Skip to main content

Magnesium and Its Interdependency with Other Cations in Acute and Chronic Stressor States

  • Chapter
  • First Online:
Magnesium in Human Health and Disease

Abstract

Mg2+ and Ca2+ are major divalent intracellular cations. Mg2+ is integral to a myriad of enzymatic reactions and physiologic responses, especially in tissues such as the heart, where metabolic activity and ATP consumption are high [1]. In addition, there are intricate interdependencies between Mg2+ and Ca2+ and other cations. Numerous examples of the interplay that exists between Mg2+, Ca2+, and K+ have been well recognized. Herein, we focus specifically on several inseparable interconnections involving Mg2+ and those cations which are clinically relevant to the heart during acute and chronic stressor states, wherein neurohormonal activation involving the adrenergic and renin-angiotensin-aldosterone systems unmasks their interdependency.

This work was supported, in part, by NIH grants R01-HL73043 and R01-HL90867 (KTW). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Authors have no conflicts of interest to disclose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHF:

Congestive heart failure

PTH:

Parathyroid hormone

SHPT:

Secondary hyperparathyroidism

References

  1. Rude RK, Shils ME. Magnesium. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ, editors. Modern nutrition in health and disease. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 223–47.

    Google Scholar 

  2. Grubbs RD, Maguire ME. Magnesium as a regulatory cation: criteria and evaluation. Magnesium. 1987;6:113–27.

    PubMed  CAS  Google Scholar 

  3. Kjeldsen K. Hypokalemia and sudden cardiac death. Exp Clin Cardiol. 2010;15:e96–9.

    PubMed  Google Scholar 

  4. Brown MJ, Brown DC, Murphy MB. Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med. 1983;309:1414–9.

    Article  PubMed  CAS  Google Scholar 

  5. Reid JL, Whyte KF, Struthers AD. Epinephrine-induced hypokalemia: the role of beta adrenoceptors. Am J Cardiol. 1986;57:23F–7.

    Article  PubMed  CAS  Google Scholar 

  6. Hansen O, Johansson BW, Nilsson-Ehle P. Metabolic, electrocardiographic, and hemodynamic responses to increased circulating adrenaline: effects of selective and nonselective beta adrenoceptor blockade. Angiology. 1990;41:175–88.

    Article  PubMed  CAS  Google Scholar 

  7. Darbar D, Smith M, Mörike K, Roden DM. Epinephrine-induced changes in serum potassium and cardiac repolarization and effects of pretreatment with propranolol and diltiazem. Am J Cardiol. 1996;77:1351–5.

    Article  PubMed  CAS  Google Scholar 

  8. Whyte KF, Addis GJ, Whitesmith R, Reid JL. Adrenergic control of plasma magnesium in man. Clin Sci (Lond). 1987;72:135–8.

    CAS  Google Scholar 

  9. Joborn H, Hjemdahl P, Larsson PT, Lithell H, Olsson G, Wide L, et al. Effects of prolonged adrenaline infusion and of mental stress on plasma minerals and parathyroid hormone. Clin Physiol. 1990;10:37–53.

    Article  PubMed  CAS  Google Scholar 

  10. Tarditi DJ, Hollenberg SM. Cardiac arrhythmias in the intensive care unit. Semin Respir Crit Care Med. 2006;27:221–9.

    Article  PubMed  Google Scholar 

  11. Struthers AD, Whitesmith R, Reid JL. Prior thiazide diuretic treatment increases adrenaline-induced hypokalaemia. Lancet. 1983;1(8338):1358–61.

    Article  PubMed  CAS  Google Scholar 

  12. Lipworth BJ, McDevitt DG, Struthers AD. Hypokalemic and ECG sequelae of combined beta-agonist/diuretic therapy. Protection by conventional doses of spironolactone but not triamterene. Chest. 1990;98:811–5.

    Article  PubMed  CAS  Google Scholar 

  13. Ahrens RC, Smith GD. Albuterol: an adrenergic agent for use in the treatment of asthma pharmacology, pharmacokinetics and clinical use. Pharmacotherapy. 1984;4:105–21.

    PubMed  CAS  Google Scholar 

  14. Gupta A, Lawrence AT, Krishnan K, Kavinsky CJ, Trohman RG. Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. Am Heart J. 2007;153:891–9.

    Article  PubMed  Google Scholar 

  15. Buckley MS, Leblanc JM, Cawley MJ. Electrolyte disturbances associated with commonly prescribed medications in the intensive care unit. Crit Care Med. 2010;38:S253–64.

    Article  PubMed  CAS  Google Scholar 

  16. Curtis LH, Østbye T, Sendersky V, Hutchison S, Allen LaPointe NM, Al-Khatib SM, et al. Prescription of QT-prolonging drugs in a cohort of about 5 million outpatients. Am J Med. 2003;114:135–41.

    Article  PubMed  CAS  Google Scholar 

  17. Ebel H, Günther T. Role of magnesium in cardiac disease. J Clin Chem Clin Biochem. 1983;21:249–65.

    PubMed  CAS  Google Scholar 

  18. Rayssiguier Y. Hypomagnesemia resulting from adrenaline infusion in ewes: its relation to lipolysis. Horm Metab Res. 1977;9:309–14.

    Article  PubMed  CAS  Google Scholar 

  19. Escuela MP, Guerra M, Añon JM, Martínez-Vizcaino V, Zapatero MD, Garcia-Jalón A, et al. Total and ionized serum magnesium in critically ill patients. Intensive Care Med. 2005;31:151–6.

    Article  PubMed  Google Scholar 

  20. Ryzen E. Magnesium homeostasis in critically ill patients. Magnesium. 1989;8:201–12.

    PubMed  CAS  Google Scholar 

  21. Ueshima K, Tachibana H, Suzuki T, Hiramori K. Factors affecting the blood concentration of ionized magnesium in patients in the acute phase of myocardial infarction. Heart Vessels. 2004;19:267–70.

    Article  PubMed  Google Scholar 

  22. Ceremuzynski L, Van Hao N. Ventricular arrhythmias late after myocardial infarction are related to hypomagnesemia and magnesium loss: preliminary trial of corrective therapy. Clin Cardiol. 1993;16:493–6.

    Article  PubMed  CAS  Google Scholar 

  23. Saleem AF, Haque A. On admission hypomagnesemia in critically ill children: risk factors and outcome. Indian J Pediatr. 2009;76:1227–30.

    Article  PubMed  Google Scholar 

  24. Safavi M, Honarmand A. Admission hypomagnesemia–impact on mortality or morbidity in critically ill patients. Middle East J Anesthesiol. 2007;19:645–60.

    PubMed  Google Scholar 

  25. Sheehan JP, Seelig MS. Interactions of magnesium and potassium in the pathogenesis of cardiovascular disease. Magnesium. 1984;3:301–14.

    PubMed  CAS  Google Scholar 

  26. Solomon R. The relationship between disorders of K+ and Mg+ homeostasis. Semin Nephrol. 1987;7:253–62.

    PubMed  CAS  Google Scholar 

  27. Leier CV, Dei Cas L, Metra M. Clinical relevance and management of the major electrolyte abnormalities in congestive heart failure: hyponatremia, hypokalemia, and hypomagnesemia. Am Heart J. 1994;128:564–74.

    Article  PubMed  CAS  Google Scholar 

  28. Milionis HJ, Alexandrides GE, Liberopoulos EN, Bairaktari ET, Goudevenos J, Elisaf MS. Hypomagnesemia and concurrent acid-base and electrolyte abnormalities in patients with congestive heart failure. Eur J Heart Fail. 2002;4:167–73.

    Article  PubMed  CAS  Google Scholar 

  29. Kraft MD, Btaiche IF, Sacks GS, Kudsk KA. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am J Health Syst Pharm. 2005;62:1663–82.

