Skip to main content

Optimizing Nutrition for Exercise and Sports

  • Chapter
  • First Online:
Book cover Nutritional Health

Abstract

The primary factors that affect exercise performance capacity include an individual’s genetic endowment, the quality of training, and effective coaching (see Fig. 19.1). Beyond these factors, nutrition plays a critical role in optimizing performance capacity. In order for athletes to perform well, their training and diet must be optimal. If athletes do not train enough or have an inadequate diet, their performance may be decreased [1]. On the other hand, if athletes train too much, without a sufficient diet, they may be susceptible to becoming overtrained (see Fig. 19.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreider RB, Fry AC, O’Toole ML. Overtraining in sport. Champaign: Human Kinetics Publishers; 1998.

    Google Scholar 

  2. Kreider RB, Wilborn CD, Taylor L, et al. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr. 2010;7:7.

    PubMed  Google Scholar 

  3. Williams M. Nutrition for health fitness and sport. 6th ed. Dubuque: McGraw-Hill; 2002.

    Google Scholar 

  4. Kreider R, Leutholtz B, Katch F, Katch V. Exercise and sport nutrition. Santa Barbara: Fitness Technologies Press; 2009. http://www.ExerciseAndSportNutrition.com.

  5. Kreider RB, Campbell B. Protein for exercise and recovery. Phys Sportsmed. 2009;37:13–21.

    PubMed  Google Scholar 

  6. Goldstein ER, Ziegenfuss T, Kalman D, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7:5.

    PubMed  Google Scholar 

  7. Kerksick C, Harvey T, Stout J, et al. International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008;5:17.

    PubMed  Google Scholar 

  8. Campbell B, Kreider RB, Ziegenfuss T, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007;4:8.

    PubMed  Google Scholar 

  9. Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4:6.

    PubMed  Google Scholar 

  10. Berning JR. Energy intake, diet, and muscle wasting. In: Kreider RB, Fry AC, O’Toole ML, editors. Overtraining in sport. Champaign: Human Kinetics; 1998. p. 275–88.

    Google Scholar 

  11. Sherman WM, Jacobs KA, Leenders N. Carbohydrate metabolism during endurance exercise. In: Kreider RB, Fry AC, O’Toole ML, editors. Overtraining in sport. Champaign: Human Kinetics Publishers; 1998. p. 289–308.

    Google Scholar 

  12. Brouns F, Saris WH, Beckers E, et al. Metabolic changes induced by sustained exhaustive cycling and diet manipulation. Int J Sports Med. 1989;10 Suppl 1:S49–62.

    PubMed  Google Scholar 

  13. Brouns F, Saris WH, Stroecken J, et al. Eating, drinking, and cycling. A controlled Tour de France simulation study, Part II. Effect of diet manipulation. Int J Sports Med. 1989;10 Suppl 1:S41–8.

    PubMed  Google Scholar 

  14. Kreider RB. Physiological considerations of ultraendurance performance. Int J Sport Nutr. 1991;1:3–27.

    PubMed  CAS  Google Scholar 

  15. Kreider RB. Nutritional considerations of overtraining. In: Stout JR, Antonio J, editors. Sport supplements: a complete guide to physique and athletic enhancement. Baltimore, MD: Lippincott, Williams & Wilkins; 2001. p. 199–208.

    Google Scholar 

  16. Harger-Domitrovich SG, McClaughry AE, Gaskill SE, Ruby BC. Exogenous carbohydrate spares muscle glycogen in men and women during 10 h of exercise. Med Sci Sports Exerc. 2007;39:2171–9.

    PubMed  CAS  Google Scholar 

  17. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31.

    PubMed  Google Scholar 

  18. Rodriguez NR, DiMarco NM, Langley S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109:509–27.

    PubMed  Google Scholar 

  19. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90.

    PubMed  Google Scholar 

  20. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40:275–81.

    PubMed  CAS  Google Scholar 

  21. Earnest CP, Lancaster SL, Rasmussen CJ, et al. Low vs. high glycemic index carbohydrate gel ingestion during simulated 64-km cycling time trial performance. J Strength Cond Res. 2004;18:466–72.

    PubMed  Google Scholar 

  22. Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2010;20:112–21.

    PubMed  CAS  Google Scholar 

  23. Jentjens RL, Jeukendrup AE. Effects of pre-exercise ingestion of trehalose, galactose and glucose on subsequent metabolism and cycling performance. Eur J Appl Physiol. 2003;88:459–65.

    PubMed  CAS  Google Scholar 

  24. Jentjens RL, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 2004;96:1285–91.

    PubMed  CAS  Google Scholar 

  25. Venables MC, Brouns F, Jeukendrup AE. Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Med Sci Sports Exerc. 2008;40:1653–9.

    PubMed  CAS  Google Scholar 

  26. Achten J, Jentjens RL, Brouns F, Jeukendrup AE. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. J Nutr. 2007;137:1143–8.

    PubMed  CAS  Google Scholar 

  27. Kreider RB. Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med. 1999;27:97–110.

    PubMed  CAS  Google Scholar 

  28. Lemon PW, Tarnopolsky MA, MacDougall JD, Atkinson SA. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol. 1992;73:767–75.

    PubMed  CAS  Google Scholar 

  29. Tarnopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP. Evaluation of protein requirements for trained strength athletes. J Appl Physiol. 1992;73:1986–95.

    PubMed  CAS  Google Scholar 

  30. Tarnopolsky MA, MacDougall JD, Atkinson SA. Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol. 1988;64:187–93.

    PubMed  CAS  Google Scholar 

  31. Bucci L, Unlu L. Proteins and amino acid supplements in exercise and sport. In: Driskell J, Wolinsky I, editors. Energy-yielding macronutrients and energy metabolism in sports nutrition. Boca Raton: CRC Press; 2000. p. 191–212.

    Google Scholar 

  32. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997;94:14930–5.

    PubMed  CAS  Google Scholar 

  33. Boirie Y, Gachon P, Corny S, Fauquant J, Maubois JL, Beaufrere B. Acute postprandial changes in leucine metabolism as assessed with an intrinsically labeled milk protein. Am J Physiol. 1996;271(6 Pt 1):E1083–91.

    PubMed  CAS  Google Scholar 

  34. Dangin M, Boirie Y, Garcia-Rodenas C, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001;280:E340–8.

    PubMed  CAS  Google Scholar 

  35. Kreider RB, Kleiner SM. Protein supplements for athletes: need vs. convenience. Your Patient Fitness. 2000;14:12–8.

    Google Scholar 

  36. Venkatraman JT, Leddy J, Pendergast D. Dietary fats and immune status in athletes: clinical implications. Med Sci Sports Exerc. 2000;32(7 Suppl):S389–95.

    PubMed  CAS  Google Scholar 

  37. Dorgan JF, Judd JT, Longcope C, et al. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: a controlled feeding study. Am J Clin Nutr. 1996;64:850–5.

    PubMed  CAS  Google Scholar 

  38. Hamalainen EK, Adlercreutz H, Puska P, Pietinen P. Decrease of serum total and free testosterone during a low-fat high-fibre diet. J Steroid Biochem. 1983;18:369–70.

    PubMed  CAS  Google Scholar 

  39. Fry AC, Kraemer WJ, Ramsey LT. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. J Appl Physiol. 1998;85:2352–9.

    PubMed  CAS  Google Scholar 

  40. Pirozzo S, Summerbell C, Cameron C, Glasziou P. Should we recommend low-fat diets for obesity? Obes Rev. 2003;4:83–90.

    PubMed  CAS  Google Scholar 

  41. Hu FB, Manson JE, Willett WC. Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr. 2001;20:5–19.

    PubMed  Google Scholar 

  42. Vessby B. Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr Opin Lipidol. 2003;14:15–9.

    PubMed  CAS  Google Scholar 

  43. Cade JR, Reese RH, Privette RM, Hommen NM, Rogers JL, Fregly MJ. Dietary intervention and training in swimmers. Eur J Appl Physiol Occup Physiol. 1991;63:210–5.

    PubMed  CAS  Google Scholar 

  44. Carli G, Bonifazi M, Lodi L, Lupo C, Martelli G, Viti A. Changes in the exercise-induced hormone response to branched chain amino acid administration. Eur J Appl Physiol Occup Physiol. 1992;64:272–7.

    PubMed  CAS  Google Scholar 

  45. Burke LM. Nutrition for post-exercise recovery. Aust J Sci Med Sport. 1997;29:3–10.

    PubMed  CAS  Google Scholar 

  46. Burke LM. Nutritional needs for exercise in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001;128:735–48.

    PubMed  CAS  Google Scholar 

  47. Nieman DC. Nutrition, exercise, and immune system function. Clin Sports Med. 1999;18:537–48.

    PubMed  CAS  Google Scholar 

  48. Nieman DC, Fagoaga OR, Butterworth DE, et al. Carbohydrate supplementation affects blood granulocyte and monocyte trafficking but not function after 2.5 h or running. Am J Clin Nutr. 1997;66:153–9.

    PubMed  CAS  Google Scholar 

  49. Tarnopolsky MA, Bosman M, Macdonald JR, Vandeputte D, Martin J, Roy BD. Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997;83:1877–83.

    PubMed  CAS  Google Scholar 

  50. Zawadzki KM, Yaspelkis III BB, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72:1854–9.

    PubMed  CAS  Google Scholar 

  51. Kraemer WJ, Volek JS, Bush JA, Putukian M, Sebastianelli WJ. Hormonal responses to consecutive days of heavy-resistance exercise with or without nutritional supplementation. J Appl Physiol. 1998;85:1544–55.

    PubMed  CAS  Google Scholar 

  52. Campbell B, Kreider RB. Conjugated linoleic acids. Curr Sports Med Rep. 2008;7:237–41.

    PubMed  Google Scholar 

  53. Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P. L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 2002;282:E474–82.

    PubMed  CAS  Google Scholar 

  54. Culbertson J, Kreider R, Greenwood M, Cooke M. Effects of beta-alanine on muscle carnosine and exercise: a review of the current literature. Nutrients. 2010;2:75–98.

    PubMed  CAS  Google Scholar 

  55. Fletcher RH, Fairfield KM. Vitamins for chronic disease prevention in adults: clinical applications. JAMA. 2002;287(23):3127–9.

    PubMed  CAS  Google Scholar 

  56. Fairfield KM, Fletcher RH. Vitamins for chronic disease prevention in adults: scientific review. JAMA. 2002;287:3116–26.

    PubMed  CAS  Google Scholar 

  57. Kreider RB, Miller GW, Schenck D, et al. Effects of phosphate loading on metabolic and myocardial responses to maximal and endurance exercise. Int J Sport Nutr. 1992;2:20–47.

    PubMed  CAS  Google Scholar 

  58. Kreider RB, Miller GW, Williams MH, Somma CT, Nasser TA. Effects of phosphate loading on oxygen uptake, ventilatory anaerobic threshold, and run performance. Med Sci Sports Exerc. 1990;22:250–6.

    PubMed  CAS  Google Scholar 

  59. Jeukendrup AE, Currell K, Clarke J, Cole J, Blannin AK. Effect of beverage glucose and sodium content on fluid delivery. Nutr Metab (Lond). 2009;6:9.

    Google Scholar 

  60. Rehrer NJ. Fluid and electrolyte balance in ultra-endurance sport. Sports Med. 2001;31:701–15.

    PubMed  CAS  Google Scholar 

  61. Sawka MN, Montain SJ. Fluid and electrolyte supplementation for exercise heat stress. Am J Clin Nutr. 2000;72(2 Suppl):564S–72.

    PubMed  CAS  Google Scholar 

  62. Maughan RJ, Noakes TD. Fluid replacement and exercise stress. A brief review of studies on fluid replacement and some guidelines for the athlete. Sports Med. 1991;12:16–31.

    PubMed  CAS  Google Scholar 

  63. Murakami C, Myoga K, Kasai R, et al. Screening of plant constituents for effect on glucose transport activity in Ehrlich ascites tumour cells. Chem Pharm Bull (Tokyo). 1993;41:2129–31.

    CAS  Google Scholar 

  64. Fukushima M, Matsuyama F, Ueda N, et al. Effect of corosolic acid on postchallenge plasma glucose levels. Diabetes Res Clin Pract. 2006;73:174–1747.

    PubMed  CAS  Google Scholar 

  65. Stanko RT, Robertson RJ, Galbreath RW, Reilly Jr JJ, Greenawalt KD, Goss FL. Enhanced leg exercise endurance with a high-carbohydrate diet and dihydroxyacetone and pyruvate. J Appl Physiol. 1990;69:1651–6.

    PubMed  CAS  Google Scholar 

  66. Myers J, Atwood JE, Forbes S, Evans B, Froelicher V. Effect of fructose 1,6-diphosphate on exercise capacity in patients with peripheral vascular disease. Int J Sports Med. 1990;11:259–62.

    PubMed  CAS  Google Scholar 

  67. Convertino VA, Armstrong LE, Coyle EF, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 1996;28:i–vii.

    PubMed  CAS  Google Scholar 

  68. Bates SH, Jones RB, Bailey CJ. Insulin-like effect of pinitol. Br J Pharmacol. 2000;130:1944–8.

    PubMed  CAS  Google Scholar 

  69. Greenwood M, Kreider RB, Rasmussen C, Almada AL, Earnest CP. D-pinitol augments whole body creatine retention in man. J Exerc Physiol Online. 2001;4(4):41–7. http://www.css.edu/users/tboone2/asep/GreenwoodNOVEMBER2001.pdf.

    Google Scholar 

  70. Kerksick CM, Wilborn CD, Campbell WI, et al. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. J Strength Cond Res. 2009;23:2673–82.

    PubMed  Google Scholar 

  71. Walaszek Z, Szemraj J, Narog M, et al. Metabolism, uptake, and excretion of a D-glucaric acid salt and its potential use in cancer prevention. Cancer Detect Prev. 1997;21:178–90.

    PubMed  CAS  Google Scholar 

  72. Fahey T. The effects of ingesting polylactate or glucose polymer drinks during prolonged exercise. Int J Sport Nutr. 1991;1:49–56.

    Google Scholar 

  73. Swensen T, Crater G, Bassett Jr DR, Howley ET. Adding polylactate to a glucose polymer solution does not improve endurance. Int J Sports Med. 1994;15:430–4.

    PubMed  CAS  Google Scholar 

  74. Kalman D, Colker CM, Wilets I, Roufs JB, Antonio J. The effects of pyruvate supplementation on body composition in overweight individuals. Nutrition. 1999;15:337–40.

    PubMed  CAS  Google Scholar 

  75. Stanko RT, Arch JE. Inhibition of regain in body weight and fat with addition of 3-carbon compounds to the diet with hyperenergetic refeeding after weight reduction. Int J Obes Relat Metab Disord. 1996;20:925–30.

    PubMed  CAS  Google Scholar 

  76. Gross M, Kormann B, Zollner N. Ribose administration during exercise: effects on substrates and products of energy metabolism in healthy subjects and a patient with myoadenylate deaminase deficiency. Klin Wochenschr. 1991;69:151–5.

    PubMed  CAS  Google Scholar 

  77. Hegewald MG, Palac RT, Angello DA, Perlmutter NS, Wilson RA. Ribose infusion accelerates thallium redistribution with early imaging compared with late 24-hour imaging without ribose. J Am Coll Cardiol. 1991;18:1671–81.

    PubMed  CAS  Google Scholar 

  78. Wagner DR, Gresser U, Zollner N. Effects of oral ribose on muscle metabolism during bicycle ergometer in AMPD-deficient patients. Ann Nutr Metab. 1991;35:297–302.

    PubMed  CAS  Google Scholar 

  79. Kreider RB, Melton C, Greenwood M, et al. Effects of oral d-ribose supplementation on anaerobic capacity and selected metabolic markers in healthy males. Int J Sport Nutr Exerc Metab. 2003;13:87–96.

    Google Scholar 

  80. Op’t Eijnde B, Van Leemputte M, Brouns F, et al. No effects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis. J Appl Physiol. 2001;91:2275–81.

    Google Scholar 

  81. Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res. 2001;40:283–98.

    PubMed  CAS  Google Scholar 

  82. DeLany JP, West DB. Changes in body composition with conjugated linoleic acid. J Am Coll Nutr. 2000;19:487S–93.

    PubMed  CAS  Google Scholar 

  83. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW. Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997;32:853–8.

    PubMed  CAS  Google Scholar 

  84. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr. 2000;130:2943–8.

    PubMed  CAS  Google Scholar 

  85. Gaullier JM, Berven G, Blankson H, Gudmundsen O. Clinical trial results support a preference for using CLA preparations enriched with two isomers rather than four isomers in human studies. Lipids. 2002;37:1019–25.

    PubMed  CAS  Google Scholar 

  86. Inder WJ, Swanney MP, Donald RA, Prickett TC, Hellemans J. The effect of glycerol and desmopressin on exercise performance and hydration in triathletes. Med Sci Sports Exerc. 1998;30:1263–9.

    PubMed  CAS  Google Scholar 

  87. Magal M, Webster MJ, Sistrunk LE, Whitehead MT, Evans RK, Boyd JC. Comparison of glycerol and water hydration regimens on tennis-related performance. Med Sci Sports Exerc. 2003;35:150–6.

    PubMed  CAS  Google Scholar 

  88. Meyer LG, Horrigan Jr DJ, Lotz WG. Effects of three hydration beverages on exercise performance during 60 hours of heat exposure. Aviat Space Environ Med. 1995;66:1052–7.

    PubMed  CAS  Google Scholar 

  89. Kavouras SA, Armstrong LE, Maresh CM, et al. Rehydration with glycerol: endocrine, cardiovascular, and thermoregulatory responses during exercise in the heat. J Appl Physiol. 2006;100:442–50.

    PubMed  CAS  Google Scholar 

  90. Brass EP, Hiatt WR. Carnitine metabolism during exercise. Life Sci. 1994;54:1383–93.

    PubMed  CAS  Google Scholar 

  91. Villani RG, Gannon J, Self M, Rich PA. L-carnitine supplementation combined with aerobic training does not promote weight loss in moderately obese women. Int J Sport Nutr Exerc Metab. 2000;10:199–207.

    PubMed  CAS  Google Scholar 

  92. Angus DJ, Hargreaves M, Dancey J, Febbraio MA. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000;88:113–9.

    PubMed  CAS  Google Scholar 

  93. Calabrese C, Myer S, Munson S, Turet P, Birdsall TC. A cross-over study of the effect of a single oral feeding of medium chain triglyceride oil vs. canola oil on post-ingestion plasma triglyceride levels in healthy men. Altern Med Rev. 1999;4:23–8.

    PubMed  CAS  Google Scholar 

  94. Goedecke JH, Elmer-English R, Dennis SC, Schloss I, Noakes TD, Lambert EV. Effects of medium-chain triaclyglycerol ingested with carbohydrate on metabolism and exercise performance. Int J Sport Nutr. 1999;9:35–47.

    PubMed  CAS  Google Scholar 

  95. Jeukendrup AE, Thielen JJ, Wagenmakers AJ, Brouns F, Saris WH. Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am J Clin Nutr. 1998;67:397–404.

    PubMed  CAS  Google Scholar 

  96. Misell LM, Lagomarcino ND, Schuster V, Kern M. Chronic medium-chain triacylglycerol consumption and endurance performance in trained runners. J Sports Med Phys Fitness. 2001;41:210–5.

    PubMed  CAS  Google Scholar 

  97. Goedecke JH, Clark VR, Noakes TD, Lambert EV. The effects of medium-chain triacylglycerol and carbohydrate ingestion on ultra-endurance exercise performance. Int J Sport Nutr Exerc Metab. 2005;15:15–27.

    PubMed  CAS  Google Scholar 

  98. Burke LM, Kiens B, Ivy JL. Carbohydrates and fat for training and recovery. J Sports Sci. 2004;22:15–30.

    PubMed  Google Scholar 

  99. Nosaka N, Suzuki Y, Nagatoishi A, Kasai M, Wu J, Taguchi M. Effect of ingestion of medium-chain triacylglycerols on moderate- and high-intensity exercise in recreational athletes. J Nutr Sci Vitaminol (Tokyo). 2009;55:120–5.

    CAS  Google Scholar 

  100. Brilla LR, Landerholm TE. Effect of fish oil supplementation and exercise on serum lipids and aerobic fitness. J Sports Med Phys Fitness. 1990;30:173–80.

    PubMed  CAS  Google Scholar 

  101. Hammarqvist F, Wernerman J, Ali R, Vinnars E. Effects of an amino acid solution enriched with either branched chain amino acids or ornithine-alpha-ketoglutarate on the postoperative intracellular amino acid concentration of skeletal muscle. Br J Surg. 1990;77:214–8.

    PubMed  CAS  Google Scholar 

  102. Wernerman J, Hammarqvist F, Vinnars E. Alpha-ketoglutarate and postoperative muscle catabolism. Lancet. 1990;335:701–3.

    PubMed  CAS  Google Scholar 

  103. Antonio J, Stout JR. Sport supplements. Philadelphia, PA: Lippincott, Williams and Wilkins; 2001.

    Google Scholar 

  104. Mitch WE, Walser M, Sapir DG. Nitrogen sparing induced by leucine compared with that induced by its keto analogue, alpha-ketoisocaproate, in fasting obese man. J Clin Invest. 1981;67:553–62.

    PubMed  CAS  Google Scholar 

  105. Van Koevering M, Nissen S. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am J Physiol. 1992;262(1 Pt 1):E27–31.

    PubMed  Google Scholar 

  106. Procopio M, Maccario M, Savio P, et al. GH response to GHRH combined with pyridostigmine or arginine in different conditions of low somatotrope secretion in adulthood: obesity and Cushing’s syndrome in comparison with hypopituitarism. Panminerva Med. 1998;40:13–7.

    PubMed  CAS  Google Scholar