Skip to main content

The Significance of Culture Adaptation of Embryonic Stem Cells for Regenerative Medicine

  • Chapter
  • First Online:
Advances in Stem Cell Research

Abstract

The promise that human embryonic stem (ES) cells hold for regenerative medicine has generated much excitement since their initial derivation. However, before the potential of these cells can be realised, efficient differentiation protocols must be devised, and the cells should be shown to pose no safety risk. Despite initial reports suggesting that human ES cells are karyotypically stable, during the last decade it has become apparent that they do acquire genetic and/or epigenetic changes during culture, reflecting an adaptation to life in vitro. This culture adaptation can affect ES cell growth and differentiation, but of particular concern is the potential link between adaptation and cancer, which would become an issue if the cells are to be used for transplantation. In this chapter we discuss the issues surrounding culture adaptation of ES cells, and the potential impacts, both positive and negative, it may have on the use of these cells for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olariu V, Harrison NJ, Coca D, Gokhale PJ, Baker D, Billings S, Kadirkamanathan V, Andrews PW (2010) Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res 4(1):50–56

    Article  PubMed  Google Scholar 

  2. Holliday R (1989) Chromosome error propagation and cancer. Trends Genet 5(2):42–45

    Article  PubMed  CAS  Google Scholar 

  3. Draper JS, Moore HD, Ruban LN, Gokhale PJ, Andrews PW (2004) Culture and characterization of human embryonic stem cells. Stem Cells Dev 13(4):325–336

    Article  PubMed  CAS  Google Scholar 

  4. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25(2):207–215

    Article  PubMed  CAS  Google Scholar 

  5. Harrison NJ, Baker D, Andrews (2007) PWCulture adaptation of embryonic stem cells echoes germ cell malignancy. Int J Androl 30(4):275–281, discussion 281

    Google Scholar 

  6. Kleinsmith LJ, Pierce GB (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551

    PubMed  CAS  Google Scholar 

  7. Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS (2005) Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 33(Pt 6):1526–1530

    PubMed  CAS  Google Scholar 

  8. Blum B, Benvenisty N (2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 8(23):3822–3830

    Article  PubMed  CAS  Google Scholar 

  9. Rodriguez S, Jafer O, Goker H, Summersgill BM, Zafarana G, Gillis AJ, van Gurp RJ, Oosterhuis JW, Lu YJ, Huddart R, Cooper CS, Clark J, Looijenga LH, Shipley JM (2003) Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2–p12.1. Oncogene 22(12):1880–1891

    Article  PubMed  CAS  Google Scholar 

  10. Mostert MC, Verkerk AJ, van de Pol M, Heighway J, Marynen P, Rosenberg C, van Kessel AG, van Echten J, de Jong B, Oosterhuis JW, Looijenga LH (1998) Identification of the critical region of 12p over-representation in testicular germ cell tumors of adolescents and adults. Oncogene 16(20):2617–2627

    Article  PubMed  CAS  Google Scholar 

  11. Korkola JE, Houldsworth J, Chadalavada RS, Olshen AB, Dobrzynski D, Reuter VE, Bosl GJ, Chaganti RS (2006) Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res 66(2):820–827

    Article  PubMed  CAS  Google Scholar 

  12. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7(4):521–531

    Article  PubMed  CAS  Google Scholar 

  13. Darr H, Mayshar Y, Benvenisty N (2006) Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 133(6):1193–1201

    Article  PubMed  CAS  Google Scholar 

  14. Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Dawud RA, Jones M, Matin M, Gokhale P, Draper J, Andrews PW (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14(21):3129–3140

    Article  PubMed  CAS  Google Scholar 

  15. Ji J, Werbowetski-Ogilvie TE, Zhong B, Hong SH, Bhatia M (2009) Pluripotent transcription factors possess distinct roles in normal versus transformed human stem cells. PLoS ONE 4(11):e8065

    Article  PubMed  Google Scholar 

  16. Kraggerud SM, Skotheim RI, Szymanska J, Eknaes M, Fossa SD, Stenwig AE, Peltomaki P, Lothe RA (2002) Genome profiles of familial/bilateral and sporadic testicular germ cell tumors. Genes Chromosomes Cancer 34(2):168–174

    Article  PubMed  CAS  Google Scholar 

  17. Korkola JE, Heck S, Olshen AB, Reuter VE, Bosl GJ, Houldsworth J, Chaganti RS (2008) In vivo differentiation and genomic evolution in adult male germ cell tumors. Genes Chromosomes Cancer 47(1):43–55. doi:10.1002/gcc.20504

    Article  PubMed  CAS  Google Scholar 

  18. Blum B, Bar-Nur O, Golan-Lev T, Benvenisty N (2009) The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol 27(3):281–287

    Article  PubMed  CAS  Google Scholar 

  19. Jung SH, Shin SH, Yim SH, Choi HS, Lee SH, Chung YJ (2009) Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array. Exp Mol Med 41(7):462–470

    Article  PubMed  CAS  Google Scholar 

  20. Ganguly A, Nichols KE, Grant G, Rappaport E, Shields C (2009) Molecular karyotype of sporadic unilateral retinoblastoma tumors. Retina 29(7):1002–1012. doi:10.1097/IAE.0b013e3181a0be05

    Article  PubMed  Google Scholar 

  21. van Dartel M, Hulsebos TJ (2004) Amplification and overexpression of genes in 17p11.2 ~ p12 in osteosarcoma. Cancer Genet Cytogenet 153(1):77–80

    Article  PubMed  Google Scholar 

  22. Wu H, Kim KJ, Mehta K, Paxia S, Sundstrom A, Anantharaman T, Kuraishy AI, Doan T, Ghosh J, Pyle AD, Clark A, Lowry W, Fan G, Baxter T, Mishra B, Sun Y, Teitell MA (2008) Copy number variant analysis of human embryonic stem cells. Stem Cells 26(6):1484–1489

    Article  PubMed  CAS  Google Scholar 

  23. Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, Van der Elst J, Liebaers I, Sermon K (2008) Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 26(12):1361–1363

    Article  PubMed  CAS  Google Scholar 

  24. Lefort N, Feyeux M, Bas C, Feraud O, Bennaceur-Griscelli A, Tachdjian G, Peschanski M, Perrier AL (2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 26(12):1364–1366

    Article  PubMed  CAS  Google Scholar 

  25. Fazeli A, Liew CG, Matin MM, Elliott S, Jeanmeure LF, Wright PC, Moore H, Andrews PW (2011) Altered patterns of differentiation in karyotypically abnormal human embryonic stem cells. Int J Dev Biol 55(2):175–180

    Article  PubMed  CAS  Google Scholar 

  26. Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117(Pt 7):1269–1280

    Google Scholar 

  27. Herszfeld D, Wolvetang E, Langton-Bunker E, Chung TL, Filipczyk AA, Houssami S, Jamshidi P, Koh K, Laslett AL, Michalska A, Nguyen L, Reubinoff BE, Tellis I, Auerbach JM, Ording CJ, Looijenga LH, Pera MF (2006) CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol 24(3):351–357

    Article  PubMed  CAS  Google Scholar 

  28. Thomson A, Wojtacha D, Hewitt Z, Priddle H, Sottile V, Di Domenico A, Fletcher J, Waterfall M, Corrales NL, Ansell R, McWhir J (2008) Human embryonic stem cells passaged using enzymatic methods retain a normal karyotype and express CD30. Cloning Stem Cells 10(1):89–106

    Article  PubMed  CAS  Google Scholar 

  29. Harrison NJ, Barnes J, Jones M, Baker D, Gokhale PJ, Andrews PW (2009) CD30 expression reveals that culture adaptation of human embryonic stem cells can occur through differing routes. Stem Cells 27(5):1057–1065

    Article  PubMed  CAS  Google Scholar 

  30. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2005) Epigenetic status of human embryonic stem cells. Nat Genet 37(6):585–587

    Article  PubMed  CAS  Google Scholar 

  31. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, McKay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O’Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Rossant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W (2007) Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol 25(7):803–816

    Google Scholar 

  32. Allegrucci C, Young LE (2007) Differences between human embryonic stem cell lines. Hum Reprod Update 13(2):103–120

    Article  PubMed  CAS  Google Scholar 

  33. Calvanese V, Horrillo A, Hmadcha A, Suarez-Alvarez B, Fernandez AF, Lara E, Casado S, Menendez P, Bueno C, Garcia-Castro J, Rubio R, Lapunzina P, Alaminos M, Borghese L, Terstegge S, Harrison NJ, Moore HD, Brustle O, Lopez-Larrea C, Andrews PW, Soria B, Esteller M, Fraga MF (2008) Cancer genes hypermethylated in human embryonic stem cells. PLoS ONE 3(9):e3294

    Article  PubMed  Google Scholar 

  34. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T, Smith MJ, Dingwall S, Carter T, Williams C, Harris C, Dolling J, Wynder C, Boreham D, Bhatia M (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27(1):91–97

    Article  PubMed  CAS  Google Scholar 

  35. Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, Dalton S, Stice SL (2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23(1):19–20

    Article  PubMed  CAS  Google Scholar 

  36. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507

    Article  PubMed  CAS  Google Scholar 

  37. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67

    Article  PubMed  CAS  Google Scholar 

  38. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brustle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336):58–62

    Article  PubMed  CAS  Google Scholar 

  39. Amps K et al (2011) Screening a large, ethnically diverse population of human embryonic stem cells identifies a chromosome 20 minimal amplicon that confers a growth advantage. In preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Andrews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science + Bussines Media, LLC

About this chapter

Cite this chapter

Harrison, N.J., Baker, D., Andrews, P.W. (2012). The Significance of Culture Adaptation of Embryonic Stem Cells for Regenerative Medicine. In: Baharvand, H., Aghdami, N. (eds) Advances in Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-940-2_2

Download citation

Publish with us

Policies and ethics