    Article  PubMed  CAS  Google Scholar 

  30. Fedelesová M, Ziegelhöffer A, Luknárová O, Kostolansky S. Prevention by K+, Mg2+-aspartate of isoproterenol-induced metabolic changes in the myocardium. Recent Adv Stud Cardiac Struct Metab. 1975;6:59–73.

    PubMed  Google Scholar 

  31. Hermes-Lima M, Castilho RF, Valle VG, Bechara EJ, Vercesi AE. Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid. Biochim Biophys Acta. 1992;1180:201–6.

    Article  PubMed  CAS  Google Scholar 

  32. Szanda G, Rajki A, Gallego-Sandin S, Garcia-Sancho J, Spät A. Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling. Pflugers Arch. 2009;457:941–54.

    Article  PubMed  CAS  Google Scholar 

  33. Romani A, Marfella C, Scarpa A. Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes. Circ Res. 1993;72:1139–48.

    Article  PubMed  CAS  Google Scholar 

  34. Carlstedt F, Lind L, Joachimsson PO, Rastad J, Wide L, Ljunghall S. Circulating ionized calcium and parathyroid hormone levels following coronary artery by-pass surgery. Scand J Clin Lab Invest. 1999;59:47–53.

    Article  PubMed  CAS  Google Scholar 

  35. Carlstedt F, Lind L, Rastad J, Stjernstrom H, Wide L, Ljunghall S. Parathyroid hormone and ionized calcium levels are related to the severity of illness and survival in critically ill patients. Eur J Clin Invest. 1998;28:898–903.

    Article  PubMed  CAS  Google Scholar 

  36. Carlstedt F, Lind L, Wide L, Lindahl B, Hänni A, Rastad J, et al. Serum levels of parathyroid hormone are related to the mortality and severity of illness in patients in the emergency department. Eur J Clin Invest. 1997;27:977–81.

    Article  PubMed  CAS  Google Scholar 

  37. Hästbacka J, Pettilä V. Prevalence and predictive value of ionized hypocalcemia among critically ill patients. Acta Anaesthesiol Scand. 2003;47:1264–9.

    Article  PubMed  Google Scholar 

  38. Choi YC, Hwang SY. The value of initial ionized calcium as a predictor of mortality and triage tool in adult trauma patients. J Korean Med Sci. 2008;23:700–5.

    Article  PubMed  Google Scholar 

  39. Cherry RA, Bradburn E, Carney DE, Shaffer ML, Gabbay RA, Cooney RN. Do early ionized calcium levels really matter in trauma patients? J Trauma. 2006;61:774–9.

    Article  PubMed  CAS  Google Scholar 

  40. Dickerson RN, Henry NY, Miller PL, Minard G, Brown RO. Low serum total calcium concentration as a marker of low serum ionized calcium concentration in critically ill patients receiving specialized nutrition support. Nutr Clin Pract. 2007;22:323–8.

    Article  PubMed  Google Scholar 

  41. Burchard KW, Simms HH, Robinson A, DiAmico R, Gann DS. Hypocalcemia during sepsis. Relationship to resuscitation and hemodynamics. Arch Surg. 1992;127:265–72.

    Article  PubMed  CAS  Google Scholar 

  42. Joborn H, Hjemdahl P, Larsson PT, Lithell H, Lundin L, Wide L, et al. Platelet and plasma catecholamines in relation to plasma minerals and parathyroid hormone following acute myocardial infarction. Chest. 1990;97:1098–105.

    Article  PubMed  CAS  Google Scholar 

  43. Karlsberg RP, Cryer PE, Roberts R. Serial plasma catecholamine response early in the course of clinical acute myocardial infarction: relationship to infarct extent and mortality. Am Heart J. 1981;102:24–9.

    Article  PubMed  CAS  Google Scholar 

  44. Klein GL, Nicolai M, Langman CB, Cuneo BF, Sailer DE, Herndon DN. Dysregulation of calcium homeostasis after severe burn injury in children: possible role of magnesium depletion. J Pediatr. 1997;131:246–51.

    Article  PubMed  CAS  Google Scholar 

  45. Gunnewiek JM, Van Der Hoeven JG. Cardiac troponin elevations among critically ill patients. Curr Opin Crit Care. 2004;10:342–6.

    Article  PubMed  Google Scholar 

  46. Jeremias A, Gibson CM. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med. 2005;142:786–91.

    PubMed  Google Scholar 

  47. Maeder M, Fehr T, Rickli H, Ammann P. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest. 2006;129:1349–66.

    Article  PubMed  CAS  Google Scholar 

  48. Vasile VC, Babuin L, Rio Perez JA, Alegria JR, Song LM, Chai HS, et al. Long-term prognostic significance of elevated cardiac troponin levels in critically ill patients with acute gastrointestinal bleeding. Crit Care Med. 2009;37:140–7.

    Article  PubMed  CAS  Google Scholar 

  49. Anast CS, Winnacker JL, Forte LR, Burns TW. Impaired release of parathyroid hormone in magnesium deficiency. J Clin Endocrinol Metab. 1976;42:707–17.

    Article  PubMed  CAS  Google Scholar 

  50. Rude RK, Oldham SB, Singer FR. Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency. Clin Endocrinol (Oxf). 1976;5:209–24.

    Article  CAS  Google Scholar 

  51. Iwasaki Y, Asai M, Yoshida M, Oiso Y, Hashimoto K. Impaired parathyroid hormone response to hypocalcemic stimuli in a patient with hypomagnesemic hypocalcemia. J Endocrinol Invest. 2007;30:513–6.

    PubMed  CAS  Google Scholar 

  52. Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96:526–34.

    Article  PubMed  CAS  Google Scholar 

  53. Dutka DP, Olivotto I, Ward S, Nihoyannopoulos P, al-Subaili M, Oakley CM, et al. Plasma neuro-endocrine activity in very elderly subjects and patients with and without heart failure. Eur Heart J. 1995;16:1223–30.

    PubMed  CAS  Google Scholar 

  54. Bolger AP, Sharma R, Li W, Leenarts M, Kalra PR, Kemp M, et al. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation. 2002;106:92–9.

    Article  PubMed  CAS  Google Scholar 

  55. Emdin M, Passino C, Prontera C, Iervasi A, Ripoli A, Masini S, et al. Cardiac natriuretic hormones, neuro-hormones, thyroid hormones and cytokines in normal subjects and patients with heart failure. Clin Chem Lab Med. 2004;42:627–36.

    Article  PubMed  CAS  Google Scholar 

  56. Buchhorn R, Hammersen A, Bartmus D, Bürsch J. The pathogenesis of heart failure in infants with congenital heart disease. Cardiol Young. 2001;11:498–504.

    Article  PubMed  CAS  Google Scholar 

  57. Wester PO, Dyckner T. Intracellular electrolytes in cardiac failure. Acta Med Scand Suppl. 1986;707:33–6.

    PubMed  CAS  Google Scholar 

  58. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, et al. Hyperparathyroidism and the ­calcium paradox of aldosteronism. Circulation. 2005;111:871–8.

    Article  PubMed  CAS  Google Scholar 

  59. Law PH, Sun Y, Bhattacharya SK, Chhokar VS, Weber KT. Diuretics and bone loss in rats with aldosteronism. J Am Coll Cardiol. 2005;46:142–6.

    Article  PubMed  CAS  Google Scholar 

  60. Soliman HM, Mercan D, Lobo SS, Melot C, Vincent JL. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit Care Med. 2003;31:1082–7.

    Article  PubMed  CAS  Google Scholar 

  61. Ginn HE, Cade R, McCallum T, Fregley M. Aldosterone secretion in magnesium-deficient rats. Endocrinology. 1967;80:969–71.

    Article  PubMed  CAS  Google Scholar 

  62. Solounias BM, Schwartz R. The effect of magnesium deficiency on serum aldosterone in rats fed two levels of sodium. Life Sci. 1975;17:1211–7.

    Article  PubMed  CAS  Google Scholar 

  63. Atarashi K, Matsuoka H, Takagi M, Sugimoto T. Magnesium ion: a possible physiological regulator of aldosterone production. Life Sci. 1989;44:1483–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ahmed A, Zannad F, Love TE, Tallaj J, Gheorghiade M, Ekundayo OJ, et al. A propensity-matched study of the association of low serum potassium levels and mortality in chronic heart failure. Eur Heart J. 2007;28: 1334–43.

    Article  PubMed  CAS  Google Scholar 

  65. Adamopoulos C, Pitt B, Sui X, Love TE, Zannad F, Ahmed A. Low serum magnesium and cardiovascular mortality in chronic heart failure: a propensity-matched study. Int J Cardiol. 2009;136:270–7.

    Article  PubMed  Google Scholar 

  66. Bowling CB, Pitt B, Ahmed MI, Aban IB, Sanders PW, Mujib M, et al. Hypokalemia and outcomes in patients with chronic heart failure and chronic kidney disease: findings from propensity-matched studies. Circ Heart Fail. 2010;3:253–60.

    Article  PubMed  Google Scholar 

  67. Domanski M, Tian X, Haigney M, Pitt B. Diuretic use, progressive heart failure, and death in patients in the DIG study. J Card Fail. 2006;12:327–32.

    Article  PubMed  CAS  Google Scholar 

  68. Ahmed A, Husain A, Love TE, Gambassi G, Dell’Italia LJ, Francis GS, et al. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J. 2006;27:1431–9.

    Article  PubMed  Google Scholar 

  69. Seelig M. Cardiovascular consequences of magnesium deficiency and loss: pathogenesis, prevalence and manifestations–magnesium and chloride loss in refractory potassium repletion. Am J Cardiol. 1989;63:4G–21.

    Article  PubMed  CAS  Google Scholar 

  70. Weber KT. Furosemide in the long-term management of heart failure. The good, the bad and the uncertain. J Am Coll Cardiol. 2004;44:1308–10.

    PubMed  CAS  Google Scholar 

  71. Cooper HA, Dries DL, Davis CE, Shen YL, Domanski MJ. Diuretics and risk of arrhythmic death in patients with left ventricular dysfunction. Circulation. 1999;100:1311–5.

    Article  PubMed  CAS  Google Scholar 

  72. Domanski M, Norman J, Pitt B, Haigney M, Hanlon S, Peyster E. Diuretic use, progressive heart failure, and death in patients in the Studies Of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 2003;42:705–8.

    Article  PubMed  CAS  Google Scholar 

  73. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  PubMed  CAS  Google Scholar 

  74. Shane E, Mancini D, Aaronson K, Silverberg SJ, Seibel MJ, Addesso V, et al. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am J Med. 1997;103:197–207.

    Article  PubMed  CAS  Google Scholar 

  75. Khouzam RN, Dishmon DA, Farah V, Flax SD, Carbone LD, Weber KT. Secondary hyperparathyroidism in patients with untreated and treated congestive heart failure. Am J Med Sci. 2006;331:30–4.

    Article  PubMed  Google Scholar 

  76. LaGuardia SP, Dockery BK, Bhattacharya SK, Nelson MD, Carbone LD, Weber KT. Secondary hyperparathyroidism and hypovitaminosis D in African-Americans with decompensated heart failure. Am J Med Sci. 2006;332: 112–8.

    Article  PubMed  Google Scholar 

  77. Arroyo M, LaGuardia SP, Bhattacharya SK, Nelson MD, Johnson PL, Carbone LD, et al. Micronutrients in African-Americans with decompensated and compensated heart failure. Transl Res. 2006;148:301–8.

    Article  PubMed  CAS  Google Scholar 

  78. Alsafwah S, LaGuardia SP, Nelson MD, Battin DL, Newman KP, Carbone LD, et al. Hypovitaminosis D in African Americans residing in Memphis, Tennessee with and without heart failure. Am J Med Sci. 2008;335:292–7.

    Article  PubMed  Google Scholar 

  79. Ulrich S, Hersberger M, Fischler M, Huber LC, Senn O, Treder U, et al. Bone mineral density and secondary hyperparathyroidism in pulmonary hypertension. Open Respir Med J. 2009;3:53–60.

    Article  PubMed  CAS  Google Scholar 

  80. Franco CB, Paz-Filho G, Gomes PE, Nascimento VB, Kulak CA, Boguszewski CL, et al. Chronic obstructive pulmonary disease is associated with osteoporosis and low levels of vitamin D. Osteoporos Int. 2009;20:1881–7.

    Article  PubMed  CAS  Google Scholar 

  81. Fertig A, Webley M, Lynn JA. Primary hyperparathyroidism in a patient with Conn’s syndrome. Postgrad Med J. 1980;56:45–7.

    Article  PubMed  CAS  Google Scholar 

  82. Hellman DE, Kartchner M, Komar N, Mayes D, Pitt M. Hyperaldosteronism, hyperparathyroidism, medullary sponge kidneys, and hypertension. JAMA. 1980;244:1351–3.

    Article  PubMed  CAS  Google Scholar 

  83. Resnick LM, Laragh JH. Calcium metabolism and parathyroid function in primary aldosteronism. Am J Med. 1985;78:385–90.

    Article  PubMed  CAS  Google Scholar 

  84. Rossi E, Sani C, Perazzoli F, Casoli MC, Negro A, Dotti C. Alterations of calcium metabolism and of parathyroid function in primary aldosteronism, and their reversal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am J Hypertens. 1995;8:884–93.

    Article  PubMed  CAS  Google Scholar 

  85. Brunaud L, Germain A, Zarnegar R, Rancier M, Alrasheedi S, Caillard C, et al. Serum aldosterone is correlated positively to parathyroid hormone (PTH) levels in patients with primary hyperparathyroidism. Surgery. 2009;146:1035–41.

    Article  PubMed  Google Scholar 

  86. Andersson P, Rydberg E, Willenheimer R. Primary hyperparathyroidism and heart disease–a review. Eur Heart J. 2004;25:1776–87.

    Article  PubMed  CAS  Google Scholar 

  87. Vidal A, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC, Weber KT. Calcium paradox of aldosteronism and the role of the parathyroid glands. Am J Physiol Heart Circ Physiol. 2006;290:H286–94.

    Article  PubMed  CAS  Google Scholar 

  88. Selektor Y, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT. Cinacalcet and the prevention of secondary hyperparathyroidism in rats with aldosteronism. Am J Med Sci. 2008;335:105–10.

    Article  PubMed  Google Scholar 

  89. Gandhi MS, Deshmukh PA, Kamalov G, Zhao T, Zhao W, Whaley JT, et al. Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol. 2008;52:245–52.

    Article  PubMed  CAS  Google Scholar 

  90. Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, et al. Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol. 2009;53:414–23.

    Article  PubMed  CAS  Google Scholar 

  91. Lee AH, Mull RL, Keenan GF, Callegari PE, Dalinka MK, Eisen HJ, et al. Osteoporosis and bone morbidity in cardiac transplant recipients. Am J Med. 1994;96:35–41.

    Article  PubMed  CAS  Google Scholar 

  92. Schmid C, Kiowski W. Hyperparathyroidism in congestive heart failure. Am J Med. 1998;104:508–9.

    PubMed  CAS  Google Scholar 

  93. Ogino K, Ogura K, Kinugasa Y, Furuse Y, Uchida K, Shimoyama M, et al. Parathyroid hormone-related protein is produced in the myocardium and increased in patients with congestive heart failure. J Clin Endocrinol Metab. 2002;87:4722–7.

    Article  PubMed  CAS  Google Scholar 

  94. Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Korfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41:105–12.

    Article  PubMed  CAS  Google Scholar 

  95. Sugimoto T, Tanigawa T, Onishi K, Fujimoto N, Matsuda A, Nakamori S, et al. Serum intact parathyroid hormone levels predict hospitalisation for heart failure. Heart. 2009;95:395–8.

    Article  PubMed  CAS  Google Scholar 

  96. Pilz S, Tomaschitz A, Drechsler C, Ritz E, Boehm BO, Grammer TB, et al. Parathyroid hormone level is associated with mortality and cardiovascular events in patients undergoing coronary angiography. Eur Heart J. 2010;31:1591–8.

    Article  PubMed  CAS  Google Scholar 

  97. Hagström E, Hellman P, Larsson TE, Ingelsson E, Berglund L, Sundström J, et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009;119:2765–71.

    Article  PubMed  CAS  Google Scholar 

  98. Hagström E, Ingelsson E, Sundström J, Hellman P, Larsson TE, Berglund L, et al. Plasma parathyroid hormone and risk of congestive heart failure in the community. Eur J Heart Fail. 2010;12:1186–92.

    Article  PubMed  CAS  Google Scholar 

  99. Bell NH, Greene A, Epstein S, Oexmann MJ, Shaw S, Shary J. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.

    Article  PubMed  CAS  Google Scholar 

  100. Sawaya BP, Monier-Faugere MC, Ratanapanichkich P, Butros R, Wedlund PJ, Fanti P. Racial differences in parathyroid hormone levels in patients with secondary hyperparathyroidism. Clin Nephrol. 2002;57:51–5.

    PubMed  CAS  Google Scholar 

  101. Jarvis JK, Miller GD. Overcoming the barrier of lactose intolerance to reduce health disparities. J Natl Med Assoc. 2002;94:55–66.

    PubMed  Google Scholar 

  102. Cohen AJ, Roe FJ. Review of risk factors for osteoporosis with particular reference to a possible aetiological role of dietary salt. Food Chem Toxicol. 2000;38:237–53.

    Article  PubMed  CAS  Google Scholar 

  103. Teucher B, Dainty JR, Spinks CA, Majsak-Newman G, Berry DJ, Hoogewerff JA, et al. Sodium and bone health: impact of moderately high and low salt intakes on calcium metabolism in postmenopausal women. J Bone Miner Res. 2008;23:1477–85.

    Article  PubMed  CAS  Google Scholar 

  104. Kerschan-Schindl K, Strametz-Juranek J, Heinze G, Grampp S, Bieglmayer C, Pacher R, et al. Pathogenesis of bone loss in heart transplant candidates and recipients. J Heart Lung Transplant. 2003;22:843–50.

    Article  PubMed  Google Scholar 

  105. Nishio K, Mukae S, Aoki S, Itoh S, Konno N, Ozawa K, et al. Congestive heart failure is associated with the rate of bone loss. J Intern Med. 2003;253:439–46.

    Article  PubMed  CAS  Google Scholar 

  106. Kenny AM, Boxer R, Walsh S, Hager WD, Raisz LG. Femoral bone mineral density in patients with heart failure. Osteoporos Int. 2006;17:1420–7.

    Article  PubMed  CAS  Google Scholar 

  107. Frost RJ, Sonne C, Wehr U, Stempfle HU. Effects of calcium supplementation on bone loss and fractures in congestive heart failure. Eur J Endocrinol. 2007;156:309–14.

    Article  PubMed  CAS  Google Scholar 

  108. Abou-Raya S, Abou-Raya A. Osteoporosis and congestive heart failure (CHF) in the elderly patient: double disease burden. Arch Gerontol Geriatr. 2009;49:250–4.

    Article  PubMed  Google Scholar 

  109. van Diepen S, Majumdar SR, Bakal JA, McAlister FA, Ezekowitz JA. Heart failure is a risk factor for orthopedic fracture: a population-based analysis of 16,294 patients. Circulation. 2008;118:1946–52.

    Article  PubMed  Google Scholar 

  110. Carbone LD, Cross JD, Raza SH, Bush AJ, Sepanski RJ, Dhawan S, et al. Fracture risk in men with congestive heart failure. Risk reduction with spironolactone. J Am Coll Cardiol. 2008;52:135–8.

    Article  PubMed  Google Scholar 

  111. Ishii J, Nomura M, Nakamura Y, Naruse H, Mori Y, Ishikawa T, et al. Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure. Am J Cardiol. 2002;89:691–5.

    Article  PubMed  CAS  Google Scholar 

  112. Kuwabara Y, Sato Y, Miyamoto T, Taniguchi R, Matsuoka T, Isoda K, et al. Persistently increased serum concentrations of cardiac troponin in patients with acutely decompensated heart failure are predictive of adverse outcomes. Circ J. 2007;71:1047–51.

    Article  PubMed  CAS  Google Scholar 

  113. Peacock 4th WF, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26.

    Article  PubMed  CAS  Google Scholar 

  114. Zairis MN, Tsiaousis GZ, Georgilas AT, Makrygiannis SS, Adamopoulou EN, Handanis SM, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int J Cardiol. 2009;141:284–90.

    Article  PubMed  Google Scholar 

  115. Löwbeer C, Gustafsson SA, Seeberger A, Bouvier F, Hulting J. Serum cardiac troponin T in patients hospitalized with heart failure is associated with left ventricular hypertrophy and systolic dysfunction. Scand J Clin Lab Invest. 2004;64:667–76.

    Article  PubMed  CAS  Google Scholar 

  116. Horwich TB, Patel J, MacLellan WR, Fonarow GC. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108:833–8.

    Article  PubMed  CAS  Google Scholar 

  117. Sukova J, Ostadal P, Widimsky P. Profile of patients with acute heart failure and elevated troponin I levels. Exp Clin Cardiol. 2007;12:153–6.

    PubMed  Google Scholar 

  118. Ilva T, Lassus J, Siirilä-Waris K, Melin J, Peuhkurinen K, Pulkki K, et al. Clinical significance of cardiac troponins I and T in acute heart failure. Eur J Heart Fail. 2008;10:772–9.

    Article  PubMed  CAS  Google Scholar 

  119. Sato Y, Nishi K, Taniguchi R, Miyamoto T, Fukuhara R, Yamane K, et al. In patients with heart failure and non-ischemic heart disease, cardiac troponin T is a reliable predictor of long-term echocardiographic changes and adverse cardiac events. J Cardiol. 2009;54:221–30.

    Article  PubMed  Google Scholar 

  120. Miller WL, Hartman KA, Burritt MF, Grill DE, Jaffe AS. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J Am Coll Cardiol. 2009;54:1715–21.

    Article  PubMed  CAS  Google Scholar 

  121. Kramer JH, Spurney C, Iantorno M, Tziros C, Mak IT, Tejero-Taldo MI, et al. Neurogenic inflammation and cardiac dysfunction due to hypomagnesemia. Am J Med Sci. 2009;338:22–7.

    Article  PubMed  Google Scholar 

  122. Weglicki WB, Chmielinska JJ, Kramer JH, Mak IT. Cardiovascular and intestinal responses to oxidative and ­nitrosative stress during prolonged magnesium deficiency. Am J Med Sci. 2011;342:125–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl T. Weber M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komolafe, B.O. et al. (2013). Magnesium and Its Interdependency with Other Cations in Acute and Chronic Stressor States. In: Watson, R., Preedy, V., Zibadi, S. (eds) Magnesium in Human Health and Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-044-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-044-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-043-4

  • Online ISBN: 978-1-62703-044-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics