Skip to main content

The Developmental Origins of Chronic Disease in Later Life

  • Chapter
  • First Online:
Nutritional Health

Part of the book series: Nutrition and Health ((NH))

Abstract

The recent discovery that people who develop coronary heart disease (CHD) grew differently compared to other people during fetal life and childhood has led to a new “developmental” model for chronic disease [1, 2]. The model proposes that nutrition during fetal life, infancy, and early childhood establishes functional capacity, metabolic competence, and responses to the later environment by changing gene expression [3]. There is now clear evidence that the pace and pathway of early growth is a major risk factor for the development of chronic disease in adult life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJP, Osmond C, Winter PD, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.

    Article  PubMed  CAS  Google Scholar 

  2. Barker DJP. Fetal origins of coronary heart disease. BMJ. 1995;311:171–4.

    Article  PubMed  CAS  Google Scholar 

  3. Jackson AA. All that glitters. Br Nutr Found Nutr Bullet. 2000;25:11–24.

    Google Scholar 

  4. Osmond C, Barker DJP, Winter PD, Fall CHD, Simmonds SJ. Early growth and death from cardiovascular disease in women. BMJ. 1993;307:1519–24.

    Article  PubMed  CAS  Google Scholar 

  5. Hales CN, Barker DJP, Clark PMS, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    Article  PubMed  CAS  Google Scholar 

  6. Frankel S, Elwood P, Sweetnam P, Yarnell J, Davey Smith G. Birthweight, body mass index in middle age, and incident coronary heart disease. Lancet. 1996;348:1478–80.

    Article  PubMed  CAS  Google Scholar 

  7. Stein CE, Fall CHD, Kumaran K, Osmond C, Cox V, Barker DJP. Fetal growth and coronary heart disease in South India. Lancet. 1996;348:1269–73.

    Article  PubMed  CAS  Google Scholar 

  8. Rich-Edwards JW, Stampfer MJ, Manson JE, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ. 1997;315:396–400.

    Article  PubMed  CAS  Google Scholar 

  9. Forsén T, Eriksson JG, Tuomilehto J, Teramo K, Osmond C, Barker DJP. Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ. 1997;315:837–40.

    Article  PubMed  Google Scholar 

  10. Leon DA, Lithell HO, Vagero D, et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–29. BMJ. 1998;317:241–5.

    Article  PubMed  CAS  Google Scholar 

  11. Forsen T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJP. Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ. 1999;319:1403–7.

    Article  PubMed  CAS  Google Scholar 

  12. Forsen T, Osmond C, Eriksson JG, Barker DJP. Growth of girls who later develop coronary heart disease. Heart. 2004;90:20–4.

    Article  PubMed  CAS  Google Scholar 

  13. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJP. Early growth and coronary heart disease in later life: longitudinal study. BMJ. 2001;322:949–53.

    Article  PubMed  CAS  Google Scholar 

  14. Lithell HO, McKeigue PM, Berglund L, Mohsen R, Lithell UB, Leon DA. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ. 1996;312:406–10.

    Article  PubMed  CAS  Google Scholar 

  15. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LTH, Knowler WC, Bennett PH. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ. 1994;308:942–5.

    Article  PubMed  CAS  Google Scholar 

  16. Forsén T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med. 2000;133:176–82.

    PubMed  Google Scholar 

  17. Rich-Edwards JW, Colditz GA, Stampfer MJ, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med. 1999;130:278–84.

    PubMed  CAS  Google Scholar 

  18. Newsome CA, Shiell AW, Fall CHD, Phillips DIW, Shier R, Law CM. Is birthweight related to later glucose and insulin metabolism—a systematic review. Diabet Med. 2003;20:339–48.

    Article  PubMed  CAS  Google Scholar 

  19. West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Ann Rev Ecol Syst. 1989;20:249–78.

    Article  Google Scholar 

  20. Bateson P, Martin P. Design for a life: how behaviour develops. London: Jonathan Cape; 1999.

    Google Scholar 

  21. Mellanby E. Nutrition and child-bearing. Lancet. 1933;2:1131–7.

    Article  Google Scholar 

  22. Widdowson EM, McCance RA. The effect of finite periods of undernutrition at different ages on the composition and subsequent development of the rat. Proc R Soc Lond B Biol Sci. 1963;158:329–42.

    Article  PubMed  CAS  Google Scholar 

  23. Gluckman P, Hanson M, editors. Developmental origins of health and disease. Cambridge: Cambridge University Press; 2006.

    Google Scholar 

  24. Brooks AA, Johnson MR, Steer PJ, Pawson ME, Abdalla HI. Birth weight: nature or nurture? Early Hum Dev. 1995;42:29–35.

    Article  PubMed  CAS  Google Scholar 

  25. McCance RA. Food, growth and time. Lancet. 1962;2:621–6.

    Article  PubMed  CAS  Google Scholar 

  26. Harding JE. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol. 2001;30:15–23.

    Article  PubMed  CAS  Google Scholar 

  27. Barker DJP, Eriksson JG, Forsén T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.

    Article  PubMed  CAS  Google Scholar 

  28. Brenner BM, Chertow GM. Congenital oligonephropathy: an inborn cause of adult hypertension and progressive renal injury? Curr Opin Nephrol Hypertens. 1993;2:691–5.

    Article  PubMed  CAS  Google Scholar 

  29. Phillips DIW. Insulin resistance as a programmed response to fetal undernutrition. Diabetologia. 1996;39:1119–22.

    Article  PubMed  CAS  Google Scholar 

  30. Barker DJP, Forsén T, Uutela A, Osmond C, Eriksson JG. Size at birth and resilience to the effects of poor living conditions in adult life: longitudinal study. BMJ. 2001;323:1273–6.

    Article  PubMed  CAS  Google Scholar 

  31. Marmot M, Wilkinson RG. Psychosocial and material pathways in the relation between income and health: a response to Lynch et al. BMJ. 2001;322:1233–6.

    Article  PubMed  CAS  Google Scholar 

  32. Phillips DIW, Walker BR, Reynolds RM, et al. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension. 2000;35:1301–6.

    Article  PubMed  CAS  Google Scholar 

  33. Barker DJP, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353:1802–9.

    Article  PubMed  CAS  Google Scholar 

  34. Curhan GC, Chertow GM, Willett WC, et al. Birth weight and adult hypertension and obesity in women. Circulation. 1996;94:1310–5.

    Article  PubMed  CAS  Google Scholar 

  35. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18:815–31.

    Article  PubMed  CAS  Google Scholar 

  36. Ingelfinger JR. Is microanatomy destiny? N Eng J Med. 2003;348:99–100.

    Article  Google Scholar 

  37. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Eng J Med. 2003;348:101–8.

    Article  Google Scholar 

  38. Ylihärsilä H, Eriksson JG, Forsén T, Kajantie E, Osmond C, Barker DJP. Self-perpetuating effects of birth size on blood pressure levels in elderly people. Hypertension. 2003;41:446–50.

    Article  PubMed  Google Scholar 

  39. Lackland DT, Egan BM, Syddall HE, Barker DJP. Associations between birthweight and antihypertensive medication in black and white Americans. Hypertension. 2002;39:179–83.

    Article  PubMed  CAS  Google Scholar 

  40. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJP. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia. 2003;46:190–4.

    PubMed  CAS  Google Scholar 

  41. Rolland-Cachera MF, Deheeger M, Guilloud-Bataille M, Avons P, Patois E, Sempe M. Tracking the development of adiposity from one month of age to adulthood. Ann Hum Biol. 1987;14:219–29.

    Article  PubMed  CAS  Google Scholar 

  42. Bhargava SK, Sachdev HS, Fall CHD, et al. Relation of serial changes in childhood body mass index to impaired glucose tolerance in young adulthood. N Eng J Med. 2004;350:865–75.

    Article  CAS  Google Scholar 

  43. Metcalfe NB, Monaghan P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001;16:254–60.

    Article  PubMed  Google Scholar 

  44. Barker DJP, Kajantie E, Osmond C, Thornburg K, Eriksson JG. How boys grow determines how long they live. Am J Hum Biol. 2011;23:412–6.

    Article  Google Scholar 

  45. Widdowson EM, Crabb DE, Milner RDG. Cellular development of some human organs before birth. Arch Dis Child. 1972;47:652–5.

    Article  PubMed  CAS  Google Scholar 

  46. Eriksson JG, Forsen T, Jaddoe VWV, Osmond C, Barker DJP. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia. 2002;45:342–8.

    Article  PubMed  CAS  Google Scholar 

  47. Eriksson JG, Lindi V, Uusitupa M, et al. The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-y2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes. 2002;51:2321–4.

    Article  PubMed  CAS  Google Scholar 

  48. Barker DJP, Forsén T, Eriksson JG, Osmond C. Growth and living conditions in childhood and hypertension in adult life: longitudinal study. J Hypertens. 2002;20:1951–6.

    Article  PubMed  CAS  Google Scholar 

  49. Kuh D, Ben-Shlomo Y. A life-course approach to chronic disease epidemiology. Oxford: Oxford University Press; 1997.

    Google Scholar 

  50. Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis. Lancet. 2002;360:2074–5.

    Article  Google Scholar 

  51. Dubos R. Mirage of health. London: Allen and Unwin; 1960.

    Google Scholar 

  52. Ravelli ACJ, van der Meulen JHP, Michels RPJ, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351:173–7.

    Article  PubMed  CAS  Google Scholar 

  53. Kramer MS. Effects of energy and protein intakes on pregnancy outcome: an overview of the research evidence from controlled clinical trials. Am J Clin Nutr. 1993;58:627–35.

    PubMed  CAS  Google Scholar 

  54. Barker DJP. Mothers, babies and health in later life. Edinburgh: Churchill Livingstone; 1998.

    Google Scholar 

  55. Harding JE, Liu L, Evans P, Oliver M, Gluckman P. Intrauterine feeding of the growth-retarded fetus: can we help? Early Hum Dev. 1992;29:193–7.

    Article  PubMed  CAS  Google Scholar 

  56. Kwong WY, Wild A, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the pre-implantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195–202.

    PubMed  CAS  Google Scholar 

  57. Walker SK, Hartwick KM, Robinson JS. Long-term effects on offspring of exposure of oocytes and embryos to chemical and physical agents. Hum Reprod Update. 2000;6:564–7.

    Article  PubMed  CAS  Google Scholar 

  58. Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJ. Boys live dangerously in the womb. Am J Hum Biol. 2010;22:330–5.

    Article  PubMed  Google Scholar 

  59. Stewart RJC, Sheppard H, Preece R, Waterlow JC. The effect of rehabilitation at different stages of development of rats marginally malnourished for ten to twelve generations. Br J Nutr. 1980;43:403–12.

    Article  PubMed  CAS  Google Scholar 

  60. Emanuel I, Filakti H, Alberman E, Evans SJW. Intergenerational studies of human birthweight from the 1958 birth cohort. I. Evidence for a multigenerational effect. Br J Obstet Gynaecol. 1992;99:67–74.

    Article  PubMed  CAS  Google Scholar 

  61. Godfrey KM, Barker DJP, Robinson S, Osmond C. Maternal birthweight and diet in pregnancy in relation to the infant’s thinness at birth. Br J Obstet Gynaecol. 1997;104:663–7.

    Article  PubMed  CAS  Google Scholar 

  62. Belizan JM, Villar J, Bergel E, et al. Long term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ. 1997;315:281–5.

    Article  PubMed  CAS  Google Scholar 

  63. Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Bleker OP. Plasma lipid profiles in adults after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2000;72:1101–6.

    PubMed  CAS  Google Scholar 

  64. Roseboom TJ, van der Meulen JH, Osmond C, et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart. 2000;84:595–8.

    Article  PubMed  CAS  Google Scholar 

  65. Roseboom TJ, van der Meulen JH, van Montfrans GA, et al. Maternal nutrition during gestation and blood pressure in later life. J Hypertens. 2001;19:29–34.

    Article  PubMed  CAS  Google Scholar 

  66. Campbell DM, Hall MH, Barker DJP, Cross J, Shiell AW, Godfrey KM. Diet in pregnancy and the offspring’s blood pressure 40 years later. Br J Obstet Gynaecol. 1996;103:273–80.

    Article  PubMed  CAS  Google Scholar 

  67. Shiell AW, Campbell DM, Hall MH, Barker DJ. Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. Br J Obstet Gynaecol. 2000;107:890–5.

    Article  CAS  Google Scholar 

  68. Rush D. Effects of changes in maternal energy and protein intake during pregnancy, with special reference to fetal growth. In: Sharp F, Fraser RB, Milner RDG, editors. Fetal growth. London: Royal College of Obstetricians and Gynaecologists; 1989. p. 203–33.

    Chapter  Google Scholar 

  69. Shiell AW, Campbell-Brown M, Haselden S, Robinson S, Godfrey KM, Barker DJP. A high meat, low carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension. 2001;38:1282–8.

    Article  PubMed  CAS  Google Scholar 

  70. Herrick K, Phillips DIW, Haselden S, Shiell AW, Campbell-Brown M, Godfrey KM. Maternal consumption of a high-meat, low-carbohydrate diet in late pregnancy: relation to adult cortisol concentrations in the offspring. J Clin Endocrinol Metab. 2003;88:3554–60.

    Article  PubMed  CAS  Google Scholar 

  71. James WPT. Long-term fetal programming of body composition and longevity. Nutr Rev. 1997;55:S41–3.

    Google Scholar 

  72. Catalano PM, Husten LP, Thomas AJ, Fung CM. Effect of maternal metabolism on fetal growth and body composition. Diabetes Care. 1998;21:B85–90.

    Article  PubMed  Google Scholar 

  73. Silverman BL, Purdy LP, Metzger BE. The intrauterine environment: implications for the ­offspring of diabetic mothers. Diabetes Rev. 1996;4:21–35.

    Google Scholar 

  74. Fall CHD, Stein CE, Kumaran K, et al. Size at birth, maternal weight, and type 2 diabetes in South India. Diabet Med. 1998;15:220–7.

    Article  PubMed  CAS  Google Scholar 

  75. Mi J, Law C, Zhang K-L, Osmond C, Stein C, Barker DJP. Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med. 2000;132:253–60.

    PubMed  CAS  Google Scholar 

  76. Margetts BM, Rowland MGM, Foord FA, Cruddas AM, Cole TJ, Barker DJP. The relation of maternal weight to the blood pressures of Gambian children. Int J Epidemiol. 1991;20:938–43.

    Article  PubMed  CAS  Google Scholar 

  77. Godfrey KM, Forrester T, Barker DJP, et al. Maternal nutritional status in pregnancy and blood pressure in childhood. Br J Obstet Gynaecol. 1994;101:398–403.

    Article  PubMed  CAS  Google Scholar 

  78. Clark PM, Atton C, Law CM, Shiell A, Godfrey K, Barker DJP. Weight gain in pregnancy, triceps skinfold thickness and blood pressure in the offspring. Obstet Gynecol. 1998;91:103–7.

    Article  PubMed  CAS  Google Scholar 

  79. Adair LS, Kuzawa CW, Borja J. Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation. 2001;104:1034–9.

    Article  PubMed  CAS  Google Scholar 

  80. Duggleby SL, Jackson AA. Relationship of maternal protein turnover and lean body mass during pregnancy and birth length. Clin Sci. 2001;101:65–72.

    Article  PubMed  CAS  Google Scholar 

  81. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci. 2007;113:1–13.

    Article  PubMed  CAS  Google Scholar 

  82. Hamilton WJ, Boyd JD, Mossman HW. Human embryology. Cambridge: W. Heffer & Sons; 1945.

    Google Scholar 

  83. Sibley CP. The pregnant woman. In: Case RM, Waterhouse JM, editors. Human physiology: age, stress, and the environment. Oxford: Oxford University Press; 1994. p. 3–27.

    Google Scholar 

  84. McCrabb GJ, Egan AR, Hosking BJ. Maternal undernutrition during mid-pregnancy in sheep; variable effects on placental growth. J Agric Sci. 1992;118:127–32.

    Article  Google Scholar 

  85. Burton GJ, Barker DJP, Moffett A, Thornburg K, editors. The placenta and human developmental programming. Cambridge: Cambridge University Press; 2010. p. 5.

    Book  Google Scholar 

  86. Barker DJP, Thornburg KL, Osmond C, Kajantie E, Eriksson JG. The surface area of the placenta and hypertension in the offspring in later life. Int J Dev Biol. 2010;54:525–30.

    Article  PubMed  Google Scholar 

  87. Roberts JM, Cooper DW. Pathogenesis and genetics of preeclampsia. Lancet. 2001;357:53–6.

    Article  PubMed  CAS  Google Scholar 

  88. Kajantie E, Barker DJP, Osmond C, Kajantie E, Eriksson JG. In pre-eclampsia the placenta grows slowly along its minor axis. Int J Dev Biol. 2010;54:469–73.

    Article  PubMed  Google Scholar 

  89. Eriksson J, Forsen T, Toumilheto J, Osmond C, Barker D. Fetal and childhood growth and hypertension in adult life. Hypertension. 2000;36:790–4.

    Article  PubMed  CAS  Google Scholar 

  90. Barker DJP, Bull AR, Osmond C, Simmonds S. Fetal and placental size and risk of hypertension in adult life. Br Med J. 1990;301:259–62.

    Article  CAS  Google Scholar 

  91. Martyn CN, Barker DJP, Osmond C. Mothers’ pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet. 1996;348:1264–8.

    Article  PubMed  CAS  Google Scholar 

  92. Barker DJ, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG. The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail. 2010;12:819–25.

    Article  PubMed  Google Scholar 

  93. Eriksson JG, Kajantie E, Thornburg KL, Osmond C, Barker DJP. Mother’s body size and placental size predict coronary heart disease in men. Eur Heart J. 2011;32:2297–303.

    Article  PubMed  Google Scholar 

  94. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG. The prenatal origins of lung cancer. II. The placenta. Am J Hum Biol. 2010;22:512–6.

    Article  PubMed  Google Scholar 

  95. Javaid MK, Eriksson JG, Kajantie E, et al. Growth in childhood predicts hip fracture risk in later life. Osteoporos Int. 2011;22:69–73.

    Article  PubMed  CAS  Google Scholar 

  96. Barker DJ, Osmond C, Thornburg KL, Kajantie E, Forsén TJ, Eriksson JG. A possible link between the pubertal growth of girls and breast cancer in daughters. Am J Hum Biol. 2008;20:127–31.

    Article  PubMed  Google Scholar 

  97. Barker DJ, Osmond C, Thornburg KL, Kajantie E, Erikkson JG. A possible link between the pubertal growth of girls and ovarian cancer in their daughters. Am J Hum Biol. 2008;20:659–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. P. Barker MD, PhD, FRS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barker, D.J.P. (2012). The Developmental Origins of Chronic Disease in Later Life. In: Temple, N., Wilson, T., Jacobs, Jr., D. (eds) Nutritional Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-894-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-894-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-893-1

  • Online ISBN: 978-1-61779-894-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics