Skip to main content

Diet, the Control of Blood Lipids, and the Prevention of Heart Disease

  • Chapter
  • First Online:
Nutritional Health

Part of the book series: Nutrition and Health ((NH))

  • 2989 Accesses

Abstract

Lipids and lipoproteins play an important role in modulating risk of coronary heart disease (CHD). It is well established that elevated levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) increase CHD risk. In contrast, elevated high-density lipoprotein cholesterol (HDL-C) exerts a cardioprotective effect. Thus, a greater ratio of TC to HDL-C (TC/HDL-C) indicates an increased CHD risk. Many epidemiologic and controlled clinical studies have demonstrated effects of single nutrients, specific foods, and dietary patterns, on lipids and lipoproteins. Diet can increase or decrease CHD risk via changes in the blood lipid profile as well as other risk factors (e.g., elevated blood pressure, inflammation, oxidative stress). This research has led to dietary recommendations that can markedly lower the risk of CHD. Consequently, a healthy diet is important in the prevention of CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keys A, Anderson JT, Grande F. Serum cholesterol response to changes in the diet. IV. Particular saturated fatty acids in the diet. Metabolism. 1965;14:776–87.

    CAS  Google Scholar 

  2. Hegsted DM, McGandy RB, Myers ML, et al. Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr. 1965;17:281–95.

    PubMed  CAS  Google Scholar 

  3. Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb. 1992;12:911–9.

    PubMed  CAS  Google Scholar 

  4. Muller H, Kirkhus B, Pedersen JI. Serum cholesterol predictive equations with special emphasis on trans and saturated fatty acids. An analysis from designed controlled studies. Lipids. 2001;36:783–91.

    PubMed  CAS  Google Scholar 

  5. Yu S, Derr J, Etherton TD, Kris-Etherton PM. Plasma cholesterol-predictive equations demonstrate that stearic acid is neutral and monounsaturated fatty acids are hypocholesterolemic. Am J Clin Nutr. 1995;61:1129–39.

    PubMed  CAS  Google Scholar 

  6. Clarke R, Frost C, Collins R, et al. Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies. BMJ. 1997;314:112–7.

    PubMed  CAS  Google Scholar 

  7. Hegsted DM, Ausman LM, Johnson JA, et al. Dietary fat and serum lipids: an evaluation of the experimental data. Am J Clin Nutr. 1993;57:875–83.

    PubMed  CAS  Google Scholar 

  8. Kris-Etherton PM, Yu S. Individual fatty acid effects on plasma lipids and lipoproteins: human studies. Am J Clin Nutr. 1997;65(5 Suppl):1628S–44.

    PubMed  CAS  Google Scholar 

  9. Mensink RP, Zock PL, Kester AD, et al. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77:1146–55.

    PubMed  CAS  Google Scholar 

  10. Katan MB, Zock PL, Mensink RP. Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr. 1994;60(6 Suppl):1017S–22.

    PubMed  CAS  Google Scholar 

  11. Aro A, Jauhiainen M, Partanen R, et al. Stearic acid, trans fatty acids, and dairy fat: effects on serum and lipoprotein lipids, apolipoproteins, lipoprotein(a), and lipid transfer proteins in healthy subjects. Am J Clin Nutr. 1997;65:1419–26.

    PubMed  CAS  Google Scholar 

  12. Sundram K, Karupaiah T, Hayes KC. Stearic acid-rich interesterified fat and trans-rich fat raise the LDL/HDL ratio and plasma glucose relative to palm olein in humans. Nutr Metab (Lond). 2007;4:3.

    Google Scholar 

  13. Zock PL, Katan MB. Hydrogenation alternatives: effects of trans fatty acids and stearic acid versus linoleic acid on serum lipids and lipoproteins in humans. J Lipid Res. 1992;33:399–410.

    PubMed  CAS  Google Scholar 

  14. Diet Guidelines. The executive summary. 2010. http://www.cnpp.usda.gov/Publications/DietaryGuidelines/2010/PolicyDoc/ExecSumm.pdf. The full report is available at: http://www.health.gov/dietaryguidelines/dga2010/DietaryGuidelines2010.pdf. Accessed 1 Feb 2011.

  15. Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s Strategic Impact Goal through 2020 and beyond. Circulation. 2010;121:586–613.

    PubMed  Google Scholar 

  16. Keys A. Coronary heart disease in seven countries. Circulation. 1970;41:I1–211.

    Google Scholar 

  17. Hu FB, Stampfer MJ, Manson JE, et al. Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med. 1997;337:1491–9.

    PubMed  CAS  Google Scholar 

  18. Posner BM, Cobb JL, Belanger AJ, et al. Dietary lipid predictors of coronary heart disease in men. The Framingham Study. Arch Intern Med. 1991;151:1181–7.

    PubMed  CAS  Google Scholar 

  19. Kromhout D, Menotti A, Bloemberg B, et al. Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev Med. 1995;24:308–15.

    PubMed  CAS  Google Scholar 

  20. Vartiainen E, Laatikainen T, Peltonen M, et al. Thirty-five-year trends in cardiovascular risk factors in Finland. Int J Epidemiol. 2010;39:504–18.

    PubMed  Google Scholar 

  21. Berglund L, Lefevre M, Ginsberg HN, et al. Comparison of monounsaturated fat with carbohydrates as a replacement for saturated fat in subjects with a high metabolic risk profile: studies in the fasting and postprandial states. Am J Clin Nutr. 2007;86:1611–20.

    PubMed  CAS  Google Scholar 

  22. Lichtenstein AH, Matthan NR, Jalbert SM, et al. Novel soybean oils with different fatty acid profiles alter cardiovascular disease risk factors in moderately hyperlipidemic subjects. Am J Clin Nutr. 2006;84:497–504.

    PubMed  CAS  Google Scholar 

  23. Yu-Poth S, Etherton TD, Reddy CC, et al. Lowering dietary saturated fat and total fat reduces the oxidative susceptibility of LDL in healthy men and women. J Nutr. 2000;130:2228–37.

    PubMed  CAS  Google Scholar 

  24. Chung BH, Cho BH, Liang P, et al. Contribution of postprandial lipemia to the dietary fat-mediated changes in endogenous lipoprotein-cholesterol concentrations in humans. Am J Clin Nutr. 2004;80:1145–58.

    PubMed  CAS  Google Scholar 

  25. Kralova Lesna I, Suchanek P, Kovar J, et al. Replacement of dietary saturated FAs by PUFAs in diet and reverse cholesterol transport. J Lipid Res. 2008;49:2414–8.

    PubMed  CAS  Google Scholar 

  26. Siri-Tarino PW, Sun Q, Hu FB, et al. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010;91:502–9.

    PubMed  CAS  Google Scholar 

  27. Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA. 1996;276:875–81.

    PubMed  CAS  Google Scholar 

  28. Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation. 1997;95:69–75.

    PubMed  CAS  Google Scholar 

  29. Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA. 1996;276:882–8.

    PubMed  CAS  Google Scholar 

  30. Sacks FM, Katan M. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am J Med. 2002;113(Suppl 9B):13S–24.

    PubMed  CAS  Google Scholar 

  31. Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010;7:e1000252.

    PubMed  Google Scholar 

  32. Skeaff CM, Miller J. Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Ann Nutr Metab. 2009;55:173–201.

    PubMed  CAS  Google Scholar 

  33. Clarke R, Shipley M, Lewington S, et al. Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol. 1999;150:341–53.

    PubMed  CAS  Google Scholar 

  34. Beaton GH, Milner J, Corey P, et al. Sources of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Am J Clin Nutr. 1979;32:2546–59.

    PubMed  CAS  Google Scholar 

  35. Siri-Tarino PW, Sun Q, Hu FB, et al. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010;91:535–46.

    PubMed  CAS  Google Scholar 

  36. Katan MB, Brouwer IA, Clarke R, et al. Saturated fat and heart disease. Am J Clin Nutr. 2010;92:459–60; author reply 60–1.

    Google Scholar 

  37. Jakobsen MU, O’Reilly EJ, Heitmann BL, et al. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr. 2009;89:1425–32.

    PubMed  CAS  Google Scholar 

  38. Mente A, de Koning L, Shannon HS, et al. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169:659–69.

    PubMed  CAS  Google Scholar 

  39. Mensink RP, Katan MB. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med. 1990;323:439–45.

    PubMed  CAS  Google Scholar 

  40. Lichtenstein AH, Ausman LM, Jalbert SM, et al. Effects of different forms of dietary hydrogenated fats on serum lipoprotein cholesterol levels. N Engl J Med. 1999;340:1933–40.

    PubMed  CAS  Google Scholar 

  41. Judd JT, Baer DJ, Clevidence BA, et al. Dietary cis and trans monounsaturated and saturated FA and plasma lipids and lipoproteins in men. Lipids. 2002;37:123–31.

    PubMed  CAS  Google Scholar 

  42. Ascherio A, Willett WC. Health effects of trans fatty acids. Am J Clin Nutr. 1997;66(4 Suppl):1006S–10.

    PubMed  CAS  Google Scholar 

  43. Mozaffarian D, Aro A, Willett WC. Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr. 2009;63 Suppl 2:S5–21.

    PubMed  CAS  Google Scholar 

  44. Lawrence G. The fats of life: essential fatty acids in health and disease. New Brunswick: Rutgers University Press; 2010.

    Google Scholar 

  45. Mitchell PL, McLeod RS. Conjugated linoleic acid and atherosclerosis: studies in animal models. Biochem Cell Biol. 2008;86:293–301.

    PubMed  CAS  Google Scholar 

  46. Thom E, Wadstein J, Gudmundsen O. Conjugated linoleic acid reduces body fat in healthy exercising humans. J Int Med Res. 2001;29:392–6.

    PubMed  CAS  Google Scholar 

  47. Blankson H, Stakkestad JA, Fagertun H, et al. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr. 2000;130:2943–8.

    PubMed  CAS  Google Scholar 

  48. Mougios V, Matsakas A, Petridou A, et al. Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J Nutr Biochem. 2001;12:585–94.

    PubMed  CAS  Google Scholar 

  49. Smedman A, Vessby B. Conjugated linoleic acid supplementation in humans–metabolic effects. Lipids. 2001;36:773–81.

    PubMed  CAS  Google Scholar 

  50. Zambell KL, Keim NL, Van Loan MD, et al. Conjugated linoleic acid supplementation in humans: effects on body composition and energy expenditure. Lipids. 2000;35:777–82.

    PubMed  CAS  Google Scholar 

  51. Salas-Salvado J, Marquez-Sandoval F, Bullo M. Conjugated linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolism. Crit Rev Food Sci Nutr. 2006;46:479–88.

    PubMed  CAS  Google Scholar 

  52. Tricon S, Burdge GC, Jones EL, et al. Effects of dairy products naturally enriched with cis-9, trans-11 conjugated linoleic acid on the blood lipid profile in healthy middle-aged men. Am J Clin Nutr. 2006;83:744–53.

    PubMed  CAS  Google Scholar 

  53. Wanders AJ, Brouwer IA, Siebelink E, et al. Effect of a high intake of conjugated linoleic acid on lipoprotein levels in healthy human subjects. PLoS One. 2010;5:e9000.

    PubMed  Google Scholar 

  54. Tholstrup T, Raff M, Basu S, et al. Effects of butter high in ruminant trans and monounsaturated fatty acids on lipoproteins, incorporation of fatty acids into lipid classes, plasma C-reactive protein, oxidative stress, hemostatic variables, and insulin in healthy young men. Am J Clin Nutr. 2006;83:237–43.

    PubMed  CAS  Google Scholar 

  55. Jakobsen MU, Bysted A, Andersen NL, et al. Intake of ruminant trans fatty acids and risk of coronary heart disease-an overview. Atheroscler Suppl. 2006;7:9–11.

    PubMed  CAS  Google Scholar 

  56. Field CJ, Blewett HH, Proctor S, et al. Human health benefits of vaccenic acid. Appl Physiol Nutr Metab. 2009;34:979–91.

    PubMed  CAS  Google Scholar 

  57. Brouwer IA, Wanders AJ, Katan MB. Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans–a quantitative review. PLoS One. 2010;5:e9434.

    PubMed  Google Scholar 

  58. Rudel LL, Parks JS, Hedrick CC, et al. Lipoprotein and cholesterol metabolism in diet-induced coronary artery atherosclerosis in primates. Role of cholesterol and fatty acids. Prog Lipid Res. 1998;37:353–70.

    PubMed  CAS  Google Scholar 

  59. Rodriguez-Villar C, Perez-Heras A, Mercade I, et al. Comparison of a high-carbohydrate and a high-monounsaturated fat, olive oil-rich diet on the susceptibility of LDL to oxidative modification in subjects with type 2 diabetes mellitus. Diabet Med. 2004;21:142–9.

    PubMed  CAS  Google Scholar 

  60. Colette C, Percheron C, Pares-Herbute N, et al. Exchanging carbohydrates for monounsaturated fats in energy-restricted diets: effects on metabolic profile and other cardiovascular risk factors. Int J Obes Relat Metab Disord. 2003;27:648–56.

    PubMed  CAS  Google Scholar 

  61. Ahuja KD, Ashton EL, Ball MJ. Effects of two lipid-lowering, carotenoid-controlled diets on the oxidative modification of low-density lipoproteins in free-living humans. Clin Sci (Lond). 2003;105:355–61.

    CAS  Google Scholar 

  62. Ashton EL, Best JD, Ball MJ. Effects of monounsaturated enriched sunflower oil on CHD risk factors including LDL size and copper-induced LDL oxidation. J Am Coll Nutr. 2001;20:320–6.

    PubMed  CAS  Google Scholar 

  63. Hargrove RL, Etherton TD, Pearson TA, et al. Low fat and high monounsaturated fat diets decrease human low density lipoprotein oxidative susceptibility in vitro. J Nutr. 2001;131:1758–63.

    PubMed  CAS  Google Scholar 

  64. Garg A. High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr. 1998;67(3 Suppl):577S–82.

    PubMed  CAS  Google Scholar 

  65. Cao Y, Mauger DT, Pelkman CL, et al. Effects of moderate (MF) versus lower fat (LF) diets on lipids and lipoproteins: a meta-analysis of clinical trials in subjects with and without diabetes. J Clin Lipidol. 2009;3:19–32.

    PubMed  Google Scholar 

  66. Tanasescu M, Cho E, Manson JE, et al. Dietary fat and cholesterol and the risk of cardiovascular disease among women with type 2 diabetes. Am J Clin Nutr. 2004;79:999–1005.

    PubMed  CAS  Google Scholar 

  67. Dayton S, Pearce ML, Goldman H, et al. Controlled trial of a diet high in unsaturated fat for prevention of atherosclerotic complications. Lancet. 1968;2:1060–2.

    PubMed  CAS  Google Scholar 

  68. Frantz Jr ID, Dawson EA, Ashman PL, et al. Test of effect of lipid lowering by diet on cardiovascular risk. The Minnesota Coronary Survey. Arteriosclerosis. 1989;9:129–35.

    PubMed  Google Scholar 

  69. Leren P. The Oslo diet-heart study. Eleven-year report. Circulation. 1970;42:935–42.

    PubMed  CAS  Google Scholar 

  70. Turpeinen O, Karvonen MJ, Pekkarinen M, et al. Dietary prevention of coronary heart disease: the Finnish Mental Hospital Study. Int J Epidemiol. 1979;8:99–118.

    PubMed  CAS  Google Scholar 

  71. Mustad VA, Etherton TD, Cooper AD, et al. Reducing saturated fat intake is associated with increased levels of LDL receptors on mononuclear cells in healthy men and women. J Lipid Res. 1997;38:459–68.

    PubMed  CAS  Google Scholar 

  72. Mattson FH, Grundy SM. Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J Lipid Res. 1985;26:194–202.

    PubMed  CAS  Google Scholar 

  73. Gardner CD, Kraemer HC. Monounsaturated versus polyunsaturated dietary fat and serum lipids. A meta-analysis. Arterioscler Thromb Vasc Biol. 1995;15:1917–27.

    PubMed  CAS  Google Scholar 

  74. Czernichow S, Thomas D, Bruckert E. n-6 Fatty acids and cardiovascular health: a review of the evidence for dietary intake recommendations. Br J Nutr. 2010;104:788–96.

    PubMed  CAS  Google Scholar 

  75. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    PubMed  Google Scholar 

  76. Harris WS, Mozaffarian D, Rimm E, et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation. 2009;119:902–7.

    PubMed  Google Scholar 

  77. Skulas-Ray AC, West SG, Davidson MH, et al. Omega-3 fatty acid concentrates in the treatment of moderate hypertriglyceridemia. Expert Opin Pharmacother. 2008;9:1237–48.

    PubMed  CAS  Google Scholar 

  78. Brenna JT. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care. 2002;5:127–32.

    PubMed  CAS  Google Scholar 

  79. Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab. 2007;32:619–34.

    PubMed  CAS  Google Scholar 

  80. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet. 1999;354:447–55.

    Google Scholar 

  81. Burr ML, Fehily AM, Gilbert JF, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet. 1989;2:757–61.

    PubMed  CAS  Google Scholar 

  82. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    PubMed  CAS  Google Scholar 

  83. Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA. 2006;296:1885–99.

    PubMed  CAS  Google Scholar 

  84. Calder PC. n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci (Lond). 2004;107:1–11.

    CAS  Google Scholar 

  85. Jones PJ. Dietary cholesterol and the risk of cardiovascular disease in patients: a review of the Harvard Egg Study and other data. Int J Clin Pract Suppl. 2009;163(1–8):28–36.

    Google Scholar 

  86. Katan MB. The response of lipoproteins to dietary fat and cholesterol in lean and obese persons. Curr Cardiol Rep. 2006;8:446–51.

    PubMed  Google Scholar 

  87. Jones PJ, Pappu AS, Hatcher L, et al. Dietary cholesterol feeding suppresses human cholesterol synthesis measured by deuterium incorporation and urinary mevalonic acid levels. Arterioscler Thromb Vasc Biol. 1996;16:1222–8.

    PubMed  CAS  Google Scholar 

  88. Greene CM, Zern TL, Wood RJ, et al. Maintenance of the LDL cholesterol:HDL cholesterol ratio in an elderly population given a dietary cholesterol challenge. J Nutr. 2005;135:2793–8.

    PubMed  CAS  Google Scholar 

  89. Ballesteros MN, Cabrera RM, Saucedo Mdel S, et al. Dietary cholesterol does not increase biomarkers for chronic disease in a pediatric population from northern Mexico. Am J Clin Nutr. 2004;80:855–61.

    PubMed  CAS  Google Scholar 

  90. Goodrow EF, Wilson TA, Houde SC, et al. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J Nutr. 2006;136:2519–24.

    PubMed  CAS  Google Scholar 

  91. Harman NL, Leeds AR, Griffin BA. Increased dietary cholesterol does not increase plasma low density lipoprotein when accompanied by an energy-restricted diet and weight loss. Eur J Nutr. 2008;47:287–93.

    PubMed  Google Scholar 

  92. Trumbo P, Schlicker S, Yates AA, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102:1621–30.

    PubMed  Google Scholar 

  93. McNamara DJ. Dietary cholesterol and atherosclerosis. Biochim Biophys Acta. 2000;1529:310–20.

    PubMed  CAS  Google Scholar 

  94. Hu FB, Stampfer MJ, Rimm EB, et al. A prospective study of egg consumption and risk of cardiovascular disease in men and women. JAMA. 1999;281:1387–94.

    PubMed  CAS  Google Scholar 

  95. Kritchevsky SB, Kritchevsky D. Egg consumption and coronary heart disease: an epidemiologic overview. J Am Coll Nutr. 2000;19(5 Suppl):549S–55.

    PubMed  CAS  Google Scholar 

  96. Mann JI, Appleby PN, Key TJ, et al. Dietary determinants of ischaemic heart disease in health conscious individuals. Heart. 1997;78:450–5.

    PubMed  CAS  Google Scholar 

  97. Fraser GE. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists. Am J Clin Nutr. 1999;70(3 Suppl):532S–8.

    PubMed  CAS  Google Scholar 

  98. Djousse L, Gaziano JM. Egg consumption in relation to cardiovascular disease and mortality: the Physicians’ Health Study. Am J Clin Nutr. 2008;87:964–9.

    PubMed  CAS  Google Scholar 

  99. Van Horn L, McCoin M, Kris-Etherton PM, et al. Evidence for dietary prevention and treatment of cardiovascular disease. J Am Diet Assoc. 2008;108:287–331.

    PubMed  Google Scholar 

  100. Chandalia M, Garg A, Lutjohann D, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000;342:1392–8.

    PubMed  CAS  Google Scholar 

  101. Davy BM, Davy KP, Ho RC, et al. High-fiber oat cereal compared with wheat cereal consumption favorably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. Am J Clin Nutr. 2002;76:351–8.

    PubMed  CAS  Google Scholar 

  102. Jenkins DJ, Kendall CW, Vuksan V, et al. Soluble fiber intake at a dose approved by the US Food and Drug Administration for a claim of health benefits: serum lipid risk factors for cardiovascular disease assessed in a randomized controlled crossover trial. Am J Clin Nutr. 2002;75:834–9.

    PubMed  CAS  Google Scholar 

  103. Obarzanek E, Sacks FM, Vollmer WM, et al. Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr. 2001;74:80–9.

    PubMed  CAS  Google Scholar 

  104. Saltzman E, Das SK, Lichtenstein AH, et al. An oat-containing hypocaloric diet reduces systolic blood pressure and improves lipid profile beyond effects of weight loss in men and women. J Nutr. 2001;131:1465–70.

    PubMed  CAS  Google Scholar 

  105. Van Horn L, Liu K, Gerber J, et al. Oats and soy in lipid-lowering diets for women with hypercholesterolemia: is there synergy? J Am Diet Assoc. 2001;101:1319–25.

    PubMed  Google Scholar 

  106. Naumann E, van Rees AB, Onning G, et al. Beta-glucan incorporated into a fruit drink effectively lowers serum LDL-cholesterol concentrations. Am J Clin Nutr. 2006;83:601–5.

    PubMed  CAS  Google Scholar 

  107. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Google Scholar 

  108. Food and Drug Administraton, HHS. Food labeling: health claims; soluble dietary fiber from certain foods and coronary heart disease. Interim final rule. Fed Regist. 2002;67(191):61773–83.

    Google Scholar 

  109. Ripsin CM, Keenan JM, Jacobs DR, et al. Oat products and lipid lowering. A meta-analysis. JAMA. 1992;24(267):3317–25.

    Google Scholar 

  110. Brown L, Rosner B, Willett WW, et al. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999;69:30–42.

    PubMed  CAS  Google Scholar 

  111. Wolever TM, Tosh SM, Gibbs AL, et al. Physicochemical properties of oat beta-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial. Am J Clin Nutr. 2010;92:723–32.

    PubMed  CAS  Google Scholar 

  112. Jacobs DR, Pereira MA, Meyer KA, et al. Fiber from whole grains, but not refined grains, is inversely associated with all-cause mortality in older women: the Iowa women’s health study. J Am Coll Nutr. 2000;19(3 Suppl):326S–30.

    PubMed  CAS  Google Scholar 

  113. Slavin JL. Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc. 2008;108:1716–31.

    PubMed  Google Scholar 

  114. Report of the 31st session of the Codex Committee on Nutrition and Foods for Special Dietary Uses. Germany: Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme; 2009.

    Google Scholar 

  115. The elements within the nutrition facts table: section 6.8. Guide to food labelling and ­advertising, Canadian Food Inspection Agency, 2010;32–3.

    Google Scholar 

  116. Christiansen LI, Lahteenmaki PL, Mannelin MR, et al. Cholesterol-lowering effect of spreads enriched with microcrystalline plant sterols in hypercholesterolemic subjects. Eur J Nutr. 2001;40:66–73.

    PubMed  CAS  Google Scholar 

  117. Devaraj S, Jialal I, Vega-Lopez S. Plant sterol-fortified orange juice effectively lowers cholesterol levels in mildly hypercholesterolemic healthy individuals. Arterioscler Thromb Vasc Biol. 2004;24:e25–8.

    PubMed  CAS  Google Scholar 

  118. Hendriks HF, Brink EJ, Meijer GW, et al. Safety of long-term consumption of plant sterol esters-enriched spread. Eur J Clin Nutr. 2003;57:681–92.

    PubMed  CAS  Google Scholar 

  119. Quilez J, Rafecas M, Brufau G, et al. Bakery products enriched with phytosterol esters, alpha-tocopherol and beta-carotene decrease plasma LDL-cholesterol and maintain plasma beta-carotene concentrations in normocholesterolemic men and women. J Nutr. 2003;133:3103–9.

    PubMed  CAS  Google Scholar 

  120. Talati R, Sobieraj DM, Makanji SS, et al. The comparative efficacy of plant sterols and stanols on serum lipids: a systematic review and meta-analysis. J Am Diet Assoc. 2010;110:719–26.

    PubMed  CAS  Google Scholar 

  121. Hallikainen MA, Sarkkinen ES, Uusitupa MI. Plant stanol esters affect serum cholesterol concentrations of hypercholesterolemic men and women in a dose-dependent manner. J Nutr. 2000;130:767–76.

    PubMed  CAS  Google Scholar 

  122. Nestle M. Genetically engineered “golden” rice unlikely to overcome vitamin A deficiency. J Am Diet Assoc. 2001;101:289–90.

    PubMed  CAS  Google Scholar 

  123. Vanstone CA, Raeini-Sarjaz M, Parsons WE, et al. Unesterified plant sterols and stanols lower LDL-cholesterol concentrations equivalently in hypercholesterolemic persons. Am J Clin Nutr. 2002;76:1272–8.

    PubMed  CAS  Google Scholar 

  124. Moruisi KG, Oosthuizen W, Opperman AM. Phytosterols/stanols lower cholesterol concentrations in familial hypercholesterolemic subjects: a systematic review with meta-analysis. J Am Coll Nutr. 2006;25:41–8.

    PubMed  CAS  Google Scholar 

  125. Assmann G, Cullen P, Erbey J, et al. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: results of a nested case-control analysis of the Prospective Cardiovascular Munster (PROCAM) study. Nutr Metab Cardiovasc Dis. 2006;16:13–21.

    PubMed  CAS  Google Scholar 

  126. Fassbender K, Lutjohann D, Dik MG, et al. Moderately elevated plant sterol levels are associated with reduced cardiovascular risk–the LASA study. Atherosclerosis. 2008;196:283–8.

    PubMed  CAS  Google Scholar 

  127. Pinedo S, Vissers MN, von Bergmann K, et al. Plasma levels of plant sterols and the risk of coronary artery disease: the prospective EPIC-Norfolk Population Study. J Lipid Res. 2007;48:139–44.

    PubMed  CAS  Google Scholar 

  128. Kris-Etherton PM, Hecker KD, Bonanome A, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113(Suppl 9B):71S–88.

    PubMed  CAS  Google Scholar 

  129. Hooper L, Kroon PA, Rimm EB, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:38–50.

    PubMed  CAS  Google Scholar 

  130. Mink PJ, Scrafford CG, Barraj LM, et al. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr. 2007;85:895–909.

    PubMed  CAS  Google Scholar 

  131. Corti R, Flammer AJ, Hollenberg NK, et al. Cocoa and cardiovascular health. Circulation. 2009;119:1433–41.

    PubMed  Google Scholar 

  132. Frankel EN, Waterhouse AL, Kinsella JE. Inhibition of human LDL oxidation by resveratrol. Lancet. 1993;341:1103–4.

    PubMed  CAS  Google Scholar 

  133. Miller NJ, Rice-Evans CA. Antioxidant activity of resveratrol in red wine. Clin Chem. 1995;41:1789.

    PubMed  CAS  Google Scholar 

  134. Olas B, Wachowicz B, Szewczuk J, et al. The effect of resveratrol on the platelet secretory process induced by endotoxin and thrombin. Microbios. 2001;105:7–13.

    PubMed  CAS  Google Scholar 

  135. Orsini F, Pelizzoni F, Verotta L, et al. Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3-O-beta-D-glucopyranoside and related compounds. J Nat Prod. 1997;60:1082–7.

    PubMed  CAS  Google Scholar 

  136. Miller KB, Stuart DA, Smith NL, et al. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J Agric Food Chem. 2006;54:4062–8.

    PubMed  CAS  Google Scholar 

  137. Miller KB, Hurst WJ, Payne MJ, et al. Impact of alkalization on the antioxidant and flavanol content of commercial cocoa powders. J Agric Food Chem. 2008;56:8527–33.

    PubMed  CAS  Google Scholar 

  138. Grassi D, Necozione S, Lippi C, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. 2005;46:398–405.

    PubMed  CAS  Google Scholar 

  139. Baba S, Osakabe N, Kato Y, et al. Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr. 2007;85:709–17.

    PubMed  CAS  Google Scholar 

  140. Davies MJ, Judd JT, Baer DJ, et al. Black tea consumption reduces total and LDL cholesterol in mildly hypercholesterolemic adults. J Nutr. 2003;133:3298S–302.

    PubMed  CAS  Google Scholar 

  141. Fraga CG, Actis-Goretta L, Ottaviani JI, et al. Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol. 2005;12:11–7.

    PubMed  CAS  Google Scholar 

  142. Kris-Etherton PM, Derr JA, Mustad VA, et al. Effects of a milk chocolate bar per day substituted for a high-carbohydrate snack in young men on an NCEP/AHA Step 1 Diet. Am J Clin Nutr. 1994;60(6 Suppl):1037S–42.

    PubMed  CAS  Google Scholar 

  143. Taubert D, Roesen R, Lehmann C, et al. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. JAMA. 2007;298:49–60.

    PubMed  CAS  Google Scholar 

  144. Myers EF. ADA evidence analysis library. J Am Diet Assoc. 2005;105(5 Suppl 1):S79.

    PubMed  Google Scholar 

  145. Flammer AJ, Hermann F, Sudano I, et al. Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation. 2007;116:2376–82.

    PubMed  Google Scholar 

  146. Huxley RR, Neil HA. The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2003;57:904–8.

    PubMed  CAS  Google Scholar 

  147. Lichtenstein AH, Appel LJ, Brands M, et al. Summary of American Heart Association Diet and Lifestyle Recommendations revision 2006. Arterioscler Thromb Vasc Biol. 2006;26:2186–91.

    PubMed  CAS  Google Scholar 

  148. Tande DL, Hotchkiss L, Cotugna N. The associations between blood lipids and the Food Guide Pyramid: findings from the Third National Health and Nutrition Examination Survey. Prev Med. 2004;38:452–7.

    PubMed  Google Scholar 

  149. Djousse L, Arnett DK, Coon H, et al. Fruit and vegetable consumption and LDL cholesterol: the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr. 2004;79:213–7.

    PubMed  CAS  Google Scholar 

  150. Mirmiran P, Noori N, Zavareh MB, et al. Fruit and vegetable consumption and risk factors for cardiovascular disease. Metabolism. 2009;58:460–8.

    PubMed  CAS  Google Scholar 

  151. Dauchet L, Amouyel P, Hercberg S, et al. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136:2588–93.

    PubMed  CAS  Google Scholar 

  152. Administration USFaD. Draft guidance: whole grains label statements, guidance for industry and FDA staff. College Park, MD: Administration UFaD; 2006.

    Google Scholar 

  153. Administration USFaD. Health claims notification for whole grain foods. College Park, MD: Administration UFaD; 1999.

    Google Scholar 

  154. Harris K, Kris-Etherton P. Effects of whole grains on coronary heart disease risk. Curr Atheroscler Rep. 2010;12:368–76.

    PubMed  CAS  Google Scholar 

  155. Kelly SA, Summerbell CD, Brynes A, et al. Wholegrain cereals for coronary heart disease. Cochrane Database Syst Rev. 2007;(2):CD005051.

    Google Scholar 

  156. Jacobs Jr DR, Gallaher DD. Whole grain intake and cardiovascular disease: a review. Curr Atheroscler Rep. 2004;6:415–23.

    PubMed  Google Scholar 

  157. Kris-Etherton PM, Zhao G, Binkoski AE, et al. The effects of nuts on coronary heart disease risk. Nutr Rev. 2001;59:103–11.

    PubMed  CAS  Google Scholar 

  158. Griel AE, Kris-Etherton PM. Tree nuts and the lipid profile: a review of clinical studies. Br J Nutr. 2006;96 Suppl 2:S68–78.

    PubMed  CAS  Google Scholar 

  159. Mukuddem-Petersen J, Oosthuizen W, Jerling JC. A systematic review of the effects of nuts on blood lipid profiles in humans. J Nutr. 2005;135:2082–9.

    PubMed  CAS  Google Scholar 

  160. Sabate J, Oda K, Ros E. Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials. Arch Intern Med. 2010;170:821–7.

    PubMed  Google Scholar 

  161. Lefevre M, Champagne CM, Tulley RT, et al. Individual variability in cardiovascular disease risk factor responses to low-fat and low-saturated-fat diets in men: body mass index, adiposity, and insulin resistance predict changes in LDL cholesterol. Am J Clin Nutr. 2005;82:957–63.

    PubMed  CAS  Google Scholar 

  162. Fraser GE. Nut consumption, lipids, and risk of a coronary event. Clin Cardiol. 1999;22(7 Suppl):III11–5.

    PubMed  CAS  Google Scholar 

  163. Hu FB, Stampfer MJ, Manson JE, et al. Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. BMJ. 1998;317:1341–5.

    PubMed  CAS  Google Scholar 

  164. Ros E. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr. 2009;89:1649S–56.

    PubMed  CAS  Google Scholar 

  165. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 2003;916:i–viii; 1–149; backcover.

    Google Scholar 

  166. van Meijl LE, Vrolix R, Mensink RP. Dairy product consumption and the metabolic syndrome. Nutr Res Rev. 2008;21:148–57.

    PubMed  Google Scholar 

  167. Tholstrup T, Hoy CE, Andersen LN, et al. Does fat in milk, butter and cheese affect blood lipids and cholesterol differently? J Am Coll Nutr. 2004;23:169–76.

    PubMed  Google Scholar 

  168. Vartiainen E, Jousilahti P, Alfthan G, et al. Cardiovascular risk factor changes in Finland, 1972-1997. Int J Epidemiol. 2000;29:49–56.

    PubMed  CAS  Google Scholar 

  169. Pekka P, Pirjo P, Ulla U. Influencing public nutrition for non-communicable disease prevention: from community intervention to national programme–experiences from Finland. Public Health Nutr. 2002;5:245–51.

    PubMed  Google Scholar 

  170. Elwood PC, Pickering JE, Fehily AM. Milk and dairy consumption, diabetes and the metabolic syndrome: the Caerphilly prospective study. J Epidemiol Community Health. 2007;61:695–8.

    PubMed  Google Scholar 

  171. Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation. 2008;117:754–61.

    PubMed  Google Scholar 

  172. Hilpert KF, West SG, Bagshaw DM, et al. Effects of dairy products on intracellular calcium and blood pressure in adults with essential hypertension. J Am Coll Nutr. 2009;28:142–9.

    PubMed  CAS  Google Scholar 

  173. Zemel MB. Mechanisms of dairy modulation of adiposity. J Nutr. 2003;133:252S–6.

    PubMed  Google Scholar 

  174. Steffen LM, Kroenke CH, Yu X, et al. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr. 2005;82:1169–77.

    PubMed  CAS  Google Scholar 

  175. Beauchesne-Rondeau E, Gascon A, Bergeron J, et al. Plasma lipids and lipoproteins in hypercholesterolemic men fed a lipid-lowering diet containing lean beef, lean fish, or poultry. Am J Clin Nutr. 2003;77:587–93.

    PubMed  CAS  Google Scholar 

  176. Davidson MH, Hunninghake D, Maki KC, et al. Comparison of the effects of lean red meat vs lean white meat on serum lipid levels among free-living persons with hypercholesterolemia: a long-term, randomized clinical trial. Arch Intern Med. 1999;159:1331–8.

    PubMed  CAS  Google Scholar 

  177. Scott LW, Dunn JK, Pownall HJ, et al. Effects of beef and chicken consumption on plasma lipid levels in hypercholesterolemic men. Arch Intern Med. 1994;154:1261–7.

    PubMed  CAS  Google Scholar 

  178. Halton TL, Willett WC, Liu S, et al. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N Engl J Med. 2006;355:1991–2002.

    PubMed  CAS  Google Scholar 

  179. Kelemen LE, Kushi LH, Jacobs Jr DR, et al. Associations of dietary protein with disease and mortality in a prospective study of postmenopausal women. Am J Epidemiol. 2005;161:239–49.

    PubMed  Google Scholar 

  180. Bernstein AM, Sun Q, Hu FB, et al. Major dietary protein sources and risk of coronary heart disease in women. Circulation. 2010;122:876–83.

    PubMed  CAS  Google Scholar 

  181. Sinha R, Cross AJ, Graubard BI, et al. Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med. 2009;169:562–71.

    PubMed  CAS  Google Scholar 

  182. McAfee AJ, McSorley EM, Cuskelly GJ, et al. Red meat consumption: an overview of the risks and benefits. Meat Sci. 2010;84:1–13.

    PubMed  CAS  Google Scholar 

  183. Micha R, Wallace SK, Mozaffarian D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation. 2010;121:2271–83.

    PubMed  Google Scholar 

  184. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57.

    PubMed  Google Scholar 

  185. Maki KC, Reeves MS, Farmer M, et al. Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women. Nutr Res. 2009;29:609–15.

    PubMed  CAS  Google Scholar 

  186. Bunea R, El Farrah K, Deutsch L. Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern Med Rev. 2004;9:420–8.

    PubMed  Google Scholar 

  187. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995;333:276–82.

    PubMed  CAS  Google Scholar 

  188. Food and Drug Administration, HHS. Food labeling: health claims; soy protein and coronary heart disease. Final rule. Fed Regist. 1999;64(206):57700–33.

    Google Scholar 

  189. Harland JI, Haffner TA. Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis. 2008;200:13–27.

    PubMed  CAS  Google Scholar 

  190. Reynolds K, Chin A, Lees KA, et al. A meta-analysis of the effect of soy protein supplementation on serum lipids. Am J Cardiol. 2006;98:633–40.

    PubMed  CAS  Google Scholar 

  191. Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr. 2005;81:397–408.

    PubMed  CAS  Google Scholar 

  192. Sacks FM, Lichtenstein A, Van Horn L, et al. Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation. 2006;113:1034–44.

    PubMed  CAS  Google Scholar 

  193. Jenkins DJ, Mirrahimi A, Srichaikul K, et al. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr. 2010;140:2302S–11.

    PubMed  CAS  Google Scholar 

  194. Balk E, Chung M, Chew P, et al. Effects of soy on health outcomes. Evid Rep Technol Assess (Summ). 2005;(126):1–8.

    Google Scholar 

  195. Cuevas AM, Irribarra VL, Castillo OA, et al. Isolated soy protein improves endothelial function in postmenopausal hypercholesterolemic women. Eur J Clin Nutr. 2003;57:889–94.

    PubMed  CAS  Google Scholar 

  196. Lichtenstein AH. Got soy? Am J Clin Nutr. 2001;73:667–8.

    PubMed  CAS  Google Scholar 

  197. Vitolins MZ, Anthony M, Burke GL. Soy protein isoflavones, lipids and arterial disease. Curr Opin Lipidol. 2001;12:433–7.

    PubMed  CAS  Google Scholar 

  198. Weggemans RM, Trautwein EA. Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans: a meta-analysis. Eur J Clin Nutr. 2003;57:940–6.

    PubMed  CAS  Google Scholar 

  199. Fung TT, Chiuve SE, McCullough ML, et al. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168:713–20.

    PubMed  Google Scholar 

  200. Parikh A, Lipsitz SR, Natarajan S. Association between a DASH-like diet and mortality in adults with hypertension: findings from a population-based follow-up study. Am J Hypertens. 2009;22:409–16.

    PubMed  Google Scholar 

  201. Jenkins DJ, Kendall CW, Faulkner D, et al. A dietary portfolio approach to cholesterol reduction: combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metabolism. 2002;51:1596–604.

    PubMed  CAS  Google Scholar 

  202. Jenkins DJ, Kendall CW, Marchie A, et al. The effect of combining plant sterols, soy protein, viscous fibers, and almonds in treating hypercholesterolemia. Metabolism. 2003;52:1478–83.

    PubMed  CAS  Google Scholar 

  203. Jenkins DJ, Kendall CW, Faulkner DA, et al. Assessment of the longer-term effects of a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia. Am J Clin Nutr. 2006;83:582–91.

    PubMed  CAS  Google Scholar 

  204. Keys A, Menotti A, Karvonen MJ, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124:903–15.

    PubMed  CAS  Google Scholar 

  205. Barbagallo CM, Polizzi F, Severino M, et al. Distribution of risk factors, plasma lipids, lipoproteins and dyslipidemias in a small Mediterranean island: the Ustica Project. Nutr Metab Cardiovasc Dis. 2002;12:267–74.

    PubMed  CAS  Google Scholar 

  206. Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. Status and management of blood lipids in Greek adults and their relation to socio-demographic, lifestyle and dietary factors: the ATTICA Study. Blood lipids distribution in Greece. Atherosclerosis. 2004;173:353–61.

    PubMed  CAS  Google Scholar 

  207. Estruch R, Martinez-Gonzalez MA, Corella D, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145:1–11.

    PubMed  Google Scholar 

  208. Salas-Salvado J, Fernandez-Ballart J, Ros E, et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med. 2008;168:2449–58.

    PubMed  CAS  Google Scholar 

  209. Lohse B, Psota T, Estruch R, et al. Eating competence of elderly Spanish adults is associated with a healthy diet and a favorable cardiovascular disease risk profile. J Nutr. 2010;140:1322–7.

    PubMed  CAS  Google Scholar 

  210. Zazpe I, Sanchez-Tainta A, Estruch R, et al. A large randomized individual and group intervention conducted by registered dietitians increased adherence to Mediterranean-type diets: the PREDIMED study. J Am Diet Assoc. 2008;108:1134–44; discussion 45.

    Google Scholar 

  211. de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343:1454–9.

    PubMed  Google Scholar 

  212. Sofi F, Cesari F, Abbate R, et al. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344.

    PubMed  Google Scholar 

  213. Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;121:1768–77.

    PubMed  Google Scholar 

  214. Neveu V, Perez-Jimenez J, Vos F, et al. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford). 2010;2010:bap024.

    CAS  Google Scholar 

  215. U.S. Department of Agriculture, ARS. USDA National nutrient database for standard reference, release 22. Washington, DC: USDA; 2009.

    Google Scholar 

  216. Institutes of Medicine. Seafood choices: balancing benefits and risks. Washington, DC: National Academy of Sciences; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Flock BS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Flock, M.R., Kris-Etherton, P.M. (2012). Diet, the Control of Blood Lipids, and the Prevention of Heart Disease. In: Temple, N., Wilson, T., Jacobs, Jr., D. (eds) Nutritional Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-894-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-894-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-893-1

  • Online ISBN: 978-1-61779-894-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics