Skip to main content

Application of Micro/Nanotechnology to Stem Cell Research and Technology

  • Chapter
  • First Online:
Advances in Stem Cell Research

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1875 Accesses

Abstract

Emerging technology has the potential to provide solutions to the devastating complications of illnesses, for people of all ages and genders and all backgrounds. Nevertheless, there are difficulties. Perhaps the most challenging area is transplantation, and in particular using stem cells. Transplantation implies contact, hence surface interactions, between the stem cell and the host tissue. Attachment and spreading of a cell on a substratum are the first part of the process that leads to the ultimate assimilation of the new cell into the host tissue. Together with confocal microscopy, we have exploited a uniquely powerful non-invasive optical technique and a 3-D microfluidic system by integrating a hydrogel scaffold into a PDMS device for cell growth, with co-culture capability to quantity attachment and spreading, and determine how the cell environment (the substratum, which might be tissue or an artificial non-living implant (prosthesis); the complex liquid medium bathing the cell; and the possible presence of congeners) influence attachment and spreading. This novel microfluidic platform has proven to be a versatile and powerful tool to study cell migration for various biological applications. This chapter highlights an overview of the application of Micro/Nanotechnology to stem cell research and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The aim of the study was to examine of the potential of ESCs to differentiate into dopamine neurons and integration within the host brain.

  2. 2.

    Iron oxide nanoparticles are used of a wide variety of physical, chemical and biological processes such as diagnostic medicine.

References

  1. Moore MT, Levine SR (2006) People help drive progress. In: Lanza R (ed) Essentials of stem cell biology. Elsevier, Burlington, p 513

    Google Scholar 

  2. Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, New York

    Google Scholar 

  3. Ozin GA, Arsenault AC (2005) Nanochemistry. RSC Publishing, Cambridge

    Google Scholar 

  4. Ramsden JJ (2005) What is nanotechnology? Nanotechnol Precept 1:3–17

    Google Scholar 

  5. Feynman RP (1959) There’s plenty of room at the bottom. http://www.zyvex.com/nanotech/feynman.html. Accessed 10th Sept 2007

  6. Binnih B, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:38–47

    Google Scholar 

  7. Niemeyer C (2004) Nanobiotechnology: concepts, applications and perspectives. Wiley-VCH, Weinheim

    Book  Google Scholar 

  8. Baharvand H, Zare N (2008) Nanotechnology application in stem cell biology and technology. In: Reisner D, Bronzino J (eds) Bionanotechnology. CRC Press, Boca Raton, p 1–43

    Google Scholar 

  9. Khademhosseini A, Langer R, Borenstein J, Vacanti J (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480–2487

    Google Scholar 

  10. Khademhosseini A (2008) Micro- and nanoengineering of the cell microenvironment: technologies and applications. Artech House, Norwood

    Google Scholar 

  11. Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R (2006) Essentials of stem cell biology. Academic Press, New York

    Google Scholar 

  12. Zamir E, Geiger B (2001) Components of cell-matrix adhesions. J Cell Sci 114:3577–3579

    PubMed  CAS  Google Scholar 

  13. Ramsden JJ (2008) Biomedical Surfaces, 1st edn. Artech House, Norwood

    Google Scholar 

  14. Pritinder K, Li A (2000) Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells and postmitotic differentiating cells. J Invest Dermatol 114:413–420

    Article  Google Scholar 

  15. McColl J, Horvath R, Aref A, Larcombe L, Morgan S, Chianella I, Yakubov G, Ramsden J (2009) Polyphenol control of cell spreading on glycoprotein substrates. J Biomater Sci Polym Ed 20:841–851

    Article  PubMed  CAS  Google Scholar 

  16. Pennisi E (1998) How a growth control pathway takes a wrong turn to cancer. Science 281:1439–1441

    Google Scholar 

  17. Dinesh S (2006) Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials 27:4294–4303

    Google Scholar 

  18. Griffith LG (2002) Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci 961:83–95

    Article  PubMed  CAS  Google Scholar 

  19. Bissell MJ, Barcellos-Hoff MH (1987) The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl 8:327–343

    PubMed  CAS  Google Scholar 

  20. Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Coll Surf B 39:125–131

    Article  CAS  Google Scholar 

  21. Dalby MJ, Riehle M, Sutherland S, Agheli H, Curtis A (2004) Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials 25:5415–5422

    Article  PubMed  CAS  Google Scholar 

  22. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  23. Zuwei Ma, Masaya T (2005) Potential of nanofiber matrix as tissue engineering scaffolds. Tissue Eng 11:101–109

    Article  Google Scholar 

  24. Cukierman E (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  PubMed  CAS  Google Scholar 

  25. Nur EKA (2005) Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun 331:428–434

    Article  Google Scholar 

  26. Senesi GS, D’Aloia E , Gristina R, Favia P, d’Agostino R (2007) Surface characterization of plasma deposited nano-structured fluorocarbon coatings for promoting in vitro cell growth. Surf sci 601:1019–1025

    Google Scholar 

  27. Meng J, Li S, Jie M, Hua K, Guangjin Z, Wang C, Xu L, Xie S, Xu H (2006) Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro. J Biomed Mater Res Part A 79A:298–306

    Google Scholar 

  28. Chavany C, Behmoaras T, Puisieux F, Helene C (1994) Adsorption of oligonucleotides onto polyisohexycya nanocryslate nanoparticles protects them against nucleases and increases their cellular uptake. Pharm Res 11:1370–1378

    Article  PubMed  CAS  Google Scholar 

  29. Janes K, Calvo P, Alonso MJ (2001) Polysacharaide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    Article  PubMed  CAS  Google Scholar 

  30. Braydich-Stolle L, Hussain S, Schlager J, Hofmann M (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  PubMed  CAS  Google Scholar 

  31. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey P (1998) Effect of synthetic micro-and nano-structured surfaces on cell behaviour. Biomaterials 20:573–588

    Article  Google Scholar 

  32. Rosenthal S, Tolinson I, Adkins E (2001) Targeting cell surface receptor with ligand-conjugated nanocrystals. J Am Chem Soc 124:4586–4594

    Article  Google Scholar 

  33. Paradise M, Goswami T (2007) Carbon nanotubes—Production and industrial applications. Mater Design 28:1477–1489

    Article  CAS  Google Scholar 

  34. Chen J, Hamon MA, Hu H, Chen Y, Rao A, Eklund P, Haddon PC (1998) Solution properties of single-walled carbon nanotubes. Sceince 282:95–98

    Google Scholar 

  35. Mattson M, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 123:3838

    Google Scholar 

  36. Hui H, Ni Y, Montana V, Haddon R, Parpura V (2004) Chemically functionalized carbon nanotubes as substate for neuronal growth. Nano Lett 4:507–511

    Google Scholar 

  37. Lovat V, Pantarotto D, Lagostena L (2005) Carbon nanotube substrates boost neuronal electrical signalling. Nano Lett 5:1107–1110

    Article  PubMed  CAS  Google Scholar 

  38. Li WJ (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  PubMed  CAS  Google Scholar 

  39. Li WJ (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (epsilon-caprolactone) scaffolds. J Biomed Mater Res 67A:1105–1114

    Article  CAS  Google Scholar 

  40. Ansari F, Horvath R, Aref A, Ramsden JJ (2008) Bacterial adsorption onto a thin Fe3O4 magnetic nanofilms. In: 11th annual nanotechnology conference and trade show, Boston, MA, U S A, June 1–5, p 66

    Google Scholar 

  41. Berry CC, Curtis A (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:198–206

    Article  Google Scholar 

  42. Riviere C (2005) Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235:959–967

    Article  PubMed  Google Scholar 

  43. Shapiro EM (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249

    Article  PubMed  Google Scholar 

  44. Hoehn M (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99:16267–16272

    Article  PubMed  CAS  Google Scholar 

  45. Payne AG (2004) Using immunomagnetic technology and other means to facilitate stem cell homing. Med Hypotheses 62:718–720

    Article  PubMed  CAS  Google Scholar 

  46. Bjorklund LM (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci 99:2344–2349

    Article  PubMed  CAS  Google Scholar 

  47. Bulte J, Kraitchman D (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  48. Guo P (2005) RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J Nanosci Nanotechnol 5:1964–1982

    Article  PubMed  CAS  Google Scholar 

  49. Vo-Dinh T (2006) Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomed Nanotechnol Biol Med 2:22–30

    Article  CAS  Google Scholar 

  50. Ramsden JJ (1995) Experimental methods for investigating protein adsorption kinetics at surfaces. Q Rev Biophys 27:41–105

    Article  Google Scholar 

  51. Gryte DM, Ward MD, Hu W-S (1993) Real-time measurement of anchorage-dependent cell adhesion using a quartz crystal microbalance. Biotechnol Prog 9:105–108

    Article  PubMed  CAS  Google Scholar 

  52. Fredrikkson C, Kihlmann S, Rodahl M, Kasemo B (1998) The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion. Langmuir 14:248–251

    Article  Google Scholar 

  53. Nimeri G, Fredrikkson C, Elwing H, Liu L, Rodahl M, Kasemo B (1998) Neutrophil interaction with protein–coated surfaces studied by an extended quartz crystal microbalance technique. Coll Surf B Biointerfaces 11:255–264

    Article  CAS  Google Scholar 

  54. Li S-Y, Ramsden JJ, Prenosil JE, Heinzle E (1994) Measurement of adhesion and spreading kinetics of baby hamster kidney and hybridoma cells using an integrated optical method. Biotechnol Prog 10:520–524

    Article  PubMed  CAS  Google Scholar 

  55. Hug TS, Prenosil JE, Morbidelli M (2000) Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state. Biosens Bioelectron 16:865–874

    Article  Google Scholar 

  56. Taylor AC (1961) Attachment and spreading of cells in culture. Exp Cell Res Suppl 8:154–173

    Article  Google Scholar 

  57. Hanein D et al (1993) Selective interactions of cels with crystal surfaces. J Cell Sci 104:275–288

    PubMed  CAS  Google Scholar 

  58. Ramsden JJ (1995) Optical method for measurement of number and shape of attached cells in real time. Cytometry 19:97–102

    Article  PubMed  CAS  Google Scholar 

  59. Aref A, Horvath R, McColl J, Ramsden, JJ ( 2009) Optical monitoring of stem cell-substratum interactions. J Biomed Opt 14:010501

    Google Scholar 

  60. Aref AR, Jeremy JR (2010) Nanotechnology applied to stem cell- substratum interactions: models and experiment. VDM Verlag, Saarbrücken

    Google Scholar 

  61. Aref A, Horvath R, Ramsden JJ (2010) Spreading kinetics for quantifying cell state during stem cell differentiation. J Biol Phys Chem 10:145–151

    Google Scholar 

  62. Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–278

    Article  PubMed  CAS  Google Scholar 

  63. Shi L, Ardehali R, Caldwell KD, Valint P (2000) Mucin coating on polymeric material surfaces to suppress bacterial adhesion. Coll Surf B 17:229–239

    Article  CAS  Google Scholar 

  64. Ramsden JJ, Bachmanova GI, Archakov AI (1994) Kinetic evidence for protein clustering at a surface. Phys Rev E 50:5072–5076

    Article  CAS  Google Scholar 

  65. Ramsden JJ, Statist J (1993) Review of new experimental techniques for investigating random sequential adsorption. Physics 73:853–877

    Google Scholar 

  66. Ramsden JJ, Mate M (1998) Journal chemistry Society. Faraday Trans 94:783–788

    Article  CAS  Google Scholar 

  67. Levenberg S, Khademhosseini A, Langer R (2006) Embryonic stem cell in tissue engineering. In: Lanza R (ed) Essentials of stem cell biology. Elsevier, San Diego

    Google Scholar 

  68. Gonsalves K, Craig RH, Cato TL, Lakshmi SN (2008) Biomedical nanostructures. Wiley, Hoboken

    Google Scholar 

  69. Revell PA (2006) The biological effects of nanoparticles. Nanotechnol Precept 2:283–298

    Google Scholar 

  70. Solter D, Skreb N, Damjanov I (1970) Extra uterine growth of mouse egg cylinders results in malignant teratoma. Nature 227:503–504

    Article  PubMed  CAS  Google Scholar 

  71. Shvedova AA (2003) Exposure to carbon nanotube material: assessment nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health 66:1909–1926

    Article  CAS  Google Scholar 

  72. McKenzie JL (2004) Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 25:1309–1317

    Article  PubMed  CAS  Google Scholar 

  73. Cui D (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    Article  PubMed  CAS  Google Scholar 

  74. Vickerman V, Blundo J, Chung S, Kamm R (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lap Chip 8(9):1468–1477

    Article  CAS  Google Scholar 

  75. Whitesides G, Mc Donald (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    Article  PubMed  Google Scholar 

  76. Sia S, Whitesides G (2003) Microfluidic devices fabricated in Poly (dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576

    Article  PubMed  CAS  Google Scholar 

  77. Thiery JP, Hervé Acloque R, Huang YJ, Angela M (2009) Epithelial-mesenchymal transitions in development and disease. Cell 25(139):871–890

    Google Scholar 

  78. Chua KN, Ma J, Thiery JP (2008) Targeted therapies in control of EMT in carcinoma and fibrosis. Drug Discov Today 4:261–267

    Google Scholar 

  79. Valentinuzzi MA (2004) Primer for bioengineering. World Scientific Publishing Co., Inc., Hackensack

    Google Scholar 

  80. Horvath R, Henrik CP, Nina S (2005) Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing. Appl Phys Lett 86:071101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir R. Aref .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science + Bussines Media, LLC

About this chapter

Cite this chapter

Aref, A.R. (2012). Application of Micro/Nanotechnology to Stem Cell Research and Technology. In: Baharvand, H., Aghdami, N. (eds) Advances in Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-940-2_10

Download citation

Publish with us

Policies and ethics