Skip to main content

Nanoneurology

  • Chapter
  • First Online:
The Handbook of Nanomedicine
  • 2242 Accesses

Abstract

Neurology deals with the study and management of disorders of the nervous system. Considerable research is in progress in basic neurosciences and clinical neurology. The management is mostly medical. Many neurological disorders require surgical intervention, and the closely related specialty of surgical neurology or neurosurgery will also be considered in this chapter. There is a considerable scope for application of nanobiotechnology in neurology and hence the term nanoneurology (Jain 2009a). Nanobiotechnology has been applied for neurophysiological studies, diagnosis, neuropharmacology, and refinement of surgical tools. Neuroprotection is an important objective in treatment of diseases of the central nervous system (CNS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson SA, Glod J, Arbab AS, et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005;105:420–5.

    Article  CAS  Google Scholar 

  • Barbu E, Molnàr E, Tsibouklis J, et al. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert Opin Drug Deliv 2009;6:553–65.

    Article  CAS  Google Scholar 

  • Bharali DJ, Klejbor I, Stachowiak EK, et al. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. 2005;102:11539–44.

    Google Scholar 

  • Callera F, de Melo C. Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells and Development 2007;16:461–466.

    Article  Google Scholar 

  • Ding H, Inoue S, Ljubimov AV, et al. Inhibition of brain tumor growth by intravenous poly(β-Lmalic acid) nanobioconjugate with pH-dependent drug release. Proc Natl Acad Sci U S A 2010;107: 18143–8.

    Article  CAS  Google Scholar 

  • Ellis-Behnke RG, Liang YX, You SW, et al. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A 2006;103:5054–9.

    Article  CAS  Google Scholar 

  • Jain KK. Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Rev Neurother 2007a;7:363–72.

    Google Scholar 

  • Jain KK. Current Status and Future Prospects of Nanoneurology. J Nanoneuroscience 2009a;1:56–64.

    Google Scholar 

  • Jain KK. Handbook of Neuroprotection. Springer, New York, 2011.

    Google Scholar 

  • Jain KK. Drug Delivery in Central Nervous System Disorders: technologies, markets and companies. Jain PharmaBiotech Publications, Basel, 2012e.

    Google Scholar 

  • Jain KK. Nanobiotechnology-based strategies for crossing the blood–brain barrier. Nanomedicine (Lond) 2012f July (in press).

    Google Scholar 

  • Jain KK. Regenerative Therapy for Central Nervous System Trauma, Chapter 25, In, Steinhoff G (ed) Regenerative Medicine, 2nd ed, Springer, London, 2012g.

    Google Scholar 

  • Kang C, Yuan X, Zhong Y, et al. Growth Inhibition Against Intracranial C6 Glioma Cells by Stereotactic Delivery of BCNU by Controlled Release from poly(D,L-lactic acid) Nanoparticles. Technol Cancer Res Treat 2009;8:61–70.

    CAS  Google Scholar 

  • Kim W, Ng JK, Kunitake ME, et al. Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 2007;129:7228–9.

    Article  CAS  Google Scholar 

  • Kreuter J, Gelperina S. Use of nanoparticles for cerebral cancer. Tumori 2008;94:271–7.

    CAS  Google Scholar 

  • Larsen A, Kolind K, Pedersen DS, et al. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury. Histochem Cell Biol 2008;130:681–92.

    Article  CAS  Google Scholar 

  • Liopo AV, Stewart MP, Hudson J, et al. Biocompatibility of Native and Functionalized Single-Walled Carbon Nanotubes for Neuronal Interface. J Nanosci Nanotechnol 2006;6:1365–1374.

    Article  CAS  Google Scholar 

  • Llinas RR, Walton KD, Nakao M, et al. Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes. Journal of Nanoparticle Research 2005;7:111–127.

    Article  Google Scholar 

  • Lu W, Sun Q, Wan J, She Z, Jiang XG. Cationic Albumin-Conjugated Pegylated Nanoparticles Allow Gene Delivery into Brain Tumors via Intravenous Administration. Cancer Res 2006;66:11878–87.

    Article  CAS  Google Scholar 

  • Martin-Banderas L, Holgado MA, Venero JL, et al. Nanostructures for drug delivery to the brain. Curr Med Chem 2011;18:5303–21.

    Article  CAS  Google Scholar 

  • Misra N, Martinez JA, Huang SC, et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc Natl Acad Sci U S A 2009;106:13780–4.

    Article  CAS  Google Scholar 

  • Neuwelt EA, Varallyay P, Bago AG, et al. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathology and Applied Neurobiology 2004;30:456–71.

    Article  CAS  Google Scholar 

  • Panseri S, Cunha C, Lowery J, et al. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnology 2008;8:39.

    Article  Google Scholar 

  • Pappas TC, Wickramanyake WM, Jan E, et al. Nanoscale Engineering of a Cellular Interface with Semiconductor Nanoparticle Films for Photoelectric Stimulation of Neurons. Nano Lett 2007;7:513–9.

    Article  CAS  Google Scholar 

  • Petry KG, Boiziau C, Dousset V, Brochet B. Magnetic resonance imaging of human brain macrophage infiltration. Neurotherapeutics 2007;4:434–42.

    Article  CAS  Google Scholar 

  • Posadas I, Guerra FJ, Ceña V. Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine 2010;5:1219–36.

    Article  CAS  Google Scholar 

  • Qiao Y, Chen J, Guo X, et al. Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling. Nanotechnology 2005;16:1598–1602.

    Article  CAS  Google Scholar 

  • Qing Q, Pal SK, Tian B, et al. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci U S A 2010;107:1882–7.

    Article  CAS  Google Scholar 

  • Reddy MK, Wu L, Kou W, et al. Superoxide Dismutase-Loaded PLGA Nanoparticles Protect Cultured Human Neurons Under Oxidative Stress. Appl Biochem Biotechnol 2008;151:565–77.

    Article  CAS  Google Scholar 

  • Rocha R, Zhou Y, Kundu S, et al. In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis. J Nanobiotechnol 2011;9:5.

    Article  CAS  Google Scholar 

  • Roy S, Glueckert R, Johnston AH, et al. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine (Lond) 2012;7:55–63.

    Article  CAS  Google Scholar 

  • Seil JT, Webster TJ. Electrically active nanomaterials as improved neural tissue regeneration scaffolds. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2:635–47.

    Article  CAS  Google Scholar 

  • Shea TB, Ortiz D, Nicolosi RJ, et al. Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta. J Alzheimer’s Dis 2005;7:297–301.

    CAS  Google Scholar 

  • Shi Y, Kim S, Huff TB, et al. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nat Nanotech 2010;5:80–7.

    Article  CAS  Google Scholar 

  • Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann NY Acad Sci 2010;1199:221–30.

    Article  CAS  Google Scholar 

  • Sprintz M, Benedetti C, Ferrari M. Applied nanotechnology for the management of breakthrough cancer pain. Minerva Anestesiol 2005;71:419–23.

    CAS  Google Scholar 

  • Stabenfeldt SE, Irons HR, Laplaca MC. Stem cells and bioactive scaffolds as a treatment for traumatic brain injury. Curr Stem Cell Res Ther 2011;6:208–20.

    Article  CAS  Google Scholar 

  • Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2009;87:133–70.

    Article  CAS  Google Scholar 

  • Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 2007;161C:367–383.

    Article  Google Scholar 

  • Tosi G, Costantino L, Ruozi B, et al. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opinion on Drug Delivery 2008;5:155–74.

    Article  CAS  Google Scholar 

  • Veiseh O, Sun C, Fang C, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. Cancer Res 2009;69:6200–7.

    Article  CAS  Google Scholar 

  • Webber MJ, Kessler JA, Stupp SI. Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 2010;267:71–88.

    Article  CAS  Google Scholar 

  • Yanik MF, Cinar H, Cinar HN, et al. Neurosurgery: Functional regeneration after laser axotomy. Nature 2004;432:822.

    Article  CAS  Google Scholar 

  • Yoo SI, Yang M, Brender JR, et al. Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins. Angew Chem Int Ed Engl 2011;50:5110–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, K.K. (2012). Nanoneurology. In: The Handbook of Nanomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-983-9_9

Download citation

Publish with us

Policies and ethics