Skip to main content

Biomanufacturing Human Pluripotent Stem Cells for Therapeutic Applications

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) can be propagated indefinitely and have the potential to differentiate to all cell types of the body. In addition, patient-specific human iPSCs and hESCs containing point mutations in genes that cause disease can be used to study diseases that have no adequate human in vitro or animal models. Harnessing the potential of these cells holds promise for future applications in cell therapy and regenerative medicine. Common methods of expanding and differentiating human pluripotent stem cells (hPSCs), including hESC and iPSC, require serum, mouse or human feeder cells, or feeder-conditioned medium. These methods are labor intensive and hard to scale, and sources of variability including growth factor fluctuations during preparation and culture complicate large-scale hPSC bioprocesses. Biomanufacturing cells from hPSCs requires development of fully defined, xeno-free culture medium and substrates formulated with human-derived, human recombinant proteins or chemically synthetic substrates under cGMP and improved processes for monitoring cell status and genomic stability during expansion and differentiation. In addition, robust and scalable differentiation methods must be developed. This chapter discusses recent progress and remaining challenges facing production of hPSC-derived cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  2. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  4. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146(2):318–331

    Article  PubMed  CAS  Google Scholar 

  5. Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20(12):1261–1264

    Article  PubMed  CAS  Google Scholar 

  6. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2(3):185–190

    Article  PubMed  CAS  Google Scholar 

  7. Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24(3):568–574

    Article  PubMed  CAS  Google Scholar 

  8. Vallier L, Mendjan S, Brown S, Chng Z, Teo A, Smithers LE, Trotter MW, Cho CH, Martinez A, Rugg-Gunn P, Brons G, Pedersen RA (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136(8):1339–1349

    Article  PubMed  CAS  Google Scholar 

  9. Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3(2):196–206

    Article  PubMed  CAS  Google Scholar 

  10. Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118(Pt 19):4495–4509

    Article  PubMed  CAS  Google Scholar 

  11. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A 103(18):6907–6912

    Article  PubMed  CAS  Google Scholar 

  12. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971–974

    Article  PubMed  CAS  Google Scholar 

  13. Lu J, Hou R, Booth CJ, Yang SH, Snyder M (2006) Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci U S A 103(15):5688–5693

    Article  PubMed  CAS  Google Scholar 

  14. Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, Hata R, Moore HD, Sato JD, Andrews PW (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci U S A 105(36):13409–13414

    Article  PubMed  CAS  Google Scholar 

  15. Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D’Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110(12):4111–4119

    Article  PubMed  CAS  Google Scholar 

  16. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187

    Article  PubMed  CAS  Google Scholar 

  17. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54

    Article  PubMed  CAS  Google Scholar 

  18. Garcia-Gonzalo FR, Izpisua Belmonte JC (2008) Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS ONE 3(1):e1384

    Article  PubMed  Google Scholar 

  19. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429

    Article  PubMed  CAS  Google Scholar 

  20. Mummery CL, Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells 26(9):2257–2265

    Article  PubMed  Google Scholar 

  21. Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–615

    Article  PubMed  CAS  Google Scholar 

  22. Duncan SA, Nagaoka M, Si-Tayeb K, Akaike T (2010) Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. Bmc Developmental Biology 10, 60

    Google Scholar 

  23. Sato N, Walker A, Su H, Conti MA, Harb N, Adelstein RS (2010) Non-muscle myosin II regulates survival threshold of pluripotent stem cells. Nature Communications 1, 71

    Google Scholar 

  24. Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods 7(12):989–994

    Article  PubMed  CAS  Google Scholar 

  25. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28(6):606–610

    Article  PubMed  CAS  Google Scholar 

  26. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28(6):581–583

    Article  PubMed  CAS  Google Scholar 

  27. Evseenko D, Schenke-Layland K, Dravid G, Zhu Y, Hao Q-L, Scholes J, Wang XC, Maclellan WR, Crooks GM (2009) Identification of the critical extracellular matrix proteins that promote human embryonic stem cell assembly. Stem Cells Dev 18(6):919–928

    Article  PubMed  CAS  Google Scholar 

  28. Abraham S, Sheridan SD, Miller B, Rao RR (2010) Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates. Biotechnol Progr 26(4):1126–1134

    CAS  Google Scholar 

  29. Burridge PW, Thompson S, Millrod MA, Weinberg S, Yuan X, Peters A, Mahairaki V, Koliatsos VE, Tung L, Zambidis ET (2011) A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE 6(4):e18293

    Article  PubMed  CAS  Google Scholar 

  30. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. doi:10.1038/nbt.1529

    Article  PubMed  CAS  Google Scholar 

  31. Li W, Sun W, Zhang Y, Wei W, Ambasudhan R, Xia P, Talantova M, Lin T, Kim J, Wang X, Kim WR, Lipton SA, Zhang K, Ding S (2011) Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A 108(20):8299–8304

    Article  PubMed  CAS  Google Scholar 

  32. Ma L, Liu Y, Zhang SC (2011) Directed differentiation of dopamine neurons from human pluripotent stem cells. Methods Mol Biol 767:411–418

    Article  PubMed  CAS  Google Scholar 

  33. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5(4):396–408

    Article  PubMed  CAS  Google Scholar 

  34. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122(Pt 17):3169–3179

    Article  PubMed  CAS  Google Scholar 

  35. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024

    Article  PubMed  CAS  Google Scholar 

  36. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528

    Article  PubMed  CAS  Google Scholar 

  37. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401

    Article  PubMed  Google Scholar 

  38. Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25(8):1940–1953

    Article  PubMed  CAS  Google Scholar 

  39. Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA (2009) Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4(4):348–358

    Article  PubMed  CAS  Google Scholar 

  40. Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, Wu X, Schultz PG (2009) A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4(5):416–426

    Article  PubMed  CAS  Google Scholar 

  41. Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL, Melton D (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5(4):258–265

    Article  PubMed  CAS  Google Scholar 

  42. Metallo CM, Ji L, de Pablo JJ, Palecek SP (2008) Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells 26(2):372–380

    Article  PubMed  CAS  Google Scholar 

  43. Metallo CM, Azarin SM, Moses LE, Ji L, de Pablo JJ, Palecek SP (2010) Human embryonic stem cell-derived keratinocytes exhibit an epidermal transcription program and undergo epithelial morphogenesis in engineered tissue constructs. Tissue Eng Part A 16(1):213–223

    Article  PubMed  CAS  Google Scholar 

  44. Itoh M, Kiuru M, Cairo MS, Christiano AM (2011) Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A 108(21):8797–8802

    Article  PubMed  CAS  Google Scholar 

  45. Salvagiotto G, Burton S, Daigh CA, Rajesh D, Slukvin II, Seay NJ (2011) A defined, feeder-free, serum-free system to generate in vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs. PLoS ONE 6(3):e17829

    Article  PubMed  CAS  Google Scholar 

  46. Chicha L, Feki A, Boni A, Irion O, Hovatta O, Jaconi M (2011) Human pluripotent stem cells differentiated in fully defined medium generate hematopoietic CD34- and CD34+ progenitors with distinct characteristics. PLoS ONE 6(2):e14733

    Article  PubMed  CAS  Google Scholar 

  47. Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, Brison DR, Hardingham TE, Kimber SJ (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28(11):1187–1194

    Article  PubMed  CAS  Google Scholar 

  48. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S, Strick-Marchand H, Pedersen R, Di Santo J, Weber A, Vallier L (2010) Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51(5):1754–1765. doi:10.1002/hep.23506

    Article  PubMed  CAS  Google Scholar 

  49. Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6(5):689–700

    Article  PubMed  CAS  Google Scholar 

  50. Oh SKW, Leung HW, Chen A, Choo ABH, Reuveny S (2011) Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng Part C-Me 17(2):165–172

    Article  Google Scholar 

  51. Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J (2011) Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc 6(5):572–579

    Article  PubMed  CAS  Google Scholar 

  52. Cameron CM, Hu WS, Kaufman DS (2006) Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 94(5):938–948

    Article  PubMed  CAS  Google Scholar 

  53. Yirme G, Amit M, Laevsky I, Osenberg S, Itskovitz-Eldor J (2008) Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev 17(6):1227–1241

    Article  PubMed  CAS  Google Scholar 

  54. Sargent CY, Berguig GY, Kinney MA, Hiatt LA, Carpenedo RL, Berson RE, McDevitt TC (2010) Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture. Biotechnol Bioeng 105(3):611–626

    Article  PubMed  CAS  Google Scholar 

  55. Sargent CY, Berguig GY, McDevitt TC (2009) Cardiomyogenic differentiation of embryoid bodies is promoted by rotary orbital suspension culture. Tissue Eng Pt A 15(2):331–342

    Article  CAS  Google Scholar 

  56. Titmarsh D, Hidalgo A, Turner J, Wolvetang E, Cooper-White J (2011) Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. Biotechnol Bioeng 108(12):2894–2904

    Google Scholar 

  57. Korin N, Bransky A, Khoury M, Dinnar U, Levenberg S (2009) Design of well and groove microchannel bioreactors for cell culture. Biotechnol Bioeng 102(4):1222–1230

    Article  PubMed  CAS  Google Scholar 

  58. Mohr JC, Zhang J, Azarin SM, Soerens AG, de Pablo JJ, Thomson JA, Lyons GE, Palecek SP, Kamp TJ (2010) The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials 31(7):1885–1893

    Article  PubMed  CAS  Google Scholar 

  59. Mohr JC, de Pablo JJ, Palecek SP (2006) 3-D microwell culture of human embryonic stem cells. Biomaterials 27(36):6032–6042

    Article  PubMed  CAS  Google Scholar 

  60. Khademhosseini A, Ferreira L, Blumling J 3rd, Yeh J, Karp JM, Fukuda J, Langer R (2006) Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials 27(36):5968–5977

    Article  PubMed  CAS  Google Scholar 

  61. Korin N, Bransky A, Dinnar U, Levenberg S (2009) Periodic “flow-stop” perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture. Biomed Microdevices 11(1):87–94

    Article  PubMed  Google Scholar 

  62. Fong WJ, Tan HL, Choo A, Oh SK (2005) Perfusion cultures of human embryonic stem cells. Bioprocess Biosyst Eng 27(6):381–387

    Article  PubMed  CAS  Google Scholar 

  63. Serra M, Brito C, Sousa MF, Jensen J, Tostoes R, Clemente J, Strehl R, Hyllner J, Carrondo MJ, Alves PM (2010) Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol 148(4):208–215

    Article  PubMed  CAS  Google Scholar 

  64. Bauwens C, Yin T, Dang S, Peerani R, Zandstra PW (2005) Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 90(4):452–461

    Article  PubMed  CAS  Google Scholar 

  65. Niebruegge S, Nehring A, Bar H, Schroeder M, Zweigerdt R, Lehmann J (2008) Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng Part A 14(10):1591–1601

    Article  PubMed  CAS  Google Scholar 

  66. Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138(1–2):24–32

    Article  PubMed  CAS  Google Scholar 

  67. Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2(3):219–230

    Article  PubMed  CAS  Google Scholar 

  68. Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25(1):20–31

    Article  PubMed  CAS  Google Scholar 

  69. Chen AK, Chen X, Choo AB, Reuveny S, Oh SK (2011) Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res 7(2):97–111

    Article  PubMed  CAS  Google Scholar 

  70. Phillips BW, Lim RYM, Tan TT, Rust WL, Crook JM (2008) Efficient expansion of clinical-grade human fibroblasts on microcarriers: Cells suitable for ex vivo expansion of clinical-grade hESCs. J Biotechnol 134(1–2):79–87

    Article  PubMed  CAS  Google Scholar 

  71. Lecina M, Ting S, Choo A, Reuveny S, Oh S (2010) Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Eng Part C Methods 16(6):1609–1619

    Article  PubMed  CAS  Google Scholar 

  72. Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A 15(8):2051–2063

    Article  PubMed  CAS  Google Scholar 

  73. Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28(4):361–364

    Article  PubMed  CAS  Google Scholar 

  74. Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, Montgomery KD (2011) Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29(4):313–314

    Article  PubMed  CAS  Google Scholar 

  75. Elliott AM, Elliott KA, Kammesheidt A (2010) High resolution array-CGH characterization of human stem cells using a stem cell focused microarray. Mol Biotechnol 46(3):234–242

    Article  PubMed  CAS  Google Scholar 

  76. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118

    Article  PubMed  CAS  Google Scholar 

  77. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Macia A, Sanchez L, Ligero G, Garcia-Parez JL, Menendez P (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells (Dayton, Ohio) 28(9):1568–1570

    Google Scholar 

  78. Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR, Behr B, Wu JC, Weissman IL, Drukker M (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29(9):829–834

    Google Scholar 

Download references

Acknowledgments

The authors thank members of the Palecek lab for helpful discussions of the topic matter. Support for this chapter was provided by the National Science Foundation grant EFRI-0735903 and National Institute of Biomedical Imaging and Bioengineering grant R01EB007534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Palecek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science + Bussines Media, LLC

About this chapter

Cite this chapter

Lian, X., Palecek, S.P. (2012). Biomanufacturing Human Pluripotent Stem Cells for Therapeutic Applications. In: Baharvand, H., Aghdami, N. (eds) Advances in Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-940-2_3

Download citation

Publish with us

Policies and ethics