Skip to main content

Ghrelin in Cachexia Associated with End-Stage Renal Disease

  • Chapter
  • First Online:
  • 904 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 10))

Abstract

Much of the high mortality seen in chronic renal failure is due to a form of vascular disease which, unlike the overnutrition vascular disease of the general population, is closely associated with the development of malnutrition. Various micronutrient deficiencies occur, and are commonly treatment related, but a specific syndrome of energy malnutrition associated with unexplained activation of inflammatory mediators, is a common and early feature of renal failure, which is frequently refractory to nutritional supplementation. Many abnormalities of appetite hormones have been found in renal failure, and like obesity, renal malnutrition is increasingly understood as a disorder of appetite homeostasis, which therefore would respond best to manipulation of the appetite regulatory system—for example by administration of ghrelin. Reduced clearance by failing kidneys leads to accumulation of ghrelin, with elevated circulating levels of total ghrelin; however, a reduction in the acyl fraction has been found. Acyl ghrelin administration has been shown to increase energy intake in animal models of renal failure, and promising results have also been found with daily subcutaneous injections in dialysis patients over the course of a week. In addition, ghrelin is thought to have an anti-inflammatory effect, which may be therapeutically relevant in a syndrome in which inappropriate inflammation is a prominent feature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ansell D, Feehally J, Fogarty D, Tomson C, Williams AJ, Warwick G. The Renal Association UK Renal Registry. The 11th Annual Report. Bristol, UK; 2008.

    Google Scholar 

  2. Ansell D, Roderick P, Hodsman A, Ford D, Steenkamp R, Tomson C. Survival and causes of death of UK adult patients on renal replacement therapy in 2007: National and centre-specific analyses. Nephron Clin Pract. 2009;111(Suppl 1c):c113–39.

    PubMed  Google Scholar 

  3. Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–48.

    CAS  PubMed  Google Scholar 

  4. Iseki K, Yamazato M, Tozawa M, Takishita S. Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients. Kidney Int. 2002;61:1887–93.

    PubMed  Google Scholar 

  5. Fleischmann E, Teal N, Dudley J, May W, Bower JD, Salahudeen AK. Influence of excess weight on mortality and hospital stay in 1346 hemodialysis patients. Kidney Int. 1999;55:1560–7.

    CAS  PubMed  Google Scholar 

  6. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63:793–808.

    PubMed  Google Scholar 

  7. Russo D, Palmiero G, De Blasio AP, Balletta MM, Andreucci VE. Coronary artery calcification in patients with CRF not undergoing dialysis. Am J Kidney Dis. 2004;44:1024–30.

    PubMed  Google Scholar 

  8. Fox CS, Larson MG, Keyes MJ, et al. Kidney function is inversely associated with coronary artery calcification in men and women free of cardiovascular disease: the Framingham Heart Study. Kidney Int. 2004;66:2017–21.

    PubMed  Google Scholar 

  9. Harnett JD, Parfrey PS, Griffiths SM, Gault MH, Barre P, Guttmann RD. Left ventricular hypertrophy in end-stage renal disease. Nephron. 1988;48:107–15.

    CAS  PubMed  Google Scholar 

  10. Kutlay S, Dincer I, Sengul S, Nergizoglu G, Duman N, Erturk S. The long-term behavior and predictors of left ventricular hypertrophy in hemodialysis patients. Am J Kidney Dis. 2006;47:485–92.

    PubMed  Google Scholar 

  11. Herzog CA, Littrell K, Arko C, Frederick PD, Blaney M. Clinical characteristics of dialysis patients with acute myocardial infarction in the United States: a collaborative project of the United States Renal Data System and the National Registry of Myocardial Infarction. Circulation. 2007;116:1465–72.

    PubMed  Google Scholar 

  12. Stenvinkel P, Heimburger O, Paultre F, et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55:1899–911.

    CAS  PubMed  Google Scholar 

  13. Stompor T, Pasowicz M, Sullowicz W, et al. An association between coronary artery calcification score, lipid profile, and selected markers of chronic inflammation in ESRD patients treated with peritoneal dialysis. Am J Kidney Dis. 2003;41:203–11.

    PubMed  Google Scholar 

  14. Akashi YJ, Springer J, Anker SD. Cachexia in chronic heart failure: prognostic implications and novel therapeutic approaches. Curr Heart Fail Rep. 2005;2:198–203.

    PubMed  Google Scholar 

  15. Anker SD, Negassa A, Coats AJ, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361:1077–83.

    CAS  PubMed  Google Scholar 

  16. Davos CH, Doehner W, Rauchhaus M, et al. Body mass and survival in patients with chronic heart failure without cachexia: the importance of obesity. J Card Fail. 2003;9:29–35.

    PubMed  Google Scholar 

  17. Freeman LM, Roubenoff R. The nutrition implications of cardiac cachexia. Nutr Rev. 1994;52:340–7.

    CAS  PubMed  Google Scholar 

  18. Lavie CJ, Osman AF, Milani RV, Mehra MR. Body composition and prognosis in chronic systolic heart failure: the obesity paradox. Am J Cardiol. 2003;91:891–4.

    PubMed  Google Scholar 

  19. Veloso LG, de OM Jr, Munhoz RT, Morgado PC, Ramires JA, Barretto AC. Nutritional repercussion in advanced heart failure and its value in prognostic assessment. Arq Bras Cardiol. 2005;84:480–85.

    Google Scholar 

  20. Chailleux E, Laaban JP, Veale D. Prognostic value of nutritional depletion in patients with COPD treated by long-term oxygen therapy: data from the ANTADIR observatory. Chest. 2003;123:1460–6.

    PubMed  Google Scholar 

  21. Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160:1856–61.

    CAS  PubMed  Google Scholar 

  22. Schols AM, Broekhuizen R, Weling-Scheepers CA, Wouters EF. Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr. 2005;82:53–9.

    CAS  PubMed  Google Scholar 

  23. Alberino F, Gatta A, Amodio P, et al. Nutrition and survival in patients with liver cirrhosis. Nutrition. 2001;17:445–50.

    CAS  PubMed  Google Scholar 

  24. Escalante A, Haas RW, del Rincon I. Paradoxical effect of body mass index on survival in rheumatoid arthritis: role of comorbidity and systemic inflammation. Arch Intern Med. 2005;165:1624–9.

    PubMed  Google Scholar 

  25. Kremers HM, Nicola PJ, Crowson CS, Ballman KV, Gabriel SE. Prognostic importance of low body mass index in relation to cardiovascular mortality in rheumatoid arthritis. Arthritis Rheum. 2004;50:3450–7.

    PubMed  Google Scholar 

  26. Barber MD, Ross JA, Fearon KC. Changes in nutritional, functional, and inflammatory markers in advanced pancreatic cancer. Nutr Cancer. 1999;35:106–10.

    CAS  PubMed  Google Scholar 

  27. DeWys WD, Begg C, Lavin PT, et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med. 1980;69:491–7.

    CAS  PubMed  Google Scholar 

  28. Di FF, Lecleire S, Pop D, et al. Baseline nutritional status is predictive of response to treatment and survival in patients treated by definitive chemoradiotherapy for a locally advanced esophageal cancer. Am J Gastroenterol. 2007;102:2557–63.

    Google Scholar 

  29. Montgomery RB, Goldman B, Tangen CM, et al. Association of body mass index with response and survival in men with metastatic prostate cancer: Southwest Oncology Group trials 8894 and 9916. J Urol. 2007;178:1946–51.

    PubMed  Google Scholar 

  30. Temkin SM, Pezzullo JC, Hellmann M, Lee YC, Abulafia O. Is body mass index an independent risk factor of survival among patients with endometrial cancer? Am J Clin Oncol. 2007;30:8–14.

    PubMed  Google Scholar 

  31. Lis CG, Grutsch JF, Vashi PG, Lammersfeld CA. Is serum albumin an independent predictor of survival in patients with breast cancer? JPEN J Parenter Enteral Nutr. 2003;27:10–5.

    CAS  PubMed  Google Scholar 

  32. Whiteman MK, Hillis SD, Curtis KM, McDonald JA, Wingo PA, Marchbanks PA. Body mass and mortality after breast cancer diagnosis. Cancer Epidemiol Biomarkers Prev. 2005;14:2009–14.

    PubMed  Google Scholar 

  33. Acchiardo SR, Moore LW, Latour PA. Malnutrition as the main factor in morbidity and mortality of hemodialysis patients. Kidney Int Suppl. 1983;16:S199–203.

    CAS  PubMed  Google Scholar 

  34. Degoulet P, Legrain M, Reach I, et al. Mortality risk factors in patients treated by chronic hemodialysis. Report of the Diaphane collaborative study. Nephron. 1982;31:103–10.

    CAS  PubMed  Google Scholar 

  35. Shinaberger CS, Kilpatrick RD, Regidor DL, et al. Longitudinal associations between dietary protein intake and survival in hemodialysis patients. Am J Kidney Dis. 2006;48:37–49.

    PubMed  Google Scholar 

  36. Port FK, Ashby VB, Dhingra RK, Roys EC, Wolfe RA. Dialysis dose and body mass index are strongly associated with survival in hemodialysis patients. J Am Soc Nephrol. 2002;13:1061–6.

    PubMed  Google Scholar 

  37. Garg AX, Blake PG, Clark WF, Clase CM, Haynes RB, Moist LM. Association between renal insufficiency and malnutrition in older adults: results from the NHANES III. Kidney Int. 2001;60:1867–74.

    CAS  PubMed  Google Scholar 

  38. Kopple JD, Greene T, Chumlea WC, et al. Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int. 2000;57:1688–703.

    CAS  PubMed  Google Scholar 

  39. Chazot C, Laurent G, Charra B, et al. Malnutrition in long-term haemodialysis survivors. Nephrol Dial Transplant. 2001;16:61–9.

    CAS  PubMed  Google Scholar 

  40. Leavey SF, McCullough K, Hecking E, Goodkin D, Port FK, Young EW. Body mass index and mortality in “healthier” as compared with “sicker” haemodialysis patients: results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant. 2001;16:2386–94.

    CAS  PubMed  Google Scholar 

  41. O’Sullivan AJ, Lawson JA, Chan M, Kelly JJ. Body composition and energy metabolism in chronic renal insufficiency. Am J Kidney Dis. 2002;39:369–75.

    PubMed  Google Scholar 

  42. Beddhu S, Pappas LM, Ramkumar N, Samore M. Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol. 2003;14:2366–72.

    PubMed  Google Scholar 

  43. Kakiya R, Shoji T, Tsujimoto Y, et al. Body fat mass and lean mass as predictors of survival in hemodialysis patients. Kidney Int. 2006;70:549–56.

    CAS  PubMed  Google Scholar 

  44. Maggiore Q, Nigrelli S, Ciccarelli C, Grimaldi C, Rossi GA, Michelassi C. Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int. 1996;50:2103–8.

    CAS  PubMed  Google Scholar 

  45. Pifer TB, McCullough KP, Port FK, et al. Mortality risk in hemodialysis patients and changes in nutritional indicators: DOPPS. Kidney Int. 2002;62:2238–45.

    PubMed  Google Scholar 

  46. Mittman N, Avram MM, Oo KK, Chattopadhyay J. Serum prealbumin predicts survival in hemodialysis and peritoneal dialysis: 10 years of prospective observation. Am J Kidney Dis. 2001;38:1358–64.

    CAS  PubMed  Google Scholar 

  47. Avram MM, Sreedhara R, Fein P, Oo KK, Chattopadhyay J, Mittman N. Survival on hemodialysis and peritoneal dialysis over 12 years with emphasis on nutritional parameters. Am J Kidney Dis. 2001;37:S77–80.

    CAS  PubMed  Google Scholar 

  48. Kalantar-Zadeh K, Block G, McAllister CJ, Humphreys MH, Kopple JD. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am J Clin Nutr. 2004;80:299–307.

    CAS  PubMed  Google Scholar 

  49. Kamimura MA, Draibe SA, Avesani CM, Canziani ME, Colugnati FA, Cuppari L. Resting energy expenditure and its determinants in hemodialysis patients. Eur J Clin Nutr. 2007;61:362–7.

    CAS  PubMed  Google Scholar 

  50. Wang AY, Sea MM, Tang N, et al. Resting energy expenditure and subsequent mortality risk in peritoneal dialysis patients. J Am Soc Nephrol. 2004;15:3134–43.

    PubMed  Google Scholar 

  51. Morena M, Cristol JP, Bosc JY, et al. Convective and diffusive losses of vitamin C during haemodiafiltration session: a contributive factor to oxidative stress in haemodialysis patients. Nephrol Dial Transplant. 2002;17:422–7.

    CAS  PubMed  Google Scholar 

  52. DeBari VA, Frank O, Baker H, Needle MA. Water soluble vitamins in granulocytes, erythrocytes, and plasma obtained from chronic hemodialysis patients. Am J Clin Nutr. 1984;39:410–5.

    CAS  PubMed  Google Scholar 

  53. Descombes E, Boulat O, Perriard F, Fellay G. Water-soluble vitamin levels in patients undergoing high-flux hemodialysis and receiving long-term oral postdialysis vitamin supplementation. Artif Organs. 2000;24:773–8.

    CAS  PubMed  Google Scholar 

  54. Deicher R, Ziai F, Bieglmayer C, Schillinger M, Horl WH. Low total vitamin C plasma level is a risk factor for cardiovascular morbidity and mortality in hemodialysis patients. J Am Soc Nephrol. 2005;16:1811–8.

    CAS  PubMed  Google Scholar 

  55. Keven K, Kutlay S, Nergizoglu G, Erturk S. Randomized, crossover study of the effect of vitamin C on EPO response in hemodialysis patients. Am J Kidney Dis. 2003;41:1233–9.

    CAS  PubMed  Google Scholar 

  56. Tarng DC, Wei YH, Huang TP, Kuo BI, Yang WC. Intravenous ascorbic acid as an adjuvant therapy for recombinant erythropoietin in hemodialysis patients with hyperferritinemia. Kidney Int. 1999;55:2477–86.

    CAS  PubMed  Google Scholar 

  57. Foote JW, Hinks LJ. Reduced leucocyte zinc and albumin-bound zinc in blood of haemodialysis patients. Ann Clin Biochem. 1987;24(Pt 2):198–202.

    PubMed  Google Scholar 

  58. Muirhead N, Kertesz A, Flanagan PR, Hodsman AB, Hollomby DJ, Valberg LS. Zinc metabolism in patients on maintenance hemodialysis. Am J Nephrol. 1986;6:422–6.

    CAS  PubMed  Google Scholar 

  59. Antoniou LD, Shalhoub RJ, Sudhakar T, Smith Jr JC. Reversal of uraemic impotence by zinc. Lancet. 1977;2:895–8.

    CAS  PubMed  Google Scholar 

  60. Mahajan SK, Abbasi AA, Prasad AS, Rabbani P, Briggs WA, McDonald FD. Effect of oral zinc therapy on gonadal function in hemodialysis patients. A double-blind study. Ann Intern Med. 1982;97:357–61.

    CAS  PubMed  Google Scholar 

  61. Sprenger KB, Bundschu D, Lewis K, Spohn B, Schmitz J, Franz HE. Improvement of uremic neuropathy and hypogeusia by dialysate zinc supplementation: a double-blind study. Kidney Int Suppl. 1983;16:S315–8.

    CAS  PubMed  Google Scholar 

  62. Fukushima T, Horike H, Fujiki S, Kitada S, Sasaki T, Kashihara N. Zinc deficiency anemia and effects of zinc therapy in maintenance hemodialysis patients. Ther Apher Dial. 2009;13:213–9.

    CAS  PubMed  Google Scholar 

  63. Rashidi AA, Salehi M, Piroozmand A, Sagheb MM. Effects of zinc supplementation on serum zinc and c-reactive protein concentrations in hemodialysis patients. J Ren Nutr. 2009;19:475–8.

    CAS  PubMed  Google Scholar 

  64. Rebouche CJ. Carnitine function and requirements during the life cycle. FASEB J. 1992;6:3379–86.

    CAS  PubMed  Google Scholar 

  65. Nezu J, Tamai I, Oku A, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999;21:91–4.

    CAS  PubMed  Google Scholar 

  66. Bohmer T, Bergrem H, Eiklid K. Carnitine deficiency induced during intermittent haemodialysis for renal failure. Lancet. 1978;1:126–8.

    CAS  PubMed  Google Scholar 

  67. Evans A. Dialysis-related carnitine disorder and levocarnitine pharmacology. Am J Kidney Dis. 2003;41:S13–26.

    CAS  PubMed  Google Scholar 

  68. Lacour B, Di GS, Chanard J, et al. Carnitine improves lipid anomalies in haemodialysis patients. Lancet. 1980;2:763–4.

    CAS  PubMed  Google Scholar 

  69. Kitamura Y, Satoh K, Satoh T, Takita M, Matsuura A. Effect of l-carnitine on erythroid colony formation in mouse bone marrow cells. Nephrol Dial Transplant. 2005;20:981–4.

    CAS  PubMed  Google Scholar 

  70. Matsumura M, Hatakeyama S, Koni I, Mabuchi H, Muramoto H. Correlation between serum carnitine levels and erythrocyte osmotic fragility in hemodialysis patients. Nephron. 1996;72:574–8.

    CAS  PubMed  Google Scholar 

  71. Reuter SE, Faull RJ, Ranieri E, Evans AM. Endogenous plasma carnitine pool composition and response to erythropoietin treatment in chronic haemodialysis patients. Nephrol Dial Transplant. 2009;24:990–6.

    CAS  PubMed  Google Scholar 

  72. Hurot JM, Cucherat M, Haugh M, Fouque D. Effects of l-carnitine supplementation in maintenance hemodialysis patients: a systematic review. J Am Soc Nephrol. 2002;13:708–14.

    CAS  PubMed  Google Scholar 

  73. Leon JB, Albert JM, Gilchrist G, et al. Improving albumin levels among hemodialysis patients: a community-based randomized controlled trial. Am J Kidney Dis. 2006;48:28–36.

    PubMed  Google Scholar 

  74. Michie HR, Sherman ML, Spriggs DR, Rounds J, Christie M, Wilmore DW. Chronic TNF infusion causes anorexia but not accelerated nitrogen loss. Ann Surg. 1989;209:19–24.

    CAS  PubMed  Google Scholar 

  75. Uehara A, Sekiya C, Takasugi Y, Namiki M, Arimura A. Anorexia induced by interleukin 1: involvement of corticotropin-releasing factor. Am J Physiol. 1989;257:R613–7.

    CAS  PubMed  Google Scholar 

  76. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394:897–901.

    CAS  PubMed  Google Scholar 

  77. Caglar K, Fedje L, Dimmitt R, Hakim RM, Shyr Y, Ikizler TA. Therapeutic effects of oral nutritional supplementation during hemodialysis. Kidney Int. 2002;62:1054–9.

    CAS  PubMed  Google Scholar 

  78. Brown WJ, Williams L, Ford JH, Ball K, Dobson AJ. Identifying the energy gap: magnitude and determinants of 5-year weight gain in midage women. Obes Res. 2005;13:1431–41.

    PubMed  Google Scholar 

  79. Diaz EO, Prentice AM, Goldberg GR, Murgatroyd PR, Coward WA. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. Am J Clin Nutr. 1992;56:641–55.

    CAS  PubMed  Google Scholar 

  80. Weigle DS. Appetite and the regulation of body composition. FASEB J. 1994;8:302–10.

    CAS  PubMed  Google Scholar 

  81. Cano NJ, Fouque D, Roth H, et al. Intradialytic parenteral nutrition does not improve survival in malnourished hemodialysis patients: a 2-year multicenter, prospective, randomized study. J Am Soc Nephrol. 2007;18:2583–91.

    CAS  PubMed  Google Scholar 

  82. Doehner W, Pflaum CD, Rauchhaus M, et al. Leptin, insulin sensitivity and growth hormone binding protein in chronic heart failure with and without cardiac cachexia. Eur J Endocrinol. 2001;145:727–35.

    CAS  PubMed  Google Scholar 

  83. Schulze PC, Kratzsch J, Linke A, et al. Elevated serum levels of leptin and soluble leptin receptor in patients with advanced chronic heart failure. Eur J Heart Fail. 2003;5:33–40.

    PubMed  Google Scholar 

  84. Heimburger O, Lonnqvist F, Danielsson A, Nordenstrom J, Stenvinkel P. Serum immunoreactive leptin concentration and its relation to the body fat content in chronic renal failure. J Am Soc Nephrol. 1997;8:1423–30.

    CAS  PubMed  Google Scholar 

  85. Howard JK, Lord GM, Clutterbuck EJ, Ghatei MA, Pusey CD, Bloom SR. Plasma immunoreactive leptin concentration in end-stage renal disease. Clin Sci (Lond). 1997;93:119–26.

    CAS  Google Scholar 

  86. le Roux CW, Ghatei MA, Gibbs JS, Bloom SR. The putative satiety hormone PYY is raised in cardiac cachexia associated with primary pulmonary hypertension. Heart. 2005;91:241–2.

    PubMed  Google Scholar 

  87. Johansen KL, Mulligan K, Tai V, Schambelan M. Leptin, body composition, and indices of malnutrition in patients on dialysis. J Am Soc Nephrol. 1998;9:1080–4.

    CAS  PubMed  Google Scholar 

  88. Young GA, Woodrow G, Kendall S, et al. Increased plasma leptin/fat ratio in patients with chronic renal failure: a cause of malnutrition? Nephrol Dial Transplant. 1997;12:2318–23.

    CAS  PubMed  Google Scholar 

  89. Daschner M, Tonshoff B, Blum WF, et al. Inappropriate elevation of serum leptin levels in children with chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. J Am Soc Nephrol. 1998;9:1074–9.

    CAS  PubMed  Google Scholar 

  90. Stenvinkel P, Lindholm B, Lonnqvist F, Katzarski K, Heimburger O. Increases in serum leptin levels during peritoneal dialysis are associated with inflammation and a decrease in lean body mass. J Am Soc Nephrol. 2000;11:1303–9.

    CAS  PubMed  Google Scholar 

  91. Odamaki M, Furuya R, Yoneyama T, et al. Association of the serum leptin concentration with weight loss in chronic hemodialysis patients. Am J Kidney Dis. 1999;33:361–8.

    CAS  PubMed  Google Scholar 

  92. Marks DL, Ling N, Cone RD. Role of the central melanocortin system in cachexia. Cancer Res. 2001;61:1432–8.

    CAS  PubMed  Google Scholar 

  93. Wisse BE, Frayo RS, Schwartz MW, Cummings DE. Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology. 2001;142:3292–301.

    CAS  PubMed  Google Scholar 

  94. Markison S, Foster AC, Chen C, et al. The regulation of feeding and metabolic rate and the prevention of murine cancer cachexia with a small-molecule melanocortin-4 receptor antagonist. Endocrinology. 2005;146:2766–73.

    CAS  PubMed  Google Scholar 

  95. Nicholson JR, Kohler G, Schaerer F, Senn C, Weyermann P, Hofbauer KG. Peripheral administration of a melanocortin 4-receptor inverse agonist prevents loss of lean body mass in tumor-bearing mice. J Pharmacol Exp Ther. 2006;317:771–7.

    CAS  PubMed  Google Scholar 

  96. Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. Role of leptin and melanocortin signaling in uremia-associated cachexia. J Clin Invest. 2005;115:1659–65.

    CAS  PubMed  Google Scholar 

  97. Guebre-Egziabher F, Bernhard J, Geelen G, Malvoisin E, Hadj-Aissa A, Fouque D. Leptin, adiponectin, and ghrelin dysregulation in chronic kidney disease. J Ren Nutr. 2005;15:116–20.

    PubMed  Google Scholar 

  98. Rodriguez AE, Pecoits-Filho R, Heimburger O, Lindholm B, Nordfors L, Stenvinkel P. Associations between plasma ghrelin levels and body composition in end-stage renal disease: a longitudinal study. Nephrol Dial Transplant. 2004;19:421–6.

    Google Scholar 

  99. Perez-Fontan M, Cordido F, Rodriguez-Carmona A, Peteiro J, Garcia-Naveiro R, Garcia-Buela J. Plasma ghrelin levels in patients undergoing haemodialysis and peritoneal dialysis. Nephrol Dial Transplant. 2004;19:2095–100.

    CAS  PubMed  Google Scholar 

  100. Chang CC, Hung CH, Yen CS, Hwang KL, Lin CY. The relationship of plasma ghrelin level to energy regulation, feeding and left ventricular function in non-diabetic haemodialysis patients. Nephrol Dial Transplant. 2005;20:2172–7.

    CAS  PubMed  Google Scholar 

  101. Yoshimoto A, Mori K, Sugawara A, et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol. 2002;13:2748–52.

    CAS  PubMed  Google Scholar 

  102. Asakawa A, Inui A, Fujimiya M, et al. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut. 2005;54:18–24.

    CAS  PubMed  Google Scholar 

  103. Hataya Y, Akamizu T, Hosoda H, et al. Alterations of plasma ghrelin levels in rats with lipopolysaccharide-induced wasting syndrome and effects of ghrelin treatment on the syndrome. Endocrinology. 2003;144:5365–71.

    CAS  PubMed  Google Scholar 

  104. Nagaya N, Uematsu M, Kojima M, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 2001;104:1430–5.

    CAS  PubMed  Google Scholar 

  105. DeBoer MD, Zhu XX, Levasseur P, et al. Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia. Endocrinology. 2007;148:3004–12.

    CAS  PubMed  Google Scholar 

  106. Wang W, Andersson M, Iresjo BM, Lonnroth C, Lundholm K. Effects of ghrelin on anorexia in tumor-bearing mice with eicosanoid-related cachexia. Int J Oncol. 2006;28:1393–400.

    CAS  PubMed  Google Scholar 

  107. DeBoer MD, Zhu X, Levasseur PR, et al. Ghrelin treatment of chronic kidney disease: improvements in lean body mass and cytokine profile. Endocrinology. 2008;149:827–35.

    CAS  PubMed  Google Scholar 

  108. Barazzoni R, Zhu X, Deboer M, et al. Combined effects of ghrelin and higher food intake enhance skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rats with chronic kidney disease. Kidney Int. 2010;77:23–8.

    CAS  PubMed  Google Scholar 

  109. Neary NM, Small CJ, Wren AM, et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004;89:2832–6.

    CAS  PubMed  Google Scholar 

  110. Nagaya N, Moriya J, Yasumura Y, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004;110:3674–9.

    CAS  PubMed  Google Scholar 

  111. Nagaya N, Itoh T, Murakami S, et al. Treatment of cachexia with ghrelin in patients with COPD. Chest. 2005;128:1187–93.

    CAS  PubMed  Google Scholar 

  112. Wynne K, Giannitsopoulou K, Small CJ, et al. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J Am Soc Nephrol. 2005;16:2111–8.

    CAS  PubMed  Google Scholar 

  113. Ashby DR, Ford HE, Wynne KJ, et al. Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int. 2009;76:199–206.

    CAS  PubMed  Google Scholar 

  114. Druce MR, Neary NM, Small CJ, et al. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int J Obes (Lond). 2006;30:293–6.

    CAS  Google Scholar 

  115. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science. 1999;283:212–4.

    CAS  PubMed  Google Scholar 

  116. Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30:1729–36.

    CAS  Google Scholar 

  117. Asakawa A, Inui A, Kaga T, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 2001;120:337–45.

    CAS  PubMed  Google Scholar 

  118. St-Pierre DH, Karelis AD, Cianflone K, et al. Relationship between ghrelin and energy expenditure in healthy young women. J Clin Endocrinol Metab. 2004;89:5993–7.

    CAS  PubMed  Google Scholar 

  119. Lin Y, Matsumura K, Fukuhara M, Kagiyama S, Fujii K, Iida M. Ghrelin acts at the nucleus of the solitary tract to decrease arterial pressure in rats. Hypertension. 2004;43:977–82.

    CAS  PubMed  Google Scholar 

  120. Shinde UA, Desai KM, Yu C, Gopalakrishnan V. Nitric oxide synthase inhibition exaggerates the hypotensive response to ghrelin: role of calcium-activated potassium channels. J Hypertens. 2005;23:779–84.

    CAS  PubMed  Google Scholar 

  121. Okumura H, Nagaya N, Enomoto M, Nakagawa E, Oya H, Kangawa K. Vasodilatory effect of ghrelin, an endogenous peptide from the stomach. J Cardiovasc Pharmacol. 2002;39:779–83.

    CAS  PubMed  Google Scholar 

  122. Nagaya N, Miyatake K, Uematsu M, et al. Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. J Clin Endocrinol Metab. 2001;86:5854–9.

    CAS  PubMed  Google Scholar 

  123. Nagaya N, Kojima M, Uematsu M, et al. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1483–7.

    CAS  PubMed  Google Scholar 

  124. Enomoto M, Nagaya N, Uematsu M, et al. Cardiovascular and hormonal effects of subcutaneous administration of ghrelin, a novel growth hormone-releasing peptide, in healthy humans. Clin Sci (Lond). 2003;105:431–5.

    CAS  Google Scholar 

  125. Li GZ, Jiang W, Zhao J, et al. Ghrelin blunted vascular calcification in vivo and in vitro in rats. Regul Pept. 2005;129:167–76.

    CAS  PubMed  Google Scholar 

  126. Yeun JY, Levine RA, Mantadilok V, Kaysen GA. C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis. 2000;35:469–76.

    CAS  PubMed  Google Scholar 

  127. Bologa RM, Levine DM, Parker TS, et al. Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis. 1998;32:107–14.

    CAS  PubMed  Google Scholar 

  128. Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med. 1977;296:769–74.

    CAS  PubMed  Google Scholar 

  129. Haubitz M, Brunkhorst R, Wrenger E, Froese P, Schulze M, Koch KM. Chronic induction of C-reactive protein by hemodialysis, but not by peritoneal dialysis therapy. Perit Dial Int. 1996;16:158–62.

    CAS  PubMed  Google Scholar 

  130. Andersen SR, Lambrecht LJ, Swan SK, et al. Disposition of recombinant human interleukin-10 in subjects with various degrees of renal function. J Clin Pharmacol. 1999;39:1015–20.

    CAS  PubMed  Google Scholar 

  131. Schindler R, Boenisch O, Fischer C, Frei U. Effect of the hemodialysis membrane on the inflammatory reaction in vivo. Clin Nephrol. 2000;53:452–9.

    CAS  PubMed  Google Scholar 

  132. Brunet P, Capo C, Dellacasagrande J, Thirion X, Mege JL, Berland Y. IL-10 synthesis and secretion by peripheral blood mononuclear cells in haemodialysis patients. Nephrol Dial Transplant. 1998;13:1745–51.

    CAS  PubMed  Google Scholar 

  133. Hattori N, Saito T, Yagyu T, Jiang BH, Kitagawa K, Inagaki C. GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J Clin Endocrinol Metab. 2001;86:4284–91.

    CAS  PubMed  Google Scholar 

  134. Dixit VD, Schaffer EM, Pyle RS, et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest. 2004;114:57–66.

    CAS  PubMed  Google Scholar 

  135. Gonzalez-Rey E, Chorny A, Delgado M. Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology. 2006;130:1707–20.

    CAS  PubMed  Google Scholar 

  136. Dembinski A, Warzecha Z, Ceranowicz P, et al. Ghrelin attenuates the development of acute pancreatitis in rat. J Physiol Pharmacol. 2003;54:561–73.

    CAS  PubMed  Google Scholar 

  137. Kasimay O, Iseri SO, Barlas A, et al. Ghrelin ameliorates pancreaticobiliary inflammation and associated remote organ injury in rats. Hepatol Res. 2006;36:11–9.

    CAS  PubMed  Google Scholar 

  138. Granado M, Priego T, Martin AI, Villanua MA, Lopez-Calderon A. Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats. Am J Physiol Endocrinol Metab. 2005;288:E486–92.

    CAS  PubMed  Google Scholar 

  139. Wu R, Dong W, Zhou M, et al. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med. 2007;176:805–13.

    CAS  PubMed  Google Scholar 

  140. Von Roenn JH, Murphy RL, Weber KM, Williams LM, Weitzman SA. Megestrol acetate for treatment of cachexia associated with human immunodeficiency virus (HIV) infection. Ann Intern Med. 1988;109:840–1.

    Google Scholar 

  141. Batterham MJ, Garsia R. A comparison of megestrol acetate, nandrolone decanoate and dietary counselling for HIV associated weight loss. Int J Androl. 2001;24:232–40.

    CAS  PubMed  Google Scholar 

  142. Vadell C, Segui MA, Gimenez-Arnau JM, et al. Anticachectic efficacy of megestrol acetate at different doses and versus placebo in patients with neoplastic cachexia. Am J Clin Oncol. 1998;21:347–51.

    CAS  PubMed  Google Scholar 

  143. Jatoi A, Rowland K, Loprinzi CL, et al. An eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated wasting: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J Clin Oncol. 2004;22:2469–76.

    CAS  PubMed  Google Scholar 

  144. Jatoi A, Windschitl HE, Loprinzi CL, et al. Dronabinol versus megestrol acetate versus combination therapy for cancer-associated anorexia: a North Central Cancer Treatment Group study. J Clin Oncol. 2002;20:567–73.

    CAS  PubMed  Google Scholar 

  145. Oster MH, Enders SR, Samuels SJ, et al. Megestrol acetate in patients with AIDS and cachexia. Ann Intern Med. 1994;121:400–8.

    CAS  PubMed  Google Scholar 

  146. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    CAS  PubMed  Google Scholar 

  147. Theander-Carrillo C, Wiedmer P, Cettour-Rose P, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest. 2006;116:1983–93.

    CAS  PubMed  Google Scholar 

  148. Vestergaard ET, Gormsen LC, Jessen N, et al. Ghrelin infusion in humans induces acute insulin resistance and lipolysis independent of GH-signaling. Diabetes. 2008;57:3205–10.

    CAS  PubMed  Google Scholar 

  149. Nass R, Pezzoli SS, Oliveri MC, et al. Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial. Ann Intern Med. 2008;149:601–11.

    PubMed  Google Scholar 

  150. Garcia JM, Polvino WJ. Effect on body weight and safety of RC-1291, a novel, orally available ghrelin mimetic and growth hormone secretagogue: results of a phase I, randomized, placebo-controlled, multiple-dose study in healthy volunteers. Oncologist. 2007;12:594–600.

    CAS  PubMed  Google Scholar 

  151. Piccoli F, Degen L, MacLean C, et al. Pharmacokinetics and pharmacodynamic effects of an oral ghrelin agonist in healthy subjects. J Clin Endocrinol Metab. 2007;92:1814–20.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Ashby M.R.C.P., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ashby, D., Choi, P., Bloom, S. (2012). Ghrelin in Cachexia Associated with End-Stage Renal Disease. In: Smith, R., Thorner, M. (eds) Ghrelin in Health and Disease. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-903-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-903-7_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-902-0

  • Online ISBN: 978-1-61779-903-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics