Skip to main content

Part of the book series: Contemporary Medical Imaging ((CMI,volume 1))

Abstract

Catheter angiography is still considered the gold standard for imaging cerebral vasculature. Diagnostic angiography is also typically done as the first step during neurointerventional procedures. Mastery of diagnostic angiography is a prerequisite for neurointerventional training. Training standards formulated by the American Society of Interventional and Therapeutic Neuroradiology (ASITN), the Joint Section of Cerebrovascular Neurosurgery, and the American Society of Neuroradiology (ASNR) recommend the performance of at least 100 diagnostic angiograms before entering neuroendovascular training. This handbook authors’ preference, however, is for a neurointerventionalist-in-training to perform at least 250 diagnostic cerebral angiograms prior to becoming the lead operator in neurointerventional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higashida RT, Hopkins LN, Berenstein A, Halbach VV, Kerber C. Program requirements for residency/fellowship education in neuroendovascular surgery/interventional neuroradiology: a special report on graduate medical education. AJNR Am J Neuroradiol. 2000;21:1153–9.

    PubMed  CAS  Google Scholar 

  2. Haschek E, Lindenthal OT. Ein Beitrag zur praktischen Verwerthung der Photographie nach Röntgen. Wien Klin Wochenschr. 1896;9:63–4.

    Google Scholar 

  3. Krayenbühl H. History of cerebral angiography and its development since Egaz Moniz. In: Egas Moniz centenary: scientific reports. Lisbon: Comissao Executiva das Comemoracoes do Centenario do Nascimento do Prof. Egas Moniz; 1977. p. 63–74.

    Google Scholar 

  4. Bull JW. The history of neuroradiology. Proc R Soc Med. 1970;63:637–43.

    PubMed  CAS  Google Scholar 

  5. Norlén E. Importance of angiography in surgery of intracranial vascular lesions. In: Egas Moniz centenary: scientific reports. Lisbon: Comissao Executiva das Comemoracoes do Centenario do Nascimento do Prof. Egas Moniz; 1977. p. 31–9.

    Google Scholar 

  6. Lima A. Egas Moniz 1874–1955. Surg Neurol. 1973;1:247–8.

    PubMed  CAS  Google Scholar 

  7. Dámasio AR. Egas Moniz, pioneer of angiography and leucotomy. Mt Sinai J Med. 1975;42:502–13.

    PubMed  Google Scholar 

  8. Moniz EL. L’angiographie cérébrale. Paris: Masson & Cie; 1934.

    Google Scholar 

  9. Dagi TF. Neurosurgery and the introduction of cerebral angiography. Neurosurg Clin N Am. 2001;12:145–53, ix.

    PubMed  CAS  Google Scholar 

  10. Ligon BL. The mystery of angiography and the “unawarded” Nobel Prize: Egas Moniz and Hans Christian Jacobaeus. Neurosurgery. 1998;43:602–11.

    Article  PubMed  CAS  Google Scholar 

  11. Sheldon P. A special needle for percutaneous vertebral angiography. Br J Radiol. 1956;29:231–2.

    Article  PubMed  CAS  Google Scholar 

  12. Gould PL, Peyton WT, French LA. Vertebral angiography by retrograde injection of the brachial artery. J Neurosurg. 1955;12:369–74.

    Article  PubMed  CAS  Google Scholar 

  13. Kuhn RA. Brachial cerebral angiography. J Neurosurg. 1960;17:955–71.

    Article  PubMed  CAS  Google Scholar 

  14. Hinck VC, Judkins MP, Paxton HD. Simplified selective femorocerebral angiography. Radiology. 1967;89:1048–52.

    PubMed  CAS  Google Scholar 

  15. Mentzel H-J, Blume J, Malich A, Fitzek C, Reichenbach JR, Kaiser WA. Cortical blindness after contrast-enhanced CT: complication in a patient with diabetes insipidus. AJNR Am J Neuroradiol. 2003;24:1114–6.

    PubMed  Google Scholar 

  16. Saigal G, Bhatia R, Bhatia S, Wakhloo AK. MR findings of cortical blindness following cerebral angiography: is this entity related to posterior reversible leukoencephalopathy? AJNR Am J Neuroradiol. 2004;25:252–6.

    PubMed  Google Scholar 

  17. Yildiz A, Yencilek E, Apaydin FD, Duce MN, Ozer C, Atalay A. Transient partial amnesia complicating cardiac and peripheral arteriography with nonionic contrast medium. Eur Radiol. 2003;13 Suppl 4:L113–5.

    Article  PubMed  Google Scholar 

  18. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology. 2003;227:522–8.

    Article  PubMed  Google Scholar 

  19. Young B, Moore WS, Robertson JT, et al. An analysis of ­perioperative surgical mortality and morbidity in the asymptomatic carotid atherosclerosis study. ACAS Investigators. Asymptomatic Carotid Artheriosclerosis Study. Stroke. 1996;27:2216–24.

    Article  PubMed  CAS  Google Scholar 

  20. Heiserman JE, Dean BL, Hodak JA, et al. Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol. 1994;15:1401–7; discussion 8–11.

    PubMed  CAS  Google Scholar 

  21. Hankey GJ, Warlow CP, Molyneux AJ. Complications of cerebral angiography for patients with mild carotid territory ischaemia being considered for carotid endarterectomy. J Neurol Neurosurg Psychiatry. 1990;53:542–8.

    Article  PubMed  CAS  Google Scholar 

  22. Cloft HJ, Joseph GJ, Dion JE. Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: a meta-analysis. Stroke. 1999;30:317–20.

    Article  PubMed  CAS  Google Scholar 

  23. Mani RL, Eisenberg RL. Complications of catheter cerebral arteriography: analysis of 5,000 procedures. III. Assessment of arteries injected, contrast medium used, duration of procedure, and age of patient. AJR Am J Roentgenol. 1978;131:871–4.

    PubMed  CAS  Google Scholar 

  24. Dion JE, Gates PC, Fox AJ, Barnett HJ, Blom RJ. Clinical events following neuroangiography: a prospective study. Stroke. 1987;18:997–1004.

    Article  PubMed  CAS  Google Scholar 

  25. Earnest FT, Forbes G, Sandok BA, et al. Complications of cerebral angiography: prospective assessment of risk. AJR Am J Roentgenol. 1984;142:247–53.

    PubMed  Google Scholar 

  26. Citron SJ, Wallace RC, Lewis CA, et al. Quality improvement guidelines for adult diagnostic neuroangiography: cooperative study between ASITN, ASNR, and SIR. J Vasc Interv Radiol. 2003;14:S257–62.

    PubMed  Google Scholar 

  27. Kurokawa Y, Abiko S, Okamura T, et al. Pulmonary embolism after cerebral angiography – three case reports. Neurol Med Chir (Tokyo). 1995;35:305–9.

    Article  CAS  Google Scholar 

  28. Katholi RE, Taylor GJ, Woods WT, et al. Nephrotoxicity of nonionic low-osmolality versus ionic high-osmolality contrast media: a prospective double-blind randomized comparison in human beings. Radiology. 1993;186:183–7.

    PubMed  CAS  Google Scholar 

  29. Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188:171–8.

    PubMed  CAS  Google Scholar 

  30. Barrett BJ, Parfrey PS, McDonald JR, Hefferton DM, Reddy ER, McManamon PJ. Nonionic low-osmolality versus ionic high-osmolality contrast material for intravenous use in patients perceived to be at high risk: randomized trial. Radiology. 1992;183:105–10.

    PubMed  CAS  Google Scholar 

  31. Barrett BJ, Parfrey PS, Vavasour HM, O’Dea F, Kent G, Stone E. A comparison of nonionic, low-osmolality radiocontrast agents with ionic, high-osmolality agents during cardiac catheterization. N Engl J Med. 1992;326:431–6.

    Article  PubMed  CAS  Google Scholar 

  32. Rosovsky MA, Rusinek H, Berenstein A, Basak S, Setton A, Nelson PK. High-dose administration of nonionic contrast media: a retrospective review. Radiology. 1996;200:119–22.

    PubMed  CAS  Google Scholar 

  33. Moran CJ, Milburn JM, Cross III DT, Derdeyn CP, Dobbie TK, Littenberg B. Randomized controlled trial of sheaths in diagnostic neuroangiography. Radiology. 2001;218:183–7.

    PubMed  CAS  Google Scholar 

  34. Kiyosue H, Okahara M, Nagatomi H, Nakamura T, Tanoue S, Mori H. 3.3F catheter/sheath system for use in diagnostic neuroangiography. AJNR Am J Neuroradiol. 2002;23:711–5.

    PubMed  Google Scholar 

  35. Weinbroum AA, Szold O, Ogorek D, Flaishon R. The midazolam-induced paradox phenomenon is reversible by flumazenil. Epidemiology, patient characteristics and review of the literature. Eur J Anaesthesiol. 2001;18:789–97.

    PubMed  CAS  Google Scholar 

  36. Mancuso CE, Tanzi MG, Gabay M. Paradoxical reactions to benzodiazepines: literature review and treatment options. Pharmacotherapy. 2004;24:1177–85.

    Article  PubMed  CAS  Google Scholar 

  37. Thurston TA, Williams CG, Foshee SL. Reversal of a paradoxical reaction to midazolam with flumazenil. Anesth Analg. 1996;83:192.

    PubMed  CAS  Google Scholar 

  38. Iserson KV. The origins of the gauge system for medical equipment. J Emerg Med. 1987;5:45–8.

    Article  PubMed  CAS  Google Scholar 

  39. Markus H, Loh A, Israel D, Buckenham T, Clifton A, Brown MM. Microscopic air embolism during cerebral angiography and strategies for its avoidance. Lancet. 1993;341:784–7.

    Article  PubMed  CAS  Google Scholar 

  40. Bendszus M, Koltzenburg M, Bartsch AJ, et al. Heparin and air filters reduce embolic events caused by intra-arterial cerebral angiography: a prospective, randomized trial. Circulation. 2004;110:2210–5.

    Article  PubMed  CAS  Google Scholar 

  41. Dexter F, Hindman BJ. Recommendations for hyperbaric oxygen therapy of cerebral air embolism based on a mathematical model of bubble absorption. Anesth Analg. 1997;84:1203–7.

    PubMed  CAS  Google Scholar 

  42. Branger AB, Lambertsen CJ, Eckmann DM. Cerebral gas embolism absorption during hyperbaric therapy: theory. J Appl Physiol. 2001;90:593–600.

    PubMed  CAS  Google Scholar 

  43. Calvert JW, Cahill J, Zhang JH. Hyperbaric oxygen and cerebral physiology. Neurol Res. 2007;29:132–41.

    Article  PubMed  CAS  Google Scholar 

  44. LeDez KM, Zbitnew G. Hyperbaric treatment of cerebral air embolism in an infant with cyanotic congenital heart disease. Can J Anaesth. 2005;52:403–8.

    Article  PubMed  Google Scholar 

  45. Bitterman H, Melamed Y. Delayed hyperbaric treatment of cerebral air embolism. Isr J Med Sci. 1993;29:22–6.

    PubMed  CAS  Google Scholar 

  46. Blanc P, Boussuges A, Henriette K, Sainty JM, Deleflie M. Iatrogenic cerebral air embolism: importance of an early hyperbaric oxygenation. Intensive Care Med. 2002;28:559–63.

    Article  PubMed  CAS  Google Scholar 

  47. Shrinivas VG, Sankarkumar R, Rupa S. Retrograde cerebral perfusion for treatment of air embolism after valve surgery. Asian Cardiovasc Thorac Ann. 2004;12:81–2.

    PubMed  Google Scholar 

  48. Gregoric ID, Myers TJ, Kar B, et al. Management of air embolism during HeartMate XVE exchange. Tex Heart Inst J. 2007;34:19–22.

    PubMed  Google Scholar 

  49. Hughes DG, Patel U, Forbes WS, Jones AP. Comparison of hand injection with mechanical injection for digital subtraction selective cerebral angiography. Br J Radiol. 1994;67:786–9.

    Article  PubMed  CAS  Google Scholar 

  50. Haughton VM, Rosenbaum AE, Baker RA, Plaistowe RL. Lateral projections with inclined head for angiography of basal cerebral aneurysms. Radiology. 1975;116:220–2.

    PubMed  CAS  Google Scholar 

  51. Elisevich K, Cunningham IA, Assis L. Size estimation and magnification error in radiographic imaging: implications for classification of arteriovenous malformations. AJNR Am J Neuroradiol. 1995;16:531–8.

    PubMed  CAS  Google Scholar 

  52. Fischer TH, Connolly R, Thatte HS, Schwaitzberg SS. Comparison of structural and hemostatic properties of the poly-N-acetyl glucosamine Syvek Patch with products containing chitosan. Microsc Res Tech. 2004;63:168–74.

    Article  PubMed  CAS  Google Scholar 

  53. Vlasic W, Almond D, Massel D. Reducing bedrest following arterial puncture for coronary interventional procedures – impact on vascular complications: the BAC Trial. J Invasive Cardiol. 2001;13:788–92.

    PubMed  CAS  Google Scholar 

  54. Hoglund J, Stenestrand U, Todt T, Johansson I. The effect of early mobilisation for patient undergoing coronary angiography; a pilot study with focus on vascular complications and back pain. Eur J Cardiovasc Nurs. 2011;10:130–6.

    Article  PubMed  Google Scholar 

  55. Nikolsky E, Mehran R, Halkin A, et al. Vascular complications associated with arteriotomy closure devices in patients undergoing percutaneous coronary procedures: a meta-analysis. J Am Coll Cardiol. 2004;44:1200–9.

    PubMed  Google Scholar 

  56. Applegate RJ, Rankin KM, Little WC, Kahl FR, Kutcher MA. Restick following initial Angioseal use. Catheter Cardiovasc Interv. 2003;58:181–4.

    Article  PubMed  Google Scholar 

  57. St. Jude Medical. Restick Following Initial Angio-Seal Device Use Shown to be Safe. Press release. Minnetonka: 2008.

    Google Scholar 

  58. Fields JD, Liu KC, Lee DS, et al. Femoral artery complications associated with the mynx closure device. AJNR Am J Neuroradiol. 2010;31:1737–40.

    Article  PubMed  CAS  Google Scholar 

  59. Azmoon S, Pucillo AL, Aronow WS, et al. Vascular complications after percutaneous coronary intervention following hemostasis with the Mynx vascular closure device versus the AngioSeal vascular closure device. J Invasive Cardiol. 2010;22:175–8.

    PubMed  Google Scholar 

  60. Uchino A. Selective catheterization of the brachiocephalic arteries via the right brachial artery. Neuroradiology. 1988;30:524–7.

    Article  PubMed  CAS  Google Scholar 

  61. Levy EI, Boulos AS, Fessler RD, et al. Transradial cerebral angiography: an alternative route. Neurosurgery. 2002;51:335–40; discussion 40–2.

    PubMed  Google Scholar 

  62. Benit E, Vranckx P, Jaspers L, Jackmaert R, Poelmans C, Coninx R. Frequency of a positive modified Allen’s test in 1,000 consecutive patients undergoing cardiac catheterization. Cathet Cardiovasc Diagn. 1996;38:352–4.

    Article  PubMed  CAS  Google Scholar 

  63. Hildick-Smith DJ, Ludman PF, Lowe MD, et al. Comparison of radial versus brachial approaches for diagnostic coronary angiography when the femoral approach is contraindicated. Am J Cardiol. 1998;81:770–2.

    Article  PubMed  CAS  Google Scholar 

  64. Stewart WJ, McSweeney SM, Kellett MA, Faxon DP, Ryan TJ. Increased risk of severe protamine reactions in NPH insulin-dependent diabetics undergoing cardiac catheterization. Circulation. 1984;70:788–92.

    Article  PubMed  CAS  Google Scholar 

  65. Cobb 3rd CA, Fung DL. Shock due to protamine hypersensitivity. Surg Neurol. 1982;17:245–6.

    Article  PubMed  Google Scholar 

  66. Measurements NCoRPa. Recommendations on limits for exposure to ionizing radiation. NCRP Report No. 91. 1987.

    Google Scholar 

  67. Piper J. Fetal toxicity of common neurosurgical drugs. In: Loftus C, editor. Neurosurgical aspects of pregancy. Park Ridge: American Association of Neurological Surgeons; 1996. p. 1–20.

    Google Scholar 

  68. Kal HB, Struikmans H. Pregnancy and medical irradiation; summary and conclusions from the International Commission on Radiological Protection, Publication 84. Ned Tijdschr Geneeskd. 2002;146:299–303.

    PubMed  CAS  Google Scholar 

  69. Dalessio D. Neurologic diseases. In: Burrow G, Ferris T, editors. Medical complications during pregnancy. Philadelphia: WB Saunders; 1982. p. 435–47.

    Google Scholar 

  70. Dias MS, Sekhar LN. Intracranial hemorrhage from aneurysms and arteriovenous malformations during pregnancy and the puerperium. Neurosurgery. 1990;27:855–65; discussion 65–6.

    Article  PubMed  CAS  Google Scholar 

  71. Morcos SK. Contrast media-induced nephrotoxicity – questions and answers. Br J Radiol. 1998;71:357–65.

    PubMed  CAS  Google Scholar 

  72. Barrett BJ, Parfrey PS, editors. Clinical aspects of acute renal failure following use of radiocontrast agents. New York: Marcel Dekker; 1992.

    Google Scholar 

  73. Solomon R. Contrast-medium-induced acute renal failure. Kidney Int. 1998;53:230–42.

    Article  PubMed  CAS  Google Scholar 

  74. Rudnick MR, Goldfarb S, Wexler L, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995;47:254–61.

    Article  PubMed  CAS  Google Scholar 

  75. Porter GA. Radiocontrast-induced nephropathy. Nephrol Dial Transplant. 1994;9 Suppl 4:146–56.

    PubMed  Google Scholar 

  76. Sharma S, Kimi A. Effect of nonionic radiocontrast agents on the occurrence of contrast-induced nephropathy in patients with mild-moderate chronic renal insufficiency: pooled analysis of the randomized trials. Catheter Cardiovasc Interv. 2005;65:386–93.

    Article  PubMed  Google Scholar 

  77. Cohan RH, Ellis JH. Iodinated contrast material in uroradiology. Choice of agent and management of complications. Urol Clin North Am. 1997;24:471–91.

    Article  PubMed  CAS  Google Scholar 

  78. Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343:180–4.

    Article  PubMed  CAS  Google Scholar 

  79. Mueller C, Buerkle G, Buettner HJ, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients under­going coronary angioplasty. Arch Intern Med. 2002;162:329–36.

    Article  PubMed  CAS  Google Scholar 

  80. Nussbaum ES, Casey SO, Sebring LA, Madison MT. Use of gadolinium as an intraarterial contrast agent in digital subtraction angiography of the cervical carotid arteries and intracranial circulation. Technical note. J Neurosurg. 2000;92:881–3.

    Article  PubMed  CAS  Google Scholar 

  81. Arat A, Cekirge HS, Saatci I. Gadodiamide as an alternative contrast medium in cerebral angiography in a patient with sensitivity to iodinated contrast medium. Neuroradiology. 2000;42:34–7; discussion 7–9.

    Article  PubMed  CAS  Google Scholar 

  82. Marenzi G, Marana I, Lauri G, et al. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med. 2003;349:1333–40.

    Article  PubMed  CAS  Google Scholar 

  83. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320:143–9.

    Article  PubMed  CAS  Google Scholar 

  84. Schwab SJ, Hlatky MA, Pieper KS, et al. Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent. N Engl J Med. 1989;320:149–53.

    Article  PubMed  CAS  Google Scholar 

  85. Wiholm BE, Myrhed M. Metformin-associated lactic acidosis in Sweden 1977–1991. Eur J Clin Pharmacol. 1993;44:589–91.

    Article  PubMed  CAS  Google Scholar 

  86. Manual on Contrast Media, Version 7. Reston: American College of Radiology; 2010.

    Google Scholar 

  87. Lalau JD, Race JM. Lactic acidosis in metformin therapy: searching for a link with metformin in reports of ‘metformin-associated lactic acidosis’. Diabetes Obes Metab. 2001;3:195–201.

    Article  PubMed  CAS  Google Scholar 

  88. Thomsen HS, Bush Jr WH. Adverse effects of contrast media: incidence, prevention and management. Drug Saf. 1998;19:313–24.

    Article  PubMed  CAS  Google Scholar 

  89. Davenport MS, Cohan RH, Caoili EM, Ellis JH. Repeat contrast medium reactions in premedicated patients: frequency and severity. Radiology. 2009;253:372–9.

    Article  PubMed  Google Scholar 

  90. Horowitz MB, Dutton K, Purdy PD. Assessment of complication types and rates related to diagnostic angiography and interventional N euroradiologic procedures. A four year review (1993–1996). Interv Neuroradiol. 1998;4:27–37.

    PubMed  CAS  Google Scholar 

  91. Leonardi M, Cenni P, Simonetti L, Raffi L, Battaglia S. Retrospective study of complications arising during cerebral and spinal diagnostic angiography from 1998 to 2003. Interv Neuroradiol. 2005;11:213–21.

    PubMed  CAS  Google Scholar 

  92. Dawkins AA, Evans AL, Wattam J, et al. Complications of cerebral angiography: a prospective analysis of 2,924 consecutive procedures. Neuroradiology. 2007;49:753–9.

    Article  PubMed  CAS  Google Scholar 

  93. Fifi JT, Meyers PM, Lavine SD, et al. Complications of modern diagnostic cerebral angiography in an academic medical center. J Vasc Interv Radiol. 2009;20:442–7.

    Article  PubMed  Google Scholar 

  94. Bettmann MA, Heeren T, Greenfield A, Goudey C. Adverse events with radiographic contrast agents: results of the SCVIR Contrast Agent Registry. Radiology. 1997;203:611–20.

    PubMed  CAS  Google Scholar 

  95. Osborn AG. Diagnostic cerebral angiography. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 1999.

    Google Scholar 

  96. Dewachter P, Trechot P, Mouton-Faivre C. “Iodine allergy”: point of view. Ann Fr Anesth Reanim. 2005;24:40–52.

    Article  PubMed  CAS  Google Scholar 

  97. Lasser EC, Berry CC, Mishkin MM, Williamson B, Zheutlin N, Silverman JM. Pretreatment with corticosteroids to prevent adverse reactions to nonionic contrast media. AJR Am J Roentgenol. 1994;162:523–6.

    PubMed  CAS  Google Scholar 

  98. Freed KS, Leder RA, Alexander C, DeLong DM, Kliewer MA. Breakthrough adverse reactions to low-osmolar contrast media after steroid premedication. AJR Am J Roentgenol. 2001;176:1389–92.

    PubMed  CAS  Google Scholar 

  99. Sakamoto S, Eguchi K, Shibukawa M, et al. Cerebral angiography using gadolinium as an alternative contrast medium in a patient with severe allergy to iodinated contrast medium. Hiroshima J Med Sci. 2010;59:15–6.

    PubMed  Google Scholar 

  100. Kalsch H, Kalsch T, Eggebrecht H, Konorza T, Kahlert P, Erbel R. Gadolinium-based coronary angiography in patients with contraindication for iodinated x-ray contrast medium: a word of caution. J Interv Cardiol. 2008;21:167–74.

    Article  PubMed  CAS  Google Scholar 

  101. Cohan RH, Leder RA, Ellis JH. Treatment of adverse reactions to radiographic contrast media in adults. Radiol Clin North Am. 1996;34:1055–76.

    PubMed  CAS  Google Scholar 

  102. Tang G, Cawley CM, Dion JE, Barrow DL. Intraoperative angiography during aneurysm surgery: a prospective evaluation of efficacy. J Neurosurg. 2002;96:993–9.

    Article  PubMed  Google Scholar 

  103. Chiang VL, Gailloud P, Murphy KJ, Rigamonti D, Tamargo RJ. Routine intraoperative angiography during aneurysm surgery. J Neurosurg. 2002;96:988–92.

    Article  PubMed  Google Scholar 

  104. Nanda A, Willis BK, Vannemreddy PS. Selective intraoperative angiography in intracranial aneurysm surgery: intraoperative factors associated with aneurysmal remnants and vessel occlusions. Surg Neurol. 2002;58:309–14; discussion 14–5.

    Article  PubMed  Google Scholar 

  105. Lee MC, Macdonald RL. Intraoperative cerebral angiography: superficial temporal artery method and results. Neurosurgery. 2003;53:1067–74; discussion 74–5.

    Article  PubMed  Google Scholar 

  106. Fung E, Ganesan V, Cox TS, Chong WK, Saunders DE. Complication rates of diagnostic cerebral arteriography in children. Pediatr Radiol. 2005;35:1174–7.

    Article  PubMed  Google Scholar 

  107. Vucevic M, Tehan B, Gamlin F, Berridge JC, Boylan M. The SMART needle. A new Doppler ultrasound-guided vascular access needle. Anaesthesia. 1994;49:889–91.

    Article  PubMed  CAS  Google Scholar 

  108. Dix JE, McNulty BJ, Kallmes DF. Frequency and significance of a small distal ICA in carotid artery stenosis. AJNR Am J Neuroradiol. 1998;19:1215–8.

    PubMed  CAS  Google Scholar 

  109. Bjorkesten G, Halonen V. Incidence of intracranial vascular lesions in patients with subarachnoid hemorrhage investigated by four-vessel angiography. J Neurosurg. 1965;23:29–32.

    Article  Google Scholar 

  110. Marks MP, Lane B, Steinberg GK, Snipes GJ. Intranidal aneurysms in cerebral arteriovenous malformations: evaluation and endovascular treatment. Radiology. 1992;183:355–60.

    PubMed  CAS  Google Scholar 

  111. Garcia-Monaco R, Rodesch G, Alvarez H, Iizuka Y, Hui F, Lasjaunias P. Pseudoaneurysms within ruptured intracranial arteriovenous malformations: diagnosis and early endovascular management. AJNR Am J Neuroradiol. 1993;14:315–21.

    PubMed  CAS  Google Scholar 

  112. Lasjaunias PL, Landrieu P, Rodesch G, et al. Cerebral proliferative angiopathy: clinical and angiographic description of an entity different from cerebral AVMs. Stroke. 2008;39:878–85.

    Article  PubMed  Google Scholar 

  113. Huber P. A technical contribution of the exact angiographic localization of carotid cavernous fistulas. Neuroradiology. 1976;10:239–41.

    Article  PubMed  CAS  Google Scholar 

  114. Mehringer CM, Hieshima GB, Grinnell VS, Tsai F, Pribram HF. Improved localization of carotid cavernous fistula during ­angiography. AJNR Am J Neuroradiol. 1982;3:82–4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harrigan, M.R., Deveikis, J.P. (2013). Diagnostic Cerebral Angiography. In: Handbook of Cerebrovascular Disease and Neurointerventional Technique. Contemporary Medical Imaging, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-946-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-946-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-945-7

  • Online ISBN: 978-1-61779-946-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics