Skip to main content

Role of Nanotechnology in Biological Therapies

  • Chapter
  • First Online:
The Handbook of Nanomedicine
  • 2254 Accesses

Abstract

Biological therapies are playing an increasing role in modern medicine. This term include recombinant human proteins, monoclonal antibodies (MAbs), vaccines, cell therapy, gene therapy, antisense, and RNA interference (RNAi). Some technologies for cell and gene therapy are in themselves sophisticated methods of therapeutic delivery, whereas others require special methods of delivery. The role of nanobiotechnology in delivery of biologicals will be discussed in this chapter. MAbs are considered along with drug delivery for cancer in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonoiu AC, Mahajan SD, Ding H, et al. Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci U S A 2009;106:5546–50.

    Article  CAS  Google Scholar 

  • Bryson JM, Fichter KM, Chu WJ, et al. Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery. Proc Natl Acad Sci U S A 2009;106;16913–8.

    Article  CAS  Google Scholar 

  • Chen AA, Derfus AM, Khetani SR, Bhatia SN. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 2005;33:e190.

    Google Scholar 

  • Chorny M, Polyak B, Alferiev IS, et al. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J 2007;21:2510–9.

    Article  CAS  Google Scholar 

  • Chowdhury EH. pH-sensitive nano-crystals of carbonate apatite for smart and cell-specific transgene delivery. Expert Opinion on Drug Delivery 2007;4:193–196.

    Article  CAS  Google Scholar 

  • Everts M, Saini V, Leddon JL, et al. Covalently Linked Au Nanoparticles to a Viral Vector: Potential for Combined Photothermal and Gene Cancer Therapy. Nano Lett 2006;6:587–591.

    Article  CAS  Google Scholar 

  • Glover DJ, Ng SM, Mechler A, et al. Multifunctional protein nanocarriers for targeted nuclear gene delivery in nondividing cells. The FASEB Journal 2009;23:2996–3006.

    Article  CAS  Google Scholar 

  • Graf A, Jack KS, Whittaker AK, et al. Protein delivery using nanoparticles based on microemulsions with different structure-types. Eur J Pharm Sci 2008;33:434–44.

    Article  CAS  Google Scholar 

  • Halder J, Kamat AA, Landen CN Jr, et al. Focal Adhesion Kinase Targeting Using In vivo Short Interfering RNA Delivery in Neutral Liposomes for Ovarian Carcinoma Therapy. Clin Cancer Res 2006;12:4916–24.

    Article  CAS  Google Scholar 

  • Heidel JD, Liu JY, Yen Y, et al. Potent siRNA Inhibitors of Ribonucleotide Reductase Subunit RRM2 Reduce Cell Proliferation In vitro and In vivo. Clin Cancer Res 2007b;13:2207–15.

    Google Scholar 

  • Heidel JD, Yu Z, Liu J, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A 2007a;104:5715–5721.

    Google Scholar 

  • Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev 2009;61:710–20.

    Article  CAS  Google Scholar 

  • Jain KK. Gene Therapy: technologies, markets and companies. Jain PharmaBiotech Publications, Basel, 2012c.

    Google Scholar 

  • Kamau SW, Hassa PO, Steitz B, et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res 2006;34:e40.

    Article  Google Scholar 

  • Kim SH, Jeong JH, Lee SH, et al. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release 2008;129:107–16.

    Article  CAS  Google Scholar 

  • Kommareddy S, Amiji M. Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther 2007;14:488–98.

    Article  CAS  Google Scholar 

  • Moon JJ, Suh H, Li AV, et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc Natl Acad Sci U S A 2012;109:1080–5.

    Article  CAS  Google Scholar 

  • Muthana M, Scott SD, Farrow N, et al. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Therapy 2008;15:902–10.

    Article  CAS  Google Scholar 

  • O’Brien JA, Lummis SC. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnology 2011;11:66.

    Article  Google Scholar 

  • Paleos CM, Tziveleka LA, Sideratou Z, Tsiourvas D. Gene delivery using functional dendritic polymers. Expert Opinion on Drug Delivery 2009;6:27–38.

    Article  CAS  Google Scholar 

  • Pille JY, Li H, Blot E, Bertrand JR, et al. Intravenous Delivery of Anti-RhoA Small Interfering RNA Loaded in Nanoparticles of Chitosan in Mice: Safety and Efficacy in Xenografted Aggressive Breast Cancer. Hum Gene Ther 2006;17:1019–1026.

    Article  CAS  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006;312:1027–30.

    Article  CAS  Google Scholar 

  • Santhakumaran LM, Thomas T, Thomas TJ. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Research 2004;32:2102–2112.

    Article  CAS  Google Scholar 

  • Scheerlinck JP, Gloster S, Gamvrellis A, et al. Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine 2006;24:1124–31.

    Article  CAS  Google Scholar 

  • Soares AF, Carvalho Rde A, Veiga F. Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems. Nanomedicine (Lond) 2007;2:183–202.

    Article  CAS  Google Scholar 

  • Swami A, Kurupati RK, Pathak A, et al. Biochemical and biophysical research communications 2007;362:835.

    Google Scholar 

  • Yu W, Pirollo KF, Rait A, et al. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther 2004;11:1434–40.

    Article  CAS  Google Scholar 

  • Yuan X, Naguib S, Wu Z. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv 2011;8:521–36.

    Article  CAS  Google Scholar 

  • Zhao Y, Vivero-Escoto JL, Slowing II, et al. Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opinion Drug Deliv 2010;7:1013–29.

    Article  CAS  Google Scholar 

  • Zwiorek K, Kloeckner J, Wagner E, Coester C. Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharm Sci 2005;7:22–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, K.K. (2012). Role of Nanotechnology in Biological Therapies. In: The Handbook of Nanomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-983-9_6

Download citation

Publish with us

Policies and ethics