Skip to main content

Recent Insights into the Molecular and Cellular Contributions to Venous Thrombosis

  • Chapter
  • First Online:
Molecular and Translational Vascular Medicine

Abstract

Deep vein thrombosis (DVT) and pulmonary embolism are common mortal/morbid diseases worldwide, and improvements in prophylaxis and therapy have been elusive. The basic pathophysiology of how a thrombus forms in vivo and how it resolves are now better understood through experiments with animal models. Inflammation can both cause and incite venous thrombosis. Leukocytes, platelets, and coagulation factors coalesce locally after a thrombogenic stimulus occurs. Cell adhesion molecules, such as P-selectin, bridge the interface of thrombosis and inflammation, and are both biomarkers for, and pathogenic in DVT. Once DVT forms, natural thrombolysis occurs primarily via the urokinase-type plasminogen activator (uPA)–plasmin system. Alternative pathways also exist for venous thrombus resolution, including the matrix metalloproteinases. A new concept in DVT resolution related to sterile inflammation is clearance of procoagulant necrotic leukocytes and platelets, in part mediated by TLR9 signaling. A consequence of DVT is the proximate vein wall injury, which is dependent on the mechanism and duration of the thrombus-vein wall contact. Both vascular smooth muscle cells and endothelial cells maintain normal vein homeostasis, but adopt an injury response after thrombosis that may lead to vein fibrosis. In humans, multiple biomarkers are now available, but increased specificity for venous thrombosis is still elusive. Some of these biomarkers such as P-selectin may also play a causative role, and be attractive therapeutic targets for nonanticoagulant DVT prophylaxis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heit JA, Cohen AT, Anderson FJ. Estimated annual number of incident and recurrent, non-fatal venous thromboembolism (vte) events in the US. Blood. 2005;106:267a.

    Google Scholar 

  2. Hull RD, Pineo GF, Raskob GE. The economic impact of treating deep vein thrombosis with low-molecular-weight heparin: outcome of therapy and health economy aspects. Haemostasis. 1998;28 Suppl 3:8–16.

    PubMed  CAS  Google Scholar 

  3. Gangireddy C, Rectenwald JR, Upchurch GR, et al. Risk factors and clinical impact of postoperative symptomatic venous thromboembolism. J Vasc Surg. 2007;45:335–41. discussion 341–33.

    PubMed  Google Scholar 

  4. Meissner MH, Wakefield TW, Ascher E, et al. Acute venous disease: venous thrombosis and venous trauma. J Vasc Surg. 2007;46 Suppl S:25S–53.

    PubMed  Google Scholar 

  5. Heit JA, Silverstein MD, Mohr DN, et al. The epidemiology of venous thromboembolism in the community. Thromb Haemost. 2001;86:452–63.

    PubMed  CAS  Google Scholar 

  6. Anderson Jr FA, Wheeler HB, Goldberg RJ, et al. A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism. The worcester dvt study. Arch Intern Med. 1991;151:933–8.

    PubMed  Google Scholar 

  7. Beyth RJ, Cohen AM, Landefeld CS. Long-term outcomes of deep-vein thrombosis. Arch Intern Med. 1995;155:1031–7.

    PubMed  CAS  Google Scholar 

  8. Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal FR, Hammerstrom J. Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost. 2007;5:692–9.

    PubMed  CAS  Google Scholar 

  9. Savory L, Harper P, Ockelford P. Posttreatment ultrasound-detected residual venous thrombosis: a risk factor for recurrent venous thromboembolism and mortality. Curr Opin Pulm Med. 2007;13:403–8.

    PubMed  Google Scholar 

  10. Young L, Ockelford P, Milne D, Rolfe-Vyson V, McKelvie S, Harper P. Post-treatment residual thrombus increases the risk of recurrent deep vein thrombosis and mortality. J Thromb Haemost. 2006;4:1919–24.

    PubMed  CAS  Google Scholar 

  11. Prandoni P, Ghirarduzzi A, Prins MH, et al. Venous thromboembolism and the risk of subsequent symptomatic atherosclerosis. J Thromb Haemost. 2006;4:1891–6.

    PubMed  CAS  Google Scholar 

  12. Hong C, Zhu F, Du D, Pilgram TK, Sicard GA, Bae KT. Coronary artery calcification and risk factors for atherosclerosis in patients with venous thromboembolism. Atherosclerosis. 2005;183:169–74.

    PubMed  CAS  Google Scholar 

  13. Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2007;27:1687–93.

    PubMed  CAS  Google Scholar 

  14. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49.

    PubMed  CAS  Google Scholar 

  15. Mackman N. Tissue-specific hemostasis in mice. Arterioscler Thromb Vasc Biol. 2005;25:2273–81.

    PubMed  CAS  Google Scholar 

  16. Savage B, Ruggeri ZM. Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein iib-iiia on nonactivated platelets. J Biol Chem. 1991;266:11227–33.

    PubMed  CAS  Google Scholar 

  17. Ferguson JJ, Waly HM, Wilson JM. Fundamentals of coagulation and glycoprotein iib/iiia receptor inhibition. Eur Heart J. 1998;19 Suppl D:D3–9.

    PubMed  CAS  Google Scholar 

  18. Dahlback B. Blood coagulation. Lancet. 2000;355:1627–32.

    PubMed  CAS  Google Scholar 

  19. Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991;30:10363–70.

    PubMed  CAS  Google Scholar 

  20. Esmon CT. The regulation of natural anticoagulant pathways. Science. 1987;235:1348–52.

    PubMed  CAS  Google Scholar 

  21. Marlar RA, Kleiss AJ, Griffin JH. Mechanism of action of human activated protein c, a thrombin-dependent anticoagulant enzyme. Blood. 1982;59:1067–72.

    PubMed  CAS  Google Scholar 

  22. Corral J, Aznar J, Gonzalez-Conejero R, et al. Homozygous deficiency of heparin cofactor ii: relevance of p17 glutamate residue in serpins, relationship with conformational diseases, and role in thrombosis. Circulation. 2004;110:1303–7.

    PubMed  CAS  Google Scholar 

  23. Vassalli JD, Sappino AP, Belin D. The plasminogen activator/plasmin system. J Clin Invest. 1991;88:1067–72.

    PubMed  CAS  Google Scholar 

  24. Adelman B, Michelson AD, Loscalzo J, Greenberg J, Handin RI. Plasmin effect on platelet glycoprotein ib-von Willebrand factor interactions. Blood. 1985;65:32–40.

    PubMed  CAS  Google Scholar 

  25. Sidelmann JJ, Gram J, Jespersen J, Kluft C. Fibrin clot formation and lysis: basic mechanisms. Semin Thromb Hemost. 2000;26:605–18.

    PubMed  CAS  Google Scholar 

  26. Singh I, Burnand KG, Collins M, et al. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation. 2003;107:869–75.

    PubMed  CAS  Google Scholar 

  27. Hassouna HI. Laboratory evaluation of hemostatic disorders. Hematol Oncol Clin North Am. 1993;7:1161–249.

    PubMed  CAS  Google Scholar 

  28. Palareti G, Cosmi B, Legnani C, et al. D-dimer testing to determine the duration of anticoagulation therapy. N Engl J Med. 2006;355:1780–9.

    PubMed  CAS  Google Scholar 

  29. Ljungner H, Bergqvist D. Decreased fibrinolytic activity in the bottom of human vein valve pockets. Vasa. 1983;12:333–6.

    PubMed  CAS  Google Scholar 

  30. Dano K, Andreasen PA, Grondahl-Hansen J, et al. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266.

    PubMed  CAS  Google Scholar 

  31. Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med. 2000;342:1792–801.

    PubMed  CAS  Google Scholar 

  32. Booth NA, Simpson AJ, Croll A, et al. Plasminogen activator inhibitor (pai-1) in plasma and platelets. Br J Haematol. 1988;70:327–33.

    PubMed  CAS  Google Scholar 

  33. Eitzman DT, Westrick RJ, Nabel EG, Ginsburg D. Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice. Blood. 2000;95:577–80.

    PubMed  CAS  Google Scholar 

  34. Myers Jr D, Farris D, Hawley A, Wrobleski S, Chapman A, Stoolman L, Knibbs R, Strieter R, Wakefield T. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J Surg Res. 2002;108:212–21.

    PubMed  CAS  Google Scholar 

  35. Myers DD, Hawley AE, Farris DM, et al. P-selectin and leukocyte microparticles are associated with venous thrombogenesis. J Vasc Surg. 2003;38:1075–89.

    PubMed  Google Scholar 

  36. Myers DD, Wrobleski SK, Henke PK, Wakefield TW. Coagulation biology. In: Souba WW, Wilmore DW, editors. Surgical research. San Diego, CA: Academic; 2001:xxxii, 1460 p

    Google Scholar 

  37. Singh I, Smith A, Vanzieleghem B, et al. Antithrombotic effects of controlled inhibition of factor viii with a partially inhibitory human monoclonal antibody in a murine vena cava thrombosis model. Blood. 2002;99:3235–40.

    PubMed  CAS  Google Scholar 

  38. Pierangeli SS, Barker JH, Stikovac D, et al. Effect of human igg antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost. 1994;71:670–4.

    PubMed  CAS  Google Scholar 

  39. Pierangeli SS, Liu XW, Barker JH, Anderson G, Harris EN. Induction of thrombosis in a mouse model by igg, igm and iga immunoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost. 1995;74:1361–7.

    PubMed  CAS  Google Scholar 

  40. Cooley BC, Szema L, Chen CY, Schwab JP, Schmeling G. A murine model of deep vein thrombosis: characterization and validation in transgenic mice. Thromb Haemost. 2005;94:498–503.

    PubMed  CAS  Google Scholar 

  41. Diaz JA, Hawley AE, Alvarado CM, et al. Thrombogenesis with continuous blood flow in the inferior vena cava. A novel mouse model. Thromb Haemost. 2010;104:366–75.

    PubMed  CAS  Google Scholar 

  42. Day SM, Reeve JL, Myers DD, Fay WP. Murine thrombosis models. Thromb Haemost. 2004;92:486–94.

    PubMed  CAS  Google Scholar 

  43. Moore R, Hawley A, Sigler R, et al. Tissue inhibitor of metalloproteinase-1 is an early marker of acute endothelial dysfunction in a rodent model of venous oxidative injury. Ann Vasc Surg. 2009;23:498–505.

    PubMed  Google Scholar 

  44. Henke PK, Varga A, De S, et al. Deep vein thrombosis resolution is modulated by monocyte cxcr2-mediated activity in a mouse model. Arterioscler Thromb Vasc Biol. 2004;24:1130–7.

    PubMed  CAS  Google Scholar 

  45. Myers Jr DD, Rectenwald JE, Bedard PW, et al. Decreased venous thrombosis with an oral inhibitor of p selectin. J Vasc Surg. 2005;42:329–36.

    PubMed  Google Scholar 

  46. Wojcik BM, Wrobleski SK, Hawley AE, Wakefield TW, Myers Jr DD, Diaz JA. Interleukin-6: a potential target for post-thrombotic syndrome. Ann Vasc Surg. 2011;25:229–39.

    PubMed  Google Scholar 

  47. Burnand KG, Gaffney PJ, McGuinness CL, Humphries J, Quarmby JW, Smith A. The role of the monocyte in the generation and dissolution of arterial and venous thrombi. Cardiovasc Surg. 1998;6:119–25.

    PubMed  CAS  Google Scholar 

  48. Pierangeli SS, Liu SW, Anderson G, Barker JH, Harris EN. Thrombogenic properties of murine anti-cardiolipin antibodies induced by beta 2 glycoprotein 1 and human immunoglobulin g antiphospholipid antibodies. Circulation. 1996;94:1746–51.

    PubMed  CAS  Google Scholar 

  49. Henke PK, Wakefield T. Thrombus resolution and vein wall injury: dependence on chemokines and leukocytes. Thromb Res. 2009;123 Suppl 4:S72–8.

    PubMed  CAS  Google Scholar 

  50. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res. 2007;101:234–47.

    PubMed  CAS  Google Scholar 

  51. Roumen-Klappe EM, Janssen MC, Van Rossum J, et al. Inflammation in deep vein thrombosis and the development of post-thrombotic syndrome: a prospective study. J Thromb Haemost. 2009;7:582–7.

    PubMed  CAS  Google Scholar 

  52. Wakefield TW, Linn MJ, Henke PK, et al. Neovascularization during venous thrombosis organization: a preliminary study. J Vasc Surg. 1999;30:885–92.

    PubMed  CAS  Google Scholar 

  53. Wakefield TW, Strieter RM, Schaub R, et al. Venous thrombosis prophylaxis by inflammatory inhibition without anticoagulation therapy. J Vasc Surg. 2000;31:309–24.

    PubMed  CAS  Google Scholar 

  54. Henke PK, Varma MR, Deatrick KB, et al. Neutrophils modulate post-thrombotic vein wall remodeling but not thrombus neovascularization. Thromb Haemost. 2006;95:272–81.

    PubMed  CAS  Google Scholar 

  55. Varma MR, Varga AJ, Knipp BS, et al. Neutropenia impairs venous thrombosis resolution in the rat. J Vasc Surg. 2003;38:1090–8.

    PubMed  Google Scholar 

  56. Eriksson EE, Karlof E, Lundmark K, Rotzius P, Hedin U, Xie X. Powerful inflammatory properties of large vein endothelium in vivo. Arterioscler Thromb Vasc Biol. 2005;25:723–8.

    PubMed  CAS  Google Scholar 

  57. Esmon CT. Inflammation and thrombosis. J Thromb Haemost. 2003;1:1343–8.

    PubMed  CAS  Google Scholar 

  58. Ridker PM, Buring JE, Rifai N. Soluble p-selectin and the risk of future cardiovascular events. Circulation. 2001;103:491–5.

    PubMed  CAS  Google Scholar 

  59. Takada M, Nadeau KC, Shaw GD, Marquette KA, Tilney NL. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble p-selectin ligand. J Clin Invest. 1997;99:2682–90.

    PubMed  CAS  Google Scholar 

  60. McEver RP, Cummings RD. Perspectives series: cell adhesion in vascular biology. Role of psgl-1 binding to selectins in leukocyte recruitment. J Clin Invest. 1997;100:485–91.

    PubMed  CAS  Google Scholar 

  61. Rauch U, Bonderman D, Bohrmann B, et al. Transfer of tissue factor from leukocytes to platelets is mediated by cd15 and tissue factor. Blood. 2000;96:170–5.

    PubMed  CAS  Google Scholar 

  62. Myers Jr DD, Schaub R, Wrobleski SK, et al. P-selectin antagonism causes dose-dependent venous thrombosis inhibition. Thromb Haemost. 2001;85:423–9.

    PubMed  CAS  Google Scholar 

  63. Sullivan VV, Hawley AE, Farris DM, et al. Decrease in fibrin content of venous thrombi in selectin-deficient mice. J Surg Res. 2003;109:1–7.

    PubMed  CAS  Google Scholar 

  64. Myers DD, Wakefiend TW. Inflammation dependent thrombosis. Front Biosci. 2005;10:2750–7.

    PubMed  CAS  Google Scholar 

  65. Walenga JM, Jeske WP, Messmore HL. Mechanisms of venous and arterial thrombosis in heparin-induced thrombocytopenia. J Thromb Thrombolysis. 2000;10 Suppl 1:13–20.

    PubMed  Google Scholar 

  66. Kumar A, Villani MP, Patel UK, Keith Jr JC, Schaub RG. Recombinant soluble form of psgl-1 accelerates thrombolysis and prevents reocclusion in a porcine model. Circulation. 1999;99:1363–9.

    PubMed  CAS  Google Scholar 

  67. Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a jnk1 signaling pathway. J Biol Chem. 1999;274:23111–8.

    PubMed  CAS  Google Scholar 

  68. Sabatier F, Roux V, Anfosso F, Camoin L, Sampol J, Dignat-George F. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood. 2002;99:3962–70.

    PubMed  CAS  Google Scholar 

  69. Forlow SB, McEver RP, Nollert MU. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood. 2000;95:1317–23.

    PubMed  CAS  Google Scholar 

  70. Kirchhofer D, Tschopp TB, Steiner B, Baumgartner HR. Role of collagen-adherent platelets in mediating fibrin formation in flowing whole blood. Blood. 1995;86:3815–22.

    PubMed  CAS  Google Scholar 

  71. Breimo ES, Osterud B. Generation of tissue factor-rich microparticles in an ex vivo whole blood model. Blood Coagul Fibrinolysis. 2005;16:399–405.

    PubMed  CAS  Google Scholar 

  72. Hrachovinova I, Cambien B, Hafezi-Moghadam A, et al. Interaction of p-selectin and psgl-1 generates microparticles that correct hemostasis in a mouse model of hemophilia a. Nat Med. 2003;9:1020–5.

    PubMed  CAS  Google Scholar 

  73. Vandendries ER, Furie BC, Furie B. Role of p-selectin and psgl-1 in coagulation and thrombosis. Thromb Haemost. 2004;92:459–66.

    PubMed  CAS  Google Scholar 

  74. Jilma B, Kovar FM, Hron G, et al. Homozygosity in the single nucleotide polymorphism ser128arg in the e-selectin gene associated with recurrent venous thromboembolism. Arch Intern Med. 2006;166:1655–9.

    PubMed  CAS  Google Scholar 

  75. Ruvelle BM, Scott D, Beck PJ. Single amino acid residues in the e- and p-selectin epidermal growth factor domains can determine carbohydrate binding specificity. J Biol Chem. 1996;271:16160–70.

    Google Scholar 

  76. Rao RM, Clarke JL, Ortlepp S, Robinson MK, Landis RC, Haskard DO. The s128r polymorphism of e-selectin mediates neuraminidase-resistant tethering of myeloid cells under shear flow. Eur J Immunol. 2002;32:251–60.

    PubMed  CAS  Google Scholar 

  77. Yoshida M, Takano Y, Sasaoka T, Izumi T, Kimura A. E-selectin polymorphism associated with myocardial infarction causes enhanced leukocyte-endothelial interactions under flow conditions. Arterioscler Thromb Vasc Biol. 2003;23:783–8.

    PubMed  CAS  Google Scholar 

  78. Wenzel K, Blackburn A, Ernst M, et al. Relationship of polymorphisms in the renin-angiotensin system and in e-selectin of patients with early severe coronary heart disease. J Mol Med. 1997;75:57–61.

    PubMed  CAS  Google Scholar 

  79. Ghilardi G, Biondi ML, Turri O, Guagnellini E, Scorza R. Ser128arg gene polymorphism for e-selectin and severity of atherosclerotic arterial disease. J Cardiovasc Surg (Torino). 2004;45:143–7.

    CAS  Google Scholar 

  80. Ellsworth DL, Bielak LF, Turner ST, Sheedy 2nd PF, Boerwinkle E, Peyser PA. Gender- and age-dependent relationships between the e-selectin s128r polymorphism and coronary artery calcification. J Mol Med. 2001;79:390–8.

    PubMed  CAS  Google Scholar 

  81. Mlekusch W, Exner M, Schillinger M, et al. E-selectin and restenosis after femoropopliteal angioplasty: prognostic impact of the ser128arg genotype and plasma levels. Thromb Haemost. 2004;91:171–9.

    PubMed  CAS  Google Scholar 

  82. Jilma B, Marsik C, Kovar F, Wagner OF, Jilma-Stohlawetz P, Endler G. The single nucleotide polymorphism ser128arg in the e-selectin gene is associated with enhanced coagulation during human endotoxemia. Blood. 2005;105:2380–3.

    PubMed  CAS  Google Scholar 

  83. Becker MD, O’Rourke LM, Blackman WS, Planck SR, Rosenbaum JT. Reduced leukocyte migration, but normal rolling and arrest, in interleukin-8 receptor homologue knockout mice. Invest Ophthalmol Vis Sci. 2000;41:1812–7.

    PubMed  CAS  Google Scholar 

  84. Yang Y, Loscalzo J. Regulation of tissue factor expression in human microvascular endothelial cells by nitric oxide. Circulation. 2000;101:2144–8.

    PubMed  CAS  Google Scholar 

  85. Gross PL, Aird WC. The endothelium and thrombosis. Semin Thromb Hemost. 2000;26:463–78.

    PubMed  CAS  Google Scholar 

  86. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158–73.

    PubMed  CAS  Google Scholar 

  87. Zhou J, May L, Liao P, Gross PL, Weitz JI. Inferior vena cava ligation rapidly induces tissue factor expression and venous thrombosis in rats. Arterioscler Thromb Vasc Biol. 2009;29:863–9.

    PubMed  CAS  Google Scholar 

  88. de Boer HC, Verseyden C, Ulfman LH, et al. Fibrin and activated platelets cooperatively guide stem cells to a vascular injury and promote differentiation towards an endothelial cell phenotype. Arterioscler Thromb Vasc Biol. 2006;26:1653–9.

    PubMed  Google Scholar 

  89. Henke PK, Comerota AJ. An update on etiology, prevention, and therapy of postthrombotic syndrome. J Vasc Surg. 2011;53:500–9.

    PubMed  Google Scholar 

  90. Meissner MH, Manzo RA, Bergelin RO, Markel A, Strandness Jr DE. Deep venous insufficiency: the relationship between lysis and subsequent reflux. J Vasc Surg. 1993;18:596–605. discussion 606–598.

    PubMed  CAS  Google Scholar 

  91. Killewich LA, Macko RF, Cox K, et al. Regression of proximal deep venous thrombosis is associated with fibrinolytic enhancement. J Vasc Surg. 1997;26:861–8.

    PubMed  CAS  Google Scholar 

  92. Wakefield TW, Strieter RM, Wilke CA, et al. Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15:258–68.

    PubMed  CAS  Google Scholar 

  93. Stewart GJ. Neutrophils and deep venous thrombosis. Haemostasis. 1993;23 Suppl 1:127–40.

    PubMed  Google Scholar 

  94. Varma MR, Moaveni DM, Dewyer NA, et al. Deep vein thrombosis resolution is not accelerated with increased neovascularization. J Vasc Surg. 2004;40:536–42.

    PubMed  Google Scholar 

  95. Sood V, Luke CE, Deatrick KB, et al. Urokinase plasminogen activator independent early experimental thrombus resolution: Mmp2 as an alternative mechanism. Thromb Haemost. 2010;104:1174–83.

    PubMed  CAS  Google Scholar 

  96. Ali T, Humphries J, Burnand K, et al. Monocyte recruitment in venous thrombus resolution. J Vasc Surg. 2006;43:601–8.

    PubMed  Google Scholar 

  97. Hogaboam CM, Steinhauser ML, Chensue SW, Kunkel SL. Novel roles for chemokines and fibroblasts in interstitial fibrosis. Kidney Int. 1998;54:2152–9.

    PubMed  CAS  Google Scholar 

  98. Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG. Monocyte chemotactic protein-1 (mcp-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg. 1999;30:894–9.

    PubMed  CAS  Google Scholar 

  99. Henke PK, Pearce CG, Moaveni DM, et al. Targeted deletion of ccr2 impairs deep vein thombosis resolution in a mouse model. J Immunol. 2006;177:3388–97.

    PubMed  CAS  Google Scholar 

  100. Barton GM. A calculated response: control of inflammation by the innate immune system. J Clin Invest. 2008;118:413–20.

    PubMed  CAS  Google Scholar 

  101. Henke PK, Mitsuya M, Luke CE, et al. Toll-like receptor 9 signaling is critical for early experimental deep vein thrombosis resolution. Arterioscler Thromb Vasc Biol. 2011;31:43–9.

    PubMed  CAS  Google Scholar 

  102. Modarai B, Burnand KG, Humphries J, Waltham M, Smith A. The role of neovascularisation in the resolution of venous thrombus. Thromb Haemost. 2005;93:801–9.

    PubMed  CAS  Google Scholar 

  103. Waltham M, Burnand KG, Collins M, McGuinness CL, Singh I, Smith A. Vascular endothelial growth factor enhances venous thrombus recanalisation and organisation. Thromb Haemost. 2003;89:169–76.

    PubMed  CAS  Google Scholar 

  104. Evans CE, Humphries J, Mattock K, et al. Hypoxia and upregulation of hypoxia-inducible factor 1{alpha} stimulate venous thrombus recanalization. Arterioscler Thromb Vasc Biol. 2010;30:2443–51.

    PubMed  CAS  Google Scholar 

  105. Modarai B, Burnand KG, Sawyer B, Smith A. Endothelial progenitor cells are recruited into resolving venous thrombi. Circulation. 2005;111:2645–53.

    PubMed  CAS  Google Scholar 

  106. Henke PK, Varma MR, Moaveni DK, et al. Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis. Thromb Haemost. 2007;98:1045–55.

    PubMed  CAS  Google Scholar 

  107. Myers Jr DD, Henke PK, Bedard PW, et al. Treatment with an oral small molecule inhibitor of p selectin (psi-697) decreases vein wall injury in a rat stenosis model of venous thrombosis. J Vasc Surg. 2006;44:625–32.

    PubMed  Google Scholar 

  108. Grainger DJ, Wakefield L, Bethell HW, Farndale RW, Metcalfe JC. Release and activation of platelet latent tgfb in blood clots during dissolution with plasmin. Nature Med. 1995;1:932–7.

    PubMed  CAS  Google Scholar 

  109. Deatrick KB, Eliason JL, Lynch EM, et al. Vein wall remodeling after deep vein thrombosis involves matrix metalloproteinases and late fibrosis in a mouse model. J Vasc Surg. 2005;42:140–8.

    PubMed  Google Scholar 

  110. Roumen-Klappe EM, den Heijer M, van Uum SH, et al. Inflammatory response in the acute phase of deep vein thrombosis. J Vasc Surg. 2002;35:701–6.

    PubMed  Google Scholar 

  111. Shbaklo H, Holcroft CA, Kahn SR. Levels of inflammatory markers and the development of the post-thrombotic syndrome. Thromb Haemost. 2009;101:505–12.

    PubMed  CAS  Google Scholar 

  112. Moaveni DK, Lynch EM, Luke C, et al. Vein wall re-endothelialization after deep vein thrombosis is improved with low-molecular-weight heparin. J Vasc Surg. 2008;47:616–24.

    PubMed  Google Scholar 

  113. Stenberg B, Bylock A, Risberg B. Effect of venous stasis on vessel wall fibrinolysis. Thromb Haemost. 1984;51:240–2.

    PubMed  CAS  Google Scholar 

  114. Deroo S, Deatrick KB, Henke PK. The vessel wall: a forgotten player in post thrombotic syndrome. Thromb Haemost. 2010;104:681–92.

    PubMed  CAS  Google Scholar 

  115. Glynn RJ, Danielson E, Fonseca FA, et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med. 2009;360:1851–61.

    PubMed  CAS  Google Scholar 

  116. Schulman S, Wiman B. The significance of hypofibrinolysis for the risk of recurrence of venous thromboembolism. Duration of anticoagulation (durac) trial study group. Thromb Haemost. 1996;75:607–11.

    PubMed  CAS  Google Scholar 

  117. Crowther MA, Roberts J, Roberts R, et al. Fibrinolytic variables in patients with recurrent venous thrombosis: a prospective cohort study. Thromb Haemost. 2001;85:390–4.

    PubMed  CAS  Google Scholar 

  118. Segui R, Estelles A, Mira Y, et al. Pai-1 promoter 4g/5g genotype as an additional risk factor for venous thrombosis in subjects with genetic thrombophilic defects. Br J Haematol. 2000;111:122–8.

    PubMed  CAS  Google Scholar 

  119. Zoller B, Garcia de Frutos P, Dahlback B. A common 4g allele in the promoter of the plasminogen activator inhibitor-1 (pai-1) gene as a risk factor for pulmonary embolism and arterial thrombosis in hereditary protein s deficiency. Thromb Haemost. 1998;79:802–7.

    PubMed  CAS  Google Scholar 

  120. Gossage JA, Humphries J, Modarai B, Burnand KG, Smith A. Adenoviral urokinase-type plasminogen activator (upa) gene transfer enhances venous thrombus resolution. J Vasc Surg. 2006;44:1085–90.

    PubMed  Google Scholar 

  121. Engbers MJ, van Hylckama Vlieg A, Rosendaal FR. Venous thrombosis in the elderly: incidence, risk factors and risk groups. J Thromb Haemost. 2010;8:2105–12.

    PubMed  CAS  Google Scholar 

  122. Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev. 2009;23:225–9.

    PubMed  Google Scholar 

  123. Wilkerson WR, Sane DC. Aging and thrombosis. Semin Thromb Hemost. 2002;28:555–68.

    PubMed  CAS  Google Scholar 

  124. Chopard RP, Miranda Neto MH, Biazotto W, Molinari SL. Age-related changes in the human renal veins and their valves. Ital J Anat Embryol. 1994;99:91–101.

    PubMed  CAS  Google Scholar 

  125. Brooks EG, Trotman W, Wadsworth MP, et al. Valves of the deep venous system: an overlooked risk factor. Blood. 2009;114:1276–9.

    PubMed  CAS  Google Scholar 

  126. Yamamoto K, Takeshita K, Kojima T, Takamatsu J, Saito H. Aging and plasminogen activator inhibitor-1 (pai-1) regulation: implication in the pathogenesis of thrombotic disorders in the elderly. Cardiovasc Res. 2005;66:276–85.

    PubMed  CAS  Google Scholar 

  127. Yamamoto K, Takeshita K, Shimokawa T, et al. Plasminogen activator inhibitor-1 is a major stress-regulated gene: implications for stress-induced thrombosis in aged individuals. Proc Natl Acad Sci U S A. 2002;99:890–5.

    PubMed  CAS  Google Scholar 

  128. Mari D, Coppola R, Provenzano R. Hemostasis factors and aging. Exp Gerontol. 2008;43:66–73.

    PubMed  CAS  Google Scholar 

  129. Takeshita K, Yamamoto K, Ito M, et al. Increased expression of plasminogen activator inhibitor-1 with fibrin deposition in a murine model of aging, “klotho” mouse. Semin Thromb Hemost. 2002;28:545–54.

    PubMed  CAS  Google Scholar 

  130. Hashimoto Y, Kobayashi A, Yamazaki N, Sugawara Y, Takada Y, Takada A. Relationship between age and plasma t-PA, PA-inhibitor, and PA activity. Thromb Res. 1987;46:625–33.

    PubMed  CAS  Google Scholar 

  131. McDonald AP, Meier TR, Hawley AE, et al. Aging is associated with impaired thrombus resolution in a mouse model of stasis induced thrombosis. Thromb Res. 2010;125:72–8.

    PubMed  CAS  Google Scholar 

  132. Downing LJ, Wakefield TW, Strieter RM, et al. Anti-p-selectin antibody decreases inflammation and thrombus formation in venous thrombosis. J Vasc Surg. 1997;25:816–27. discussion 828.

    PubMed  CAS  Google Scholar 

  133. Myers D, Wrobleski S, Londy F, et al. New and effective treatment of experimentally induced venous thrombosis with anti-inflammatory rpsgl-ig. Thromb Haemost. 2002;87:374–82.

    PubMed  CAS  Google Scholar 

  134. Myers Jr DD, Wrobleski SK, Longo C, et al. Resolution of venous thrombosis using a novel oral small-molecule inhibitor of p-selectin (psi-697) without anticoagulation. Thromb Haemost. 2007;97:400–7.

    PubMed  CAS  Google Scholar 

  135. Meier TR, Myers Jr DD, Wrobleski SK, et al. Prophylactic p-selectin inhibition with psi-421 promotes resolution of venous thrombosis without anticoagulation. Thromb Haemost. 2008;99:343–51.

    PubMed  CAS  Google Scholar 

  136. Meier T, Myers Jr DD, Wrobleski SK, Zajkowski PJ, Hawley AE. Prophylactic p-selectin inhibition with psi-421 promotes resolution of venous thrombosis without anticoagulation. Thromb Haemost. 2008;99:343–51.

    PubMed  CAS  Google Scholar 

  137. Falati S, Liu Q, Gross P, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle p-selectin glycoprotein ligand 1 and platelet p-selectin. J Exp Med. 2003;197:1585–98.

    PubMed  CAS  Google Scholar 

  138. Toombs CF, DeGraaf GL, Martin JP, Geng JG, Anderson DC, Shebuski RJ. Pretreatment with a blocking monoclonal antibody to p-selectin accelerates pharmacological thrombolysis in a primate model of arterial thrombosis. J Pharmacol Exp Ther. 1995;275:941–9.

    PubMed  CAS  Google Scholar 

  139. Palabrica T, Lobb R, Furie BC, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by p-selectin on adherent platelets. Nature. 1992;359:848–51.

    PubMed  CAS  Google Scholar 

  140. Biro E, Sturk-Maquelin KN, Vogel GM, et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost. 2003;1:2561–8.

    PubMed  CAS  Google Scholar 

  141. Blann AD, Noteboom WM, Rosendaal FR. Increased soluble p-selectin levels following deep venous thrombosis: cause or effect? Br J Haematol. 2000;108:191–3.

    PubMed  CAS  Google Scholar 

  142. Yang LC, Wang CJ, Lee TH, et al. Early diagnosis of deep vein thrombosis in female patients who undergo total knee arthroplasty with measurement of p-selectin activation. J Vasc Surg. 2002;35:707–12.

    PubMed  CAS  Google Scholar 

  143. Bucek RA, Reiter M, Quehenberger P, Minar E, Baghestanian M. The role of soluble cell adhesion molecules in patients with suspected deep vein thrombosis. Blood Coagul Fibrinolysis. 2003;14:653–7.

    PubMed  CAS  Google Scholar 

  144. Papalambros E, Sigala F, Travlou A, Bastounis E, Mirilas P. P-selectin and antibodies against heparin-platelet factor 4 in patients with venous or arterial diseases after a 7-day heparin treatment. J Am Coll Surg. 2004;199:69–77.

    PubMed  Google Scholar 

  145. Motykie GD, Zebala LP, Caprini JA, et al. A guide to venous thromboembolism risk factor assessment. J Thromb Thrombolysis. 2000;9:253–62.

    PubMed  CAS  Google Scholar 

  146. Wells PS, Anderson DR, Rodger M, et al. Evaluation of d-dimer in the diagnosis of suspected deep-vein thrombosis. N Engl J Med. 2003;349:1227–35.

    PubMed  CAS  Google Scholar 

  147. Ramacciotti E, Clark M, Sadeghi N, et al. Contaminants in heparin: review of the literature, molecular profiling, and clinical implications. Clin Appl Thromb Hemost. 2011;17:425–31.

    PubMed  CAS  Google Scholar 

  148. Cihan AY, Jungbauer LV, Sailer T, Tengler T, Koder S, Kaider A. High levels of soluble p-selectin are associated with the risk of venous thromboembolism and the p-selectin. Blood. 2006;108:555–68.

    Google Scholar 

  149. Kyrle PA, Hron G, Eichinger S, Wagner O. Circulating p-selectin and the risk of recurrent venous thromboembolism. Thromb Haemost. 2007;97:880–3.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Henke MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henke, P.K., Diaz, J.A., Myers, D.D., Wakefield, T.W. (2012). Recent Insights into the Molecular and Cellular Contributions to Venous Thrombosis. In: Homeister, J., Willis, M. (eds) Molecular and Translational Vascular Medicine. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-906-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-906-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-905-1

  • Online ISBN: 978-1-61779-906-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics