAS  Google Scholar 

  137. Malfatti E, Bugiani M, Invernizzi F, de Souza CF, Farina L, Carrara F, Lamantea E, Antozzi C, Confalonieri P, Sanseverino MT, Giugliani R, Uziel G, Zeviani M (2007) Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy. Brain 130:1894–1904

    Article  PubMed  Google Scholar 

  138. Schagger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128

    Article  PubMed  CAS  Google Scholar 

  139. Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  PubMed  CAS  Google Scholar 

  140. D’Aurelio M, Gajewski CD, Lenaz G, Manfredi G (2006) Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 15:2157–2169

    Article  PubMed  CAS  Google Scholar 

  141. Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881

    Article  PubMed  CAS  Google Scholar 

  142. Schagger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279:36349–36353

    Article  PubMed  CAS  Google Scholar 

  143. Tuschen G, Sackmann U, Nehls U, Haiker H, Buse G, Weiss H (1990) Assembly of NADH: ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits. J Mol Biol 213:845–857

    Article  PubMed  CAS  Google Scholar 

  144. Nehls U, Friedrich T, Schmiede A, Ohnishi T, Weiss H (1992) Characterization of assembly intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in Neurospora mitochondria by gene disruption. J Mol Biol 227:1032–1042

    Article  PubMed  CAS  Google Scholar 

  145. Kuffner R, Rohr A, Schmiede A, Krull C, Schulte U (1998) Involvement of two novel chaperones in the assembly of mitochondrial NADH: Ubiquinone oxidoreductase (complex I). J Mol Biol 283:409–417

    Article  PubMed  CAS  Google Scholar 

  146. Antonicka H, Ogilvie I, Taivassalo T, Anitori RP, Haller RG, Vissing J, Kennaway NG, Shoubridge EA (2003) Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 278:43081–43088

    Article  PubMed  CAS  Google Scholar 

  147. Ugalde C, Vogel R, Huijbens R, Van Den Heuvel B, Smeitink J, Nijtmans L (2004) Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies. Hum Mol Genet 13:2461–2472

    Article  PubMed  CAS  Google Scholar 

  148. Vogel RO, Dieteren CE, van den Heuvel LP, Willems PH, Smeitink JA, Koopman WJ, Nijtmans LG (2007) Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem 282:7582–7590

    Article  PubMed  CAS  Google Scholar 

  149. Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27:4228–4237

    Article  PubMed  CAS  Google Scholar 

  150. McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2007) Analysis of mitochondrial subunit assembly into respiratory chain complexes using blue native polyacrylamide gel electrophoresis. Anal Biochem 364:128–137

    Article  PubMed  CAS  Google Scholar 

  151. Perales-Clemente E, Fernandez-Vizarra E, Acin-Perez R, Movilla N, Bayona-Bafaluy MP, Moreno-Loshuertos R, Perez-Martos A, Fernandez-Silva P, Enriquez JA (2010) Five entry points of the mitochondrially encoded subunits in mammalian complex I assembly. Mol Cell Biol 30:3038–3047

    Article  PubMed  CAS  Google Scholar 

  152. Sheftel AD, Stehling O, Pierik AJ, Netz DJ, Kerscher S, Elsasser HP, Wittig I, Balk J, Brandt U, Lill R (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29:6059–6073

    Article  PubMed  CAS  Google Scholar 

  153. Vogel RO, Janssen RJ, van den Brand MA, Dieteren CE, Verkaart S, Koopman WJ, Willems PH, Pluk W, van den Heuvel LP, Smeitink JA, Nijtmans LG (2007) Cytosolic signaling protein ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 21:615–624

    Article  PubMed  CAS  Google Scholar 

  154. Vogel RO, Janssen RJ, Ugalde C, Grovenstein M, Huijbens RJ, Visch HJ, van den Heuvel LP, Willems PH, Zeviani M, Smeitink JA, Nijtmans LG (2005) Human mitochondrial complex I assembly is mediated by NDUFAF1. FEBS J 272:5317–5326

    Article  PubMed  CAS  Google Scholar 

  155. Szklarczyk R, Wanschers BF, Nabuurs SB, Nouws J, Nijtmans LG, Huynen MA (2011) NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Lett 585:737–743

    Article  PubMed  CAS  Google Scholar 

  156. Gershoni M, Fuchs A, Shani N, Fridman Y, Corral-Debrinski M, Aharoni A, Frishman D, Mishmar D (2010) Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex I. J Mol Biol 404:158–171

    Article  PubMed  CAS  Google Scholar 

  157. Winklhofer KF, Haass C (2009) Mitochondrial dysfunction in parkinson’s disease. Biochim Biophys Acta 1802:29–44

    PubMed  Google Scholar 

  158. Brown MD, Zhadanov S, Allen JC, Hosseini S, Newman NJ, Atamonov VV, Mikhailovskaya IE, Sukernik RI, Wallace DC (2001) Novel mtDNA mutations and oxidative phosphorylation dysfunction in russian LHON families. Hum Genet 109:33–39

    Article  PubMed  CAS  Google Scholar 

  159. Hattori Y, Nakajima K, Eizawa T, Ehara T, Koyama M, Hirai T, Fukuda Y, Kinoshita M (2003) Heteroplasmic mitochondrial DNA 3310 mutation in NADH dehydrogenase subunit 1 associated with type 2 diabetes, hypertrophic cardiomyopathy, and mental retardation in a single patient. Diabetes Care 26:952–953

    Article  PubMed  Google Scholar 

  160. Lebon S, Chol M, Benit P, Mugnier C, Chretien D, Giurgea I, Kern I, Girardin E, Hertz-Pannier L, de Lonlay P, Rotig A, Rustin P, Munnich A (2003) Recurrent de novo mitochondrial DNA mutations in respiratory chain deficiency. J Med Genet 40:896–899

    Article  PubMed  CAS  Google Scholar 

  161. Taylor RW, Singh-Kler R, Hayes CM, Smith PE, Turnbull DM (2001) Progressive mitochondrial disease resulting from a novel missense mutation in the mitochondrial DNA ND3 gene. Ann Neurol 50:104–107

    Article  PubMed  CAS  Google Scholar 

  162. Sarzi E, Brown MD, Lebon S, Chretien D, Munnich A, Rotig A, Procaccio V (2007) A novel recurrent mitochondrial DNA mutation in ND3 gene is associated with isolated complex I deficiency causing Leigh syndrome and dystonia. Am J Med Genet A 143:33–41

    PubMed  Google Scholar 

  163. Pulkes T, Liolitsa D, Nelson IP, Hanna MG (2003) Classical mitochondrial phenotypes without mtDNA mutations: the possible role of nuclear genes. Neurology 61:1144–1147

    Article  PubMed  CAS  Google Scholar 

  164. Andreu AL, Tanji K, Bruno C, Hadjigeorgiou GM, Sue CM, Jay C, Ohnishi T, Shanske S, Bonilla E, DiMauro S (1999) Exercise intolerance due to a nonsense mutation in the mtDNA ND4 gene. Ann Neurol 45:820–823

    Article  PubMed  CAS  Google Scholar 

  165. Shanske S, Coku J, Lu J, Ganesh J, Krishna S, Tanji K, Bonilla E, Naini AB, Hirano M, DiMauro S (2008) The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol 65:368–372

    Article  PubMed  Google Scholar 

  166. Corona P, Antozzi C, Carrara F, D’Incerti L, Lamantea E, Tiranti V, Zeviani M (2001) A novel mtDNA mutation in the ND5 subunit of complex I in two MELAS patients. Ann Neurol 49:106–110

    Article  PubMed  CAS  Google Scholar 

  167. Naini AB, Lu J, Kaufmann P, Bernstein RA, Mancuso M, Bonilla E, Hirano M, DiMauro S (2005) Novel mitochondrial DNA ND5 mutation in a patient with clinical features of MELAS and MERRF. Arch Neurol 62:473–476

    Article  PubMed  Google Scholar 

  168. Johns DR, Neufeld MJ, Park RD (1992) An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem Biophys Res Commun 187:1551–1557

    Article  PubMed  CAS  Google Scholar 

  169. Tawata M, Hayashi JI, Isobe K, Ohkubo E, Ohtaka M, Chen J, Aida K, Onaya T (2000) A new mitochondrial DNA mutation at 14577 T/C is probably a major pathogenic mutation for maternally inherited type 2 diabetes. Diabetes 49:1269–1272

    Article  PubMed  CAS  Google Scholar 

  170. Solano A, Roig M, Vives-Bauza C, Hernandez-Pena J, Garcia-Arumi E, Playan A, Lopez-Perez MJ, Andreu AL, Montoya J (2003) Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene. Ann Neurol 54:527–530

    Article  PubMed  CAS  Google Scholar 

  171. Bridges HR, Birrell JA, Hirst J (2011) The mitochondrial-encoded subunits of respiratory complex I (NADH:ubiquinone oxidoreductase): identifying residues important in mechanism and disease. Biochem Soc Trans 39:799–806

    PubMed  CAS  Google Scholar 

  172. Mitchell AL, Elson JL, Howell N, Taylor RW, Turnbull DM (2006) Sequence variation in mitochondrial complex I genes: mutation or polymorphism? J Med Genet 43:175–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Australian National Health and Medical Research Council (NHMRC). MM is supported by an NHMRC CDA Fellowship, the Ramaciotti Foundation, and the James &Vera Lawson Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McKenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McKenzie, M. (2013). Mitochondrial DNA Mutations and Their Effects on Complex I Biogenesis: Implications for Metabolic Disease. In: St. John, J. (eds) Mitochondrial DNA, Mitochondria, Disease and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-101-1_2

Download citation

Publish with us

Policies and ethics