Skip to main content

The Future of Active Surveillance

  • Chapter
  • First Online:
  • 677 Accesses

Part of the book series: Current Clinical Urology ((CCU))

Abstract

The majority of men today are diagnosed with early stage, low-grade, localized prostate cancer. The greatest danger to these patients is overtreatment in the face of indolent disease, leaving active surveillance an attractive option. Unfortunately, the ideal markers for disease prognosis, progression, and treatment in the group of men are unknown. Since there is not a perfect way to identify patients that will not progress or to identify patients who are progressing on surveillance, adoption of this treatment is not widespread due to difficulty with acceptance from patients and physicians. The future of active surveillance lies with our ability to better incorporate personalized molecular medicine, noninvasive monitoring, and novel therapeutics into management strategy. Ultimately, this will provide reassurance that deferring definitive treatment with surgery or radiation until necessary is completely safe and can be precisely defined. This chapter highlights new developments in patient selection, monitoring, and modifying disease characteristics in men with prostate cancer on active surveillance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol. 2010;28(7): 1117–23.

    Article  PubMed  Google Scholar 

  2. Albertsen PC, Hanley JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;293(17): 2095–101.

    Article  PubMed  CAS  Google Scholar 

  3. Cooperberg MR, Broering JM, Kantoff PW, Carroll PR. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol. Sep 2007;178(3 Pt 2):S14–9.

    Article  PubMed  Google Scholar 

  4. Barocas DA, Cowan JE, Smith Jr JA, Carroll PR. What percentage of patients with newly diagnosed carcinoma of the prostate are candidates for surveillance? An analysis of the CaPSURE database. J Urol. 2008;180(4):1330–4. discussion 1334–5.

    Article  PubMed  Google Scholar 

  5. Andriole GL, Crawford ED, Grubb 3 rd RL, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009;360(13): 1310–9.

    Article  PubMed  CAS  Google Scholar 

  6. Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13): 1320–8.

    Article  PubMed  Google Scholar 

  7. van As NJ, Parker CC. Active surveillance with selective radical treatment for localized prostate cancer. Cancer J. 2007;13(5):289–94.

    Article  PubMed  Google Scholar 

  8. van den Bergh RC, Roemeling S, Roobol MJ, et al. Outcomes of men with screen-detected prostate cancer eligible for active surveillance who were managed expectantly. Eur Urol. Jan 2009;55(1):1–8.

    Article  PubMed  Google Scholar 

  9. Eggener SE, Mueller A, Berglund RK, et al. A multi-institutional evaluation of active surveillance for low risk prostate cancer. J Urol. 2009;181(4):1635–41. discussion 1641.

    Article  PubMed  Google Scholar 

  10. Soloway MS, Soloway CT, Eldefrawy A, Acosta K, Kava B, Manoharan M. Careful selection and close monitoring of low-risk prostate cancer patients on active surveillance minimizes the need for treatment. Eur Urol. 2010;58(6):831–5.

    Article  PubMed  Google Scholar 

  11. Suardi N, Briganti A, Gallina A, et al. Testing the most stringent criteria for selection of candidates for active surveillance in patients with low-risk prostate cancer. BJU Int. 2010;105(11):1548–52.

    Article  PubMed  Google Scholar 

  12. Dall’Era MA, Konety BR, Cowan JE, et al. Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer. 2008;112(12): 2664–70.

    Article  PubMed  Google Scholar 

  13. Klotz L, Zhang L, Lam A, Nam R, Mamedov A, Loblaw A. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol. 2010;28(1):126–31.

    Article  PubMed  Google Scholar 

  14. Latini DM, Hart SL, Knight SJ, et al. The relationship between anxiety and time to treatment for patients with prostate cancer on surveillance. J Urol. 2007;178(3 Pt 1):826–31. discussion 831–2.

    Article  PubMed  Google Scholar 

  15. Dall’Era MA, Konety BR. Active surveillance for low-risk prostate cancer: selection of patients and predictors of progression. Nat Clin Pract Urol. 2008;5(5):277–83.

    Article  PubMed  Google Scholar 

  16. Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA. 1994;271(5):368–74.

    Article  PubMed  CAS  Google Scholar 

  17. Klotz L. Active surveillance for prostate cancer: for whom? J Clin Oncol. 2005;23(32):8165–9.

    Article  PubMed  Google Scholar 

  18. Mohler J, Bahnson RR, Boston B, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw. 2010;8(2):162–200.

    PubMed  CAS  Google Scholar 

  19. D’Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–74.

    Article  PubMed  Google Scholar 

  20. Kattan MW, Eastham JA, Wheeler TM, et al. Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol. Nov 2003;170(5): 1792–7.

    Article  PubMed  Google Scholar 

  21. Cooperberg MR, Pasta DJ, Elkin EP, et al. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol. Jun 2005;173(6):1938–42.

    Article  PubMed  Google Scholar 

  22. Cooperberg MR, Broering JM, Carroll PR. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J Natl Cancer Inst. 2009;101(12):878–87.

    Article  PubMed  Google Scholar 

  23. Venkitaraman R, Norman A, Woode-Amissah R, et al. Predictors of histological disease progression in untreated, localized prostate cancer. J Urol. Sep 2007;178(3 Pt 1):833–7.

    Article  PubMed  Google Scholar 

  24. Dall’era MA, Konety BR, Meng MV, et al. Older age and time to last biopsy are associated with rise in Gleason score for men on active surveillance for low risk prostate cancer. J Urol. 2008;179:154.

    Article  Google Scholar 

  25. Isariyawongse BK, Sun L, Banez LL, et al. Significant discrepancies between diagnostic and pathologic Gleason sums in prostate cancer: the predictive role of age and prostate-specific antigen. Urology. Oct 2008;72(4):882–6.

    Article  PubMed  Google Scholar 

  26. Tseng KS, Landis P, Epstein JI, Trock BJ, Carter HB. Risk stratification of men choosing surveillance for low risk prostate cancer. J Urol. 2010;183(5):1779–85.

    Article  PubMed  CAS  Google Scholar 

  27. Borre M, Offersen BV, Nerstrom B, Overgaard J. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer. Oct 1998;78(7):940–4.

    Article  PubMed  CAS  Google Scholar 

  28. Freedland SJ, Kane CJ, Amling CL, Aronson WJ, Terris MK, Presti Jr JC. Upgrading and downgrading of prostate needle biopsy specimens: risk factors and clinical implications. Urology. Mar 2007;69(3): 495–9.

    Article  PubMed  Google Scholar 

  29. Berglund RK, Masterson TA, Vora KC, Eggener SE, Eastham JA, Guillonneau BD. Pathological upgrading and up staging with immediate repeat biopsy in patients eligible for active surveillance. J Urol. 2008;180(5):1964–7. discussion 1967–8.

    Article  PubMed  Google Scholar 

  30. van den Bergh RC, Vasarainen H, van der Poel HG, et al. Short-term outcomes of the prospective multicentre ‘Prostate Cancer Research International: Active Surveillance’ study. BJU Int. 2010;105(7): 956–62.

    Article  PubMed  Google Scholar 

  31. Davis JW, Kim J, Ward JF, et al. Radical prostatectomy findings in patients predicted to have low-­volume/low-grade prostate cancer diagnosed by extended-core biopsies: an analysis of volume and zonal distribution of tumour foci. BJU Int. 2010;105(10):1386–91.

    Article  PubMed  Google Scholar 

  32. Duffield AS, Lee TK, Miyamoto H, Carter HB, Epstein JI. Radical prostatectomy findings in patients in whom active surveillance of prostate cancer fails. J Urol. Nov 2009;182(5):2274–8.

    Article  PubMed  Google Scholar 

  33. Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23): 5975–9.

    PubMed  CAS  Google Scholar 

  34. Hessels D, Schalken JA. The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol. May 2009;6(5):255–61.

    Article  PubMed  CAS  Google Scholar 

  35. Hessels D, Klein Gunnewiek JM, van Oort I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44(1):8–15. discussion 15–6.

    Article  PubMed  CAS  Google Scholar 

  36. Whitman EJ, Groskopf J, Ali A, et al. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol. 2008;180(5): 1975–8. discussion 1978–9.

    Article  PubMed  Google Scholar 

  37. Nakanishi H, Groskopf J, Fritsche HA, et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J Urol. 2008;179(5):1804–9. discussion 1809–10.

    Article  PubMed  Google Scholar 

  38. Marks LS, Fradet Y, Deras IL, et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology. Mar 2007;69(3):532–5.

    Article  PubMed  Google Scholar 

  39. Haese A, de la Taille A, van Poppel H, et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol. Nov 2008;54(5):1081–8.

    Article  PubMed  Google Scholar 

  40. Tosoian JJ, Loeb S, Kettermann A, et al. Accuracy of PCA3 measurement in predicting short-term biopsy progression in an active surveillance program. J Urol. 2010;183(2):534–8.

    Article  PubMed  CAS  Google Scholar 

  41. Jansen FH, van Schaik RH, Kurstjens J, et al. Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur Urol. 2010;57(6):921–7.

    Article  PubMed  CAS  Google Scholar 

  42. Catalona WJ, Bartsch G, Rittenhouse HG, et al. Serum pro-prostate specific antigen preferentially detects aggressive prostate cancers in men with 2 to 4 ng/ml prostate specific antigen. J Urol. Jun 2004;171(6 Pt 1):2239–44.

    Article  PubMed  Google Scholar 

  43. Makarov DV, Isharwal S, Sokoll LJ, et al. Pro-prostate-specific antigen measurements in serum and tissue are associated with treatment necessity among men enrolled in expectant management for prostate cancer. Clin Cancer Res. 2009;15(23):7316–21.

    Article  PubMed  CAS  Google Scholar 

  44. Lee WH, Morton RA, Epstein JI, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA. 1994;91(24):11733–7.

    Article  PubMed  CAS  Google Scholar 

  45. Goessl C, Krause H, Muller M, et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res. 2000;60(21):5941–5.

    PubMed  CAS  Google Scholar 

  46. Cher ML, Chew K, Rosenau W, Carroll PR. Cellular proliferation in prostatic adenocarcinoma as assessed by bromodeoxyuridine uptake and Ki-67 and PCNA expression. Prostate. Feb 1995;26(2):87–93.

    Article  PubMed  CAS  Google Scholar 

  47. Borre M, Stausbol-Gron B, Nerstrom B, Overgaard J. Immunohistochemical BCL-2 and Ki-67 expression predict survival in prostate cancer patients followed expectantly. Prostate Cancer Prostatic Dis. Sep 1998;1(5):268–75.

    Article  PubMed  CAS  Google Scholar 

  48. Jhavar S, Bartlett J, Kovacs G, et al. Biopsy tissue microarray study of Ki-67 expression in untreated, localized prostate cancer managed by active surveillance. Prostate Cancer Prostatic Dis. 2009;12(2):143–7.

    Article  PubMed  CAS  Google Scholar 

  49. Zheng SL, Sun J, Wiklund F, et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008;358(9):910–9.

    Article  PubMed  CAS  Google Scholar 

  50. Kim ST, Cheng Y, Hsu FC, et al. Prostate cancer risk-associated variants reported from genome-wide association studies: meta-analysis and their contribution to genetic Variation. Prostate. 2010;70(16):1729–38.

    PubMed  Google Scholar 

  51. Kader AK, Sun J, Isaacs SD, et al. Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate. 2009;69(11):1195–205.

    Article  PubMed  CAS  Google Scholar 

  52. Helfand BT, Loeb S, Kan D, Catalona WJ. Number of prostate cancer risk alleles may identify possibly ‘insignificant’ disease. BJU Int. 2010;106(11): 1602–6.

    Article  PubMed  Google Scholar 

  53. Lapointe J, Li C, Giacomini CP, et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res. 2007;67(18):8504–10.

    Article  PubMed  CAS  Google Scholar 

  54. Paris PL, Weinberg V, Simko J, et al. Preliminary evaluation of prostate cancer metastatic risk biomarkers. Int J Biol Markers. 2005;20(3):141–5.

    PubMed  CAS  Google Scholar 

  55. Paris PL, Weinberg V, Albo G, et al. A group of genome-based biomarkers that add to a Kattan nomogram for predicting progression in men with high-risk prostate cancer. Clin Cancer Res. 2010;16(1):195–202.

    Article  PubMed  CAS  Google Scholar 

  56. Whitfield ML, Sherlock G, Saldanha AJ, et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. Jun 2002;13(6):1977–2000.

    Article  PubMed  CAS  Google Scholar 

  57. Cuzick J, Swanson GP, Fisher G, et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 2011;12(3): 245–55.

    Article  PubMed  CAS  Google Scholar 

  58. Carroll PR, Coakley FV, Kurhanewicz J. Magnetic resonance imaging and spectroscopy of prostate cancer. Rev Urol. 2006;8 Suppl 1:S4–10.

    PubMed  Google Scholar 

  59. Fradet V, Kurhanewicz J, Cowan JE, et al. Prostate cancer managed with active surveillance: role of anatomic MR imaging and MR spectroscopic imaging. Radiology. 2010;256(1):176–83.

    Article  PubMed  Google Scholar 

  60. van As NJ, de Souza NM, Riches SF, et al. A study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance. Eur Urol. Dec 2009;56(6):981–7.

    Article  PubMed  Google Scholar 

  61. Shukla-Dave A, Hricak H, Kattan MW, et al. The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis. BJU Int. Apr 2007;99(4):786–93.

    Article  PubMed  CAS  Google Scholar 

  62. Cooperberg MR, Cowan JE, Hilton JF, et al. Outcomes of active surveillance for men with intermediate-risk prostate cancer. J Clin Oncol. 2011;29(2):228–34.

    Article  PubMed  Google Scholar 

  63. Algaba F, Montironi R. Impact of prostate cancer multifocality on its biology and treatment. J Endourol. 2010;24(5):799–804.

    Article  PubMed  Google Scholar 

  64. Clark J, Attard G, Jhavar S, et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene. 2008;27(14):1993–2003.

    Article  PubMed  CAS  Google Scholar 

  65. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 2010;24(18):1967–2000.

    Article  PubMed  CAS  Google Scholar 

  66. Whitson JM, Carroll PR. Active surveillance for early-stage prostate cancer: defining the triggers for intervention. J Clin Oncol. 2010;28(17):2807–9.

    Article  PubMed  Google Scholar 

  67. Sheridan TB, Carter HB, Wang W, Landis PB, Epstein JI. Change in prostate cancer grade over time in men followed expectantly for stage T1c disease. J Urol. 2008;179(3):901–4. discussion 904–5.

    Article  PubMed  Google Scholar 

  68. Nam RK, Saskin R, Lee Y, et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J Urol. 2010;183(3):963–8.

    Article  PubMed  Google Scholar 

  69. Fujita K, Landis P, McNeil BK, Pavlovich CP. Serial prostate biopsies are associated with an increased risk of erectile dysfunction in men with prostate cancer on active surveillance. J Urol. Dec 2009;182(6):2664–9.

    Article  PubMed  Google Scholar 

  70. D’Amico AV, Chen MH, Roehl KA, Catalona WJ. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med. 2004;351(2):125–35.

    Article  PubMed  Google Scholar 

  71. D’Amico AV, Renshaw AA, Sussman B, Chen MH. Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA. 2005;294(4):440–7.

    Article  PubMed  Google Scholar 

  72. Al Otaibi M, Ross P, Fahmy N, et al. Role of repeated biopsy of the prostate in predicting disease progression in patients with prostate cancer on active surveillance. Cancer. 2008;113(2):286–92.

    Article  PubMed  Google Scholar 

  73. Ng MK, Van As N, Thomas K, et al. Prostate-specific antigen (PSA) kinetics in untreated, localized prostate cancer: PSA velocity vs PSA doubling time. BJU Int. Apr 2009;103(7):872–6.

    Article  PubMed  CAS  Google Scholar 

  74. Stephenson AJ, Aprikian AG, Souhami L, et al. Utility of PSA doubling time in follow-up of untreated patients with localized prostate cancer. Urology. May 2002;59(5):652–6.

    Article  PubMed  Google Scholar 

  75. Khatami A, Aus G, Damber JE, Lilja H, Lodding P, Hugosson J. PSA doubling time predicts the outcome after active surveillance in screening-detected prostate cancer: results from the European randomized study of screening for prostate cancer, Sweden section. Int J Cancer. 2007;120(1):170–4.

    Article  PubMed  Google Scholar 

  76. Ross AE, Loeb S, Landis P, et al. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J Clin Oncol. 2010;28(17):2810–6.

    Article  PubMed  CAS  Google Scholar 

  77. Whitson JM, Porten SP, Hilton JF, et al. The relationship between prostate specific antigen change and biopsy progression in patients With prostate cancer on active surveillance. J Urol. 2011;185(5):1656–60.

    Article  PubMed  Google Scholar 

  78. Reese AC, Sadetsky N, Carroll PR, Cooperberg MR. Inaccuracies in assignment of clinical stage for localized prostate cancer. Cancer. 2011;117(2):283–9.

    Article  PubMed  Google Scholar 

  79. Eisenberg ML, Cowan JE, Davies BJ, Carroll PR, Shinohara K. The importance of tumor palpability and transrectal ultrasonographic appearance in the contemporary clinical staging of prostate cancer. Urol Oncol. 2011;29(2):171–6.

    Article  PubMed  Google Scholar 

  80. Loch T. Urologic imaging for localized prostate cancer in 2007. World J Urol. Apr 2007;25(2):121–9.

    Article  PubMed  Google Scholar 

  81. Turkbey B, Xu S, Kruecker J, et al. Documenting the location of prostate biopsies with image fusion. BJU Int. 2011;107(1):53–7.

    Article  PubMed  Google Scholar 

  82. Seo Y, Aparici CM, Cooperberg MR, Konety BR, Hawkins RA. In vivo tumor grading of prostate cancer using quantitative 111In-capromab pendetide SPECT/CT. J Nucl Med. 2010;51(1):31–6.

    Article  PubMed  Google Scholar 

  83. Chan JM, Gann PH, Giovannucci EL. Role of diet in prostate cancer development and progression. J Clin Oncol. 2005;23(32):8152–60.

    Article  PubMed  CAS  Google Scholar 

  84. Ornish D, Magbanua MJ, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci USA. 2008;105(24):8369–74.

    Article  PubMed  CAS  Google Scholar 

  85. McConnell JD, Roehrborn CG, Bautista OM, et al. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med. 2003;349(25):2387–98.

    Article  PubMed  CAS  Google Scholar 

  86. Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349(3):215–24.

    Article  PubMed  CAS  Google Scholar 

  87. Andriole GL, Bostwick D, Brawley OW, et al. The effect of dutasteride on the usefulness of prostate specific antigen for the diagnosis of high grade and clinically relevant prostate cancer in men with a previous negative biopsy: results from the REDUCE study. J Urol. 2011;185(1):126–31.

    Article  PubMed  CAS  Google Scholar 

  88. Fleshner N, Gomella LG, Cookson MS, et al. Delay in the progression of low-risk prostate cancer: rationale and design of the Reduction by Dutasteride of Clinical Progression Events in Expectant Management (REDEEM) trial. Contemp Clin Trials. Nov 2007;28(6): 763–9.

    Article  PubMed  CAS  Google Scholar 

  89. Martin RM, Gunnell D, Hamdy F, Neal D, Lane A, Donovan J. Continuing controversy over monitoring men with localized prostate cancer: a systematic review of programs in the prostate specific antigen era. J Urol. Aug 2006;176(2):439–49.

    Article  PubMed  Google Scholar 

  90. Wise AM, Stamey TA, McNeal JE, Clayton JL. Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens. Urology. Aug 2002;60(2):264–9.

    Article  PubMed  Google Scholar 

  91. Villers A, McNeal JE, Freiha FS, Stamey TA. Multiple cancers in the prostate. Morphologic features of clinically recognized versus incidental tumors. Cancer. 1992;70(9):2313–8.

    Article  PubMed  CAS  Google Scholar 

  92. Noguchi M, Stamey TA, McNeal JE, Nolley R. Prognostic factors for multifocal prostate cancer in radical prostatectomy specimens: lack of significance of secondary cancers. J Urol. Aug 2003;170(2 Pt 1): 459–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima P. Porten M.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porten, S.P., Whitson, J.M., Carroll, P.R. (2012). The Future of Active Surveillance. In: Klotz, L. (eds) Active Surveillance for Localized Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-912-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-912-9_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-911-2

  • Online ISBN: 978-1-61779-912-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics