Skip to main content

Predicting High-Risk Disease Using Serum and DNA Biomarkers

  • Chapter
  • First Online:
  • 691 Accesses

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Biomarkers that identify the early signs of prostate cancer progression from an indolent to aggressive state are of paramount importance in following men on an active surveillance protocol. Unfortunately, the majority of prostate cancer biomarkers known to date have shown value in either predicting the risk of developing the disease in a screened population or in predicting outcomes and response to treatment in advanced stages of the disease. As a result, there remains an enormous need to discover biomarkers that identify the intervening sequence of events that bridge these two distinct aspects of prostate cancer. This chapter explores some of the serum and genetic-based biomarkers that have shown promise in fulfilling this need and describes how the active surveillance population may play a role in helping identify novel biomarkers of early prostate cancer progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kutscher W, Wolbergs H. Prostata phosphatase. Hoppe-Seylers Z Physiol Chem. 1935;236:237.

    CAS  Google Scholar 

  2. Fang LC, et al. Prostatic acid phosphatase adversely affects cause-specific survival in patients with intermediate to high-risk prostate cancer treated with brachytherapy. Urology. 2008;71(1):146–50.

    PubMed  Google Scholar 

  3. Saito T, et al. Prostate-specific antigen/prostatic acid phosphatase ratio is significant prognostic factor in patients with stage IV prostate cancer. Urology. 2007;70(4):702–5.

    PubMed  Google Scholar 

  4. Stamey TA, et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med. 1987;317(15):909–16.

    PubMed  CAS  Google Scholar 

  5. Cooperberg MR, et al. Time trends in clinical risk stratification for prostate cancer: implications for outcomes (data from CaPSURE). J Urol. 2003;170(6 Pt 2):S21–5. discussion S26–7.

    PubMed  Google Scholar 

  6. D’Amico AV, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–74.

    PubMed  Google Scholar 

  7. Cooperberg MR, Broering JM, Carroll PR. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J Natl Cancer Inst. 2009;101(12):878–87.

    PubMed  Google Scholar 

  8. Cooperberg MR, et al. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol. 2005;173(6):1938–42.

    PubMed  Google Scholar 

  9. Borgono CA, Diamandis EP. The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer. 2004;4(11):876–90.

    PubMed  CAS  Google Scholar 

  10. Sotiropoulou G, Pampalakis G, Diamandis EP. Functional roles of human kallikrein-related peptidases. J Biol Chem. 2009;284(48):32989–94.

    PubMed  CAS  Google Scholar 

  11. Nam RK, et al. The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer Res. 2005;11(23):8391–7.

    PubMed  CAS  Google Scholar 

  12. Haese A, et al. The role of human glandular kallikrein 2 for prediction of pathologically organ confined prostate cancer. Prostate. 2003;54(3):181–6.

    PubMed  CAS  Google Scholar 

  13. Steuber T, et al. Association of free-prostate specific antigen subfractions and human glandular kallikrein 2 with volume of benign and malignant prostatic tissue. Prostate. 2005;63(1):13–8.

    PubMed  CAS  Google Scholar 

  14. Steuber T, et al. Risk assessment for biochemical recurrence prior to radical prostatectomy: significant enhancement contributed by human glandular kallikrein 2 (hK2) and free prostate specific antigen (PSA) in men with moderate PSA-elevation in serum. Int J Cancer. 2006;118(5):1234–40.

    PubMed  CAS  Google Scholar 

  15. Steuber T, et al. Comparison of free and total forms of serum human kallikrein 2 and prostate-specific antigen for prediction of locally advanced and recurrent prostate cancer. Clin Chem. 2007;53(2):233–40.

    PubMed  CAS  Google Scholar 

  16. Kurek R, et al. Prognostic value of combined “triple”-reverse transcription-PCR analysis for prostate-specific antigen, human kallikrein 2, and prostate-specific membrane antigen mRNA in peripheral blood and lymph nodes of prostate cancer patients. Clin Cancer Res. 2004;10(17):5808–14.

    PubMed  CAS  Google Scholar 

  17. Bussemakers MJ, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    PubMed  CAS  Google Scholar 

  18. de Kok JB, et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62(9):2695–8.

    PubMed  Google Scholar 

  19. Hessels D, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44(1):8–15. discussion 15–6.

    PubMed  CAS  Google Scholar 

  20. Ankerst DP, et al. Predicting prostate cancer risk through incorporation of prostate cancer gene 3. J Urol. 2008;180(4):1303–8. discussion 1308.

    PubMed  Google Scholar 

  21. Chun FK, et al. Prostate cancer gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur Urol. 2009;56(4):659–67.

    PubMed  Google Scholar 

  22. Deras IL, et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol. 2008;179(4):1587–92.

    PubMed  Google Scholar 

  23. Haese A, et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol. 2008;54(5):1081–8.

    PubMed  Google Scholar 

  24. Kirby RS, Fitzpatrick JM, Irani J. Prostate cancer diagnosis in the new millennium: strengths and weaknesses of prostate-specific antigen and the discovery and clinical evaluation of prostate cancer gene 3 (PCA3). BJU Int. 2009;103(4):441–5.

    PubMed  Google Scholar 

  25. Schilling D, et al. The Prostate Cancer gene 3 assay: indications for use in clinical practice. BJU Int. 2010;105(4):452–5.

    PubMed  CAS  Google Scholar 

  26. Nakanishi H, et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J Urol. 2008;179(5):1804–9. discussion 1809–10.

    PubMed  Google Scholar 

  27. Whitman EJ, et al. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol. 2008;180(5):1975–8. discussion 1978–9.

    PubMed  Google Scholar 

  28. Hessels D, et al. Predictive value of PCA3 in urinary sediments in determining clinico-pathological characteristics of prostate cancer. Prostate. 2010;70(1):10–6.

    PubMed  CAS  Google Scholar 

  29. Tosoian JJ, et al. Accuracy of PCA3 measurement in predicting short-term biopsy progression in an active surveillance program. J Urol. 2010;183(2):534–8.

    PubMed  CAS  Google Scholar 

  30. Georgiev GP, et al. A. E. Braunstein Plenary Lecture. Nuclear skeleton, DNA domains and control of replication and transcription. Eur J Biochem. 1991;200(3):613–24.

    PubMed  CAS  Google Scholar 

  31. Lever E, Sheer D. The role of nuclear organization in cancer. J Pathol. 2010;220(2):114–25.

    PubMed  CAS  Google Scholar 

  32. Hansel DE, et al. Early prostate cancer antigen expression in predicting presence of prostate cancer in men with histologically negative biopsies. J Urol. 2007;177(5):1736–40.

    PubMed  CAS  Google Scholar 

  33. Zhao Z, Zeng G, Zhong W. Serum early prostate cancer antigen (EPCA) as a significant predictor of incidental prostate cancer in patients undergoing transurethral resection of the prostate for benign prostatic hyperplasia. Prostate. 2010;70(16):1788–98.

    PubMed  CAS  Google Scholar 

  34. Leman ES, et al. EPCA-2: a highly specific serum marker for prostate cancer. Urology. 2007;69(4):714–20.

    PubMed  Google Scholar 

  35. Leman ES, et al. Analysis of a serum test for prostate cancer that detects a second epitope of EPCA-2. Prostate. 2009;69(11):1188–94.

    PubMed  CAS  Google Scholar 

  36. Andreasen PA, et al. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997;72(1):1–22.

    PubMed  CAS  Google Scholar 

  37. Chapman HA. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol. 1997;9(5):714–24.

    PubMed  CAS  Google Scholar 

  38. Shi Z, Stack MS. Urinary-type plasminogen activator (uPA) and its receptor (uPAR) in squamous cell carcinoma of the oral cavity. Biochem J. 2007;407(2):153–9.

    PubMed  CAS  Google Scholar 

  39. Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci. 2000;57(1):25–40.

    PubMed  CAS  Google Scholar 

  40. Berger DH. Plasmin/plasminogen system in colorectal cancer. World J Surg. 2002;26(7):767–71.

    PubMed  Google Scholar 

  41. Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol. 2002;3(12):932–43.

    PubMed  CAS  Google Scholar 

  42. Mazar AP, Henkin J, Goldfarb RH. The urokinase plasminogen activator system in cancer: implications for tumor angiogenesis and metastasis. Angiogenesis. 1999;3(1):15–32.

    PubMed  CAS  Google Scholar 

  43. Han B, et al. Urokinase-type plasminogen activator system and breast cancer (Review). Oncol Rep. 2005;14(1):105–12.

    PubMed  CAS  Google Scholar 

  44. Sheng S. The urokinase-type plasminogen activator system in prostate cancer metastasis. Cancer Metastasis Rev. 2001;20(3–4):287–96.

    PubMed  CAS  Google Scholar 

  45. Hienert G, et al. Urokinase-type plasminogen activator as a marker for the formation of distant metastases in prostatic carcinomas. J Urol. 1988;140(6):1466–9.

    PubMed  CAS  Google Scholar 

  46. Miyake H, et al. Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate. 1999;39(2):123–9.

    PubMed  CAS  Google Scholar 

  47. Shariat SF, et al. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol. 2007;25(4):349–55.

    PubMed  CAS  Google Scholar 

  48. Milanese G, et al. Increased urokinase-type plasminogen activator receptor and epidermal growth factor receptor in serum of patients with prostate cancer. J Urol. 2009;181(3):1393–400.

    PubMed  CAS  Google Scholar 

  49. Adler HL, et al. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161(1):182–7.

    PubMed  CAS  Google Scholar 

  50. Shariat SF, et al. Preoperative plasma levels of transforming growth factor beta(1) (TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol. 2001;19(11):2856–64.

    PubMed  CAS  Google Scholar 

  51. Wolff JM, et al. Serum concentrations of transforming growth factor-beta 1 in patients with benign and malignant prostatic diseases. Anticancer Res. 1999;19(4A):2657–9.

    PubMed  CAS  Google Scholar 

  52. Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol. 2001;159(6):2159–65.

    PubMed  CAS  Google Scholar 

  53. Hobisch A, et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998;58(20):4640–5.

    PubMed  CAS  Google Scholar 

  54. Lee SO, et al. Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res. 2003;9(1):370–6.

    PubMed  CAS  Google Scholar 

  55. Malinowska K, et al. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr Relat Cancer. 2009;16(1):155–69.

    PubMed  CAS  Google Scholar 

  56. Michalaki V, et al. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90(12):2312–6.

    PubMed  CAS  Google Scholar 

  57. Nakashima J, et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res. 2000;6(7):2702–6.

    PubMed  CAS  Google Scholar 

  58. Kattan MW, et al. The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol. 2003;21(19):3573–9.

    PubMed  CAS  Google Scholar 

  59. Ring A, Smith IE, Dowsett M. Circulating tumour cells in breast cancer. Lancet Oncol. 2004;5(2):79–88.

    PubMed  Google Scholar 

  60. Cristofanilli M, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.

    PubMed  CAS  Google Scholar 

  61. de Bono JS, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.

    PubMed  Google Scholar 

  62. Goodman Jr OB, et al. Circulating tumor cells in patients with castration-resistant prostate cancer baseline values and correlation with prognostic factors. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1904–13.

    PubMed  CAS  Google Scholar 

  63. Helo P, et al. Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: concordance with Cell Search assay and association with bone metastases and with survival. Clin Chem. 2009;55(4):765–73.

    PubMed  CAS  Google Scholar 

  64. Okegawa T, Nutahara K, Higashihara E. Association of circulating tumor cells with tumor-related methylated DNA in patients with hormone-refractory prostate cancer. Int J Urol. 2010;17(5): 466–75.

    PubMed  CAS  Google Scholar 

  65. Stott SL, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA. 2010;107(43):18392–7.

    PubMed  CAS  Google Scholar 

  66. Beckman RA. Efficiency of carcinogenesis: is the mutator phenotype inevitable? Semin Cancer Biol. 2010;20(5):340–52.

    PubMed  CAS  Google Scholar 

  67. Loeb LA, Bielas JH, Beckman RA. Cancers exhibit a mutator phenotype: clinical implications. Cancer Res. 2008;68(10):3551–7. discussion 3557.

    PubMed  CAS  Google Scholar 

  68. Schaid DJ. The complex genetic epidemiology of prostate cancer. Hum Mol Genet. 2004;13(Spec No 1):R103–21.

    PubMed  CAS  Google Scholar 

  69. Edwards SM, et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet. 2003;72(1):1–12.

    PubMed  CAS  Google Scholar 

  70. Tryggvadottir L, et al. Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst. 2007;99(12):929–35.

    PubMed  CAS  Google Scholar 

  71. Agalliu I, et al. Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res. 2009;15(3):1112–20.

    PubMed  CAS  Google Scholar 

  72. Agalliu I, et al. Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer. 2007;97(6):826–31.

    PubMed  CAS  Google Scholar 

  73. Edwards SM, et al. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer. 2010;103(6):918–24.

    PubMed  CAS  Google Scholar 

  74. Gallagher DJ, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16(7):2115–21.

    PubMed  CAS  Google Scholar 

  75. Mitra A, et al. Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer. 2008;98(2):502–7.

    PubMed  CAS  Google Scholar 

  76. Narod SA, et al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer. 2008;99(2):371–4.

    PubMed  CAS  Google Scholar 

  77. Cooney KA, et al. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res. 1996;56(5):1142–5.

    PubMed  CAS  Google Scholar 

  78. Edwards SM, et al. Immunohistochemical expression of BRCA2 protein and allelic loss at the BRCA2 locus in prostate cancer. CRC/BPG UK Familial Prostate Cancer Study Collaborators. Int J Cancer. 1998;78(1):1–7.

    PubMed  CAS  Google Scholar 

  79. Hyytinen ER, et al. Three distinct regions of allelic loss at 13q14, 13q21–22, and 13q33 in prostate cancer. Genes Chromosomes Cancer. 1999;25(2):108–14.

    PubMed  CAS  Google Scholar 

  80. Melamed J, Einhorn JM, Ittmann MM. Allelic loss on chromosome 13q in human prostate carcinoma. Clin Cancer Res. 1997;3(10):1867–72.

    PubMed  CAS  Google Scholar 

  81. Watanabe M, et al. Allelic loss and microsatellite instability in prostate cancers in Japan. Oncology. 1998;55(6):569–74.

    PubMed  CAS  Google Scholar 

  82. Willems AJ, et al. Loss of heterozygosity at the BRCA2 locus detected by multiplex ligation-dependent probe amplification is common in prostate cancers from men with a germline BRCA2 mutation. Clin Cancer Res. 2008;14(10):2953–61.

    PubMed  CAS  Google Scholar 

  83. Gudmundsson J, et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet. 2008;40(3):281–3.

    PubMed  CAS  Google Scholar 

  84. Eeles RA, et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet. 2008;40(3):316–21.

    PubMed  CAS  Google Scholar 

  85. Takata R, et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet. 2010;42(9):751–4.

    PubMed  CAS  Google Scholar 

  86. Murabito JM, et al. A genome-wide association study of breast and prostate cancer in the NHLBI’s Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S6.

    PubMed  Google Scholar 

  87. Gudmundsson J, et al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet. 2009;41(10):1122–6.

    PubMed  CAS  Google Scholar 

  88. Thomas G, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 2008;40(3):310–5.

    PubMed  CAS  Google Scholar 

  89. Gudmundsson J, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet. 2007;39(5):631–7.

    PubMed  CAS  Google Scholar 

  90. Yeager M, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39(5):645–9.

    PubMed  CAS  Google Scholar 

  91. Gudmundsson J, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39(8):977–83.

    PubMed  CAS  Google Scholar 

  92. Sun J, et al. Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res. 2009;69(1):10–5.

    PubMed  CAS  Google Scholar 

  93. Hinderoff L, et al. A catalog of published genome-wide association studies. Available at www.genome.gov/gwastudies. Accessed July 18, 2011.

  94. Haiman CA, et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet. 2007;39(5):638–44.

    PubMed  CAS  Google Scholar 

  95. Zheng SL, et al. Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst. 2007;99(20):1525–33.

    PubMed  CAS  Google Scholar 

  96. Zheng SL, et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008;358(9):910–9.

    PubMed  CAS  Google Scholar 

  97. Steinberg GD, et al. Family history and the risk of prostate cancer. Prostate. 1990;17(4):337–47.

    PubMed  CAS  Google Scholar 

  98. Zeegers MP, Jellema A, Ostrer H. Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer. 2003;97(8):1894–903.

    PubMed  Google Scholar 

  99. Nam RK, et al. Utility of incorporating genetic variants for the early detection of prostate cancer. Clin Cancer Res. 2009;15(5):1787–93.

    PubMed  CAS  Google Scholar 

  100. Amundadottir LT, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38(6):652–8.

    PubMed  CAS  Google Scholar 

  101. Duggan D, et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst. 2007;99(24):1836–44.

    PubMed  CAS  Google Scholar 

  102. Suuriniemi M, et al. Confirmation of a positive association between prostate cancer risk and a locus at chromosome 8q24. Cancer Epidemiol Biomarkers Prev. 2007;16(4):809–14.

    PubMed  CAS  Google Scholar 

  103. Wiklund FE, et al. Established prostate cancer susceptibility variants are not associated with disease outcome. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1659–62.

    PubMed  CAS  Google Scholar 

  104. Fitzgerald LM, et al. Analysis of recently identified prostate cancer susceptibility loci in a population-based study: associations with family history and clinical features. Clin Cancer Res. 2009;15(9):3231–7.

    PubMed  CAS  Google Scholar 

  105. Kader AK, et al. Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate. 2009;69(11):1195–205.

    PubMed  CAS  Google Scholar 

  106. Ahn J, et al. Variation in KLK genes, prostate-specific antigen and risk of prostate cancer. Nat Genet. 2008;40(9):1032–4. author reply 1035–6.

    PubMed  CAS  Google Scholar 

  107. Wiklund F, et al. Association of reported prostate cancer risk alleles with PSA levels among men without a diagnosis of prostate cancer. Prostate. 2009;69(4):419–27.

    PubMed  Google Scholar 

  108. Xu J, et al. Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc Natl Acad Sci USA. 2010;107(5):2136–40.

    PubMed  CAS  Google Scholar 

  109. Tannock IF, et al. The basic science of oncology. New York: McGraw-Hill; 2005.

    Google Scholar 

  110. Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011;11(4):289–301.

    PubMed  CAS  Google Scholar 

  111. Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell. 2008;133(3):403–14.

    PubMed  CAS  Google Scholar 

  112. Reid AH, et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer. 2010;102(4):678–84.

    PubMed  CAS  Google Scholar 

  113. McCall P, et al. Is PTEN loss associated with clinical outcome measures in human prostate cancer? Br J Cancer. 2008;99(8):1296–301.

    PubMed  CAS  Google Scholar 

  114. Shen MM, Abate-Shen C. Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Res. 2007;67(14):6535–8.

    PubMed  CAS  Google Scholar 

  115. Liu S, et al. Detection of ERG gene rearrangements and PTEN deletions in unsuspected prostate cancer of the transition zone. Cancer Biol Ther. 2011;11(6):562–6.

    PubMed  Google Scholar 

  116. Li Y, et al. PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. J Pathol. 2011;224(1):90–100.

    PubMed  CAS  Google Scholar 

  117. Ishkanian AS, et al. High-resolution array CGH identifies novel regions of genomic alteration in intermediate-risk prostate cancer. Prostate. 2009;69(10):1091–100.

    PubMed  CAS  Google Scholar 

  118. Beuten J, et al. Association of chromosome 8q variants with prostate cancer risk in Caucasian and Hispanic men. Carcinogenesis. 2009;30(8):1372–9.

    PubMed  CAS  Google Scholar 

  119. Haiman CA, et al. Characterizing genetic risk at known prostate cancer susceptibility Loci in African Americans. PLoS Genet. 2011;7(5):e1001387.

    PubMed  CAS  Google Scholar 

  120. Pal P, et al. Common variants in 8q24 are associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry. Prostate. 2009;69(14):1548–56.

    PubMed  CAS  Google Scholar 

  121. Gurel B, et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol. 2008;21(9):1156–67.

    PubMed  CAS  Google Scholar 

  122. Hawksworth D, et al. Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis. 2010;13(4):311–5.

    PubMed  CAS  Google Scholar 

  123. Bowen C, Gelmann EP. NKX3.1 activates cellular response to DNA damage. Cancer Res. 2010;70(8):3089–97.

    PubMed  CAS  Google Scholar 

  124. Zheng SL, et al. Germ-line mutation of NKX3.1 cosegregates with hereditary prostate cancer and alters the homeodomain structure and function. Cancer Res. 2006;66(1):69–77.

    PubMed  CAS  Google Scholar 

  125. Abate-Shen C, Shen MM, Gelmann E. Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation. 76;76(6):717–27.

    Google Scholar 

  126. Barnabas N, et al. Chromosome 8 markers of metastatic prostate cancer in African American men: gain of the MIR151 gene and loss of the NKX3–1 gene. Prostate. 2011;71(8):857–71.

    PubMed  CAS  Google Scholar 

  127. Ishkanian AS, et al. Array CGH as a potential predictor of radiocurability in intermediate risk prostate cancer. Acta Oncol. 2010;49(7):888–94.

    PubMed  CAS  Google Scholar 

  128. Gasparini P, Sozzi G, Pierotti MA. The role of chromosomal alterations in human cancer development. J Cell Biochem. 2007;102(2):320–31.

    PubMed  CAS  Google Scholar 

  129. Nambiar M, Kari V, Raghavan SC. Chromosomal translocations in cancer. Biochim Biophys Acta. 2008;1786(2):139–52.

    PubMed  CAS  Google Scholar 

  130. Rao VN, Papas TS, Reddy ES. erg, a human ets-related gene on chromosome 21: alternative splicing, polyadenylation, and translation. Science. 1987;237(4815):635–9.

    PubMed  CAS  Google Scholar 

  131. Petrovics G, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene. 2005;24(23):3847–52.

    PubMed  CAS  Google Scholar 

  132. Tomlins SA, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    PubMed  CAS  Google Scholar 

  133. Afar DE, et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res. 2001;61(4):1686–92.

    PubMed  CAS  Google Scholar 

  134. Nam RK, et al. Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther. 2007;6(1):40–5.

    PubMed  CAS  Google Scholar 

  135. Wang J, et al. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 2006;66(17):8347–51.

    PubMed  CAS  Google Scholar 

  136. Nam RK, et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer. 2007;97(12):1690–5.

    PubMed  CAS  Google Scholar 

  137. Mosquera JM, et al. Morphological features of TMPRSS2-ERG gene fusion prostate cancer. J Pathol. 2007;212(1):91–101.

    PubMed  Google Scholar 

  138. Perner S, et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 2006;66(17):8337–41.

    PubMed  CAS  Google Scholar 

  139. Johansson JE, et al. Natural history of early, localized prostate cancer. JAMA. 2004;291(22):2713–9.

    PubMed  CAS  Google Scholar 

  140. Demichelis F, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26(31):4596–9.

    PubMed  CAS  Google Scholar 

  141. Attard G, et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene. 2008;27(3):253–63.

    PubMed  CAS  Google Scholar 

  142. Mehra R, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol. 2007;20(5):538–44.

    PubMed  CAS  Google Scholar 

  143. Winnes M, et al. Molecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol Rep. 2007;17(5):1033–6.

    PubMed  CAS  Google Scholar 

  144. Lapointe J, et al. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod Pathol. 2007;20(4):467–73.

    PubMed  CAS  Google Scholar 

  145. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    PubMed  CAS  Google Scholar 

  146. Costello JF, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000;24(2):132–8.

    PubMed  CAS  Google Scholar 

  147. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    PubMed  CAS  Google Scholar 

  148. Clark SJ, Melki J. DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene. 2002;21(35):5380–7.

    PubMed  CAS  Google Scholar 

  149. Li LC, Carroll PR, Dahiya R. Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst. 2005;97(2):103–15.

    PubMed  CAS  Google Scholar 

  150. Meiers I, Shanks JH, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology. 2007;39(3):299–304.

    PubMed  CAS  Google Scholar 

  151. Millar DS, et al. Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene. 1999;18(6):1313–24.

    PubMed  CAS  Google Scholar 

  152. Bastian PJ, et al. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res. 2005;11(11):4037–43.

    PubMed  CAS  Google Scholar 

  153. Ellinger J, et al. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology. 2008;71(1):161–7.

    PubMed  Google Scholar 

  154. Venkatachalam R, et al. The epigenetics of (hereditary) colorectal cancer. Cancer Genet Cytogenet. 2010;203(1):1–6.

    PubMed  CAS  Google Scholar 

  155. Jeronimo C, et al. A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res. 2004;10(24):8472–8.

    PubMed  CAS  Google Scholar 

  156. Henrique R, et al. High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res. 2007;13(20):6122–9.

    PubMed  CAS  Google Scholar 

  157. Richiardi L, et al. Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol. 2009;27(19):3161–8.

    PubMed  CAS  Google Scholar 

  158. Liu L, et al. Association of tissue promoter methylation levels of APC, TGFbeta2, HOXD3, and RASSF1A with prostate cancer progression. Int J Cancer. 2011;129(10):2454–62.

    PubMed  CAS  Google Scholar 

  159. Rosenbaum E, et al. Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res. 2005;11(23):8321–5.

    PubMed  CAS  Google Scholar 

  160. Kuzmin I, et al. The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells. Cancer Res. 2002;62(12):3498–502.

    PubMed  CAS  Google Scholar 

  161. Agathanggelou A, Cooper WN, Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005;65(9):3497–508.

    PubMed  CAS  Google Scholar 

  162. Liu L, et al. Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene. 2002;21(44):6835–40.

    PubMed  CAS  Google Scholar 

  163. Maruyama R, et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res. 2002;8(2):514–9.

    PubMed  CAS  Google Scholar 

  164. Ansari KI, Mandal SS. Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J. 2010;277(8):1790–804.

    PubMed  CAS  Google Scholar 

  165. Frohling S, et al. HOX gene regulation in acute myeloid leukemia: CDX marks the spot? Cell Cycle. 2007;6(18):2241–5.

    PubMed  CAS  Google Scholar 

  166. Bodmer WF. Cancer genetics: colorectal cancer as a model. J Hum Genet. 2006;51(5):391–6.

    PubMed  CAS  Google Scholar 

  167. Pfeifer GP, Rauch TA. DNA methylation patterns in lung carcinomas. Semin Cancer Biol. 2009;19(3):181–7.

    PubMed  CAS  Google Scholar 

  168. Tommasi S, et al. Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res. 2009;11(1):R14.

    PubMed  Google Scholar 

  169. Kron KJ, et al. DNA methylation of HOXD3 as a marker of prostate cancer progression. Lab Invest. 2010;90(7):1060–7.

    PubMed  CAS  Google Scholar 

  170. Schulz WA, Hatina J. Epigenetics of prostate cancer: beyond DNA methylation. J Cell Mol Med. 2006;10(1):100–25.

    PubMed  CAS  Google Scholar 

  171. Klotz L, et al. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol. 2010;28(1):126–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Vesprini B.Sc., M.Sc., M.D., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vesprini, D., Nam, R. (2012). Predicting High-Risk Disease Using Serum and DNA Biomarkers. In: Klotz, L. (eds) Active Surveillance for Localized Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-912-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-912-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-911-2

  • Online ISBN: 978-1-61779-912-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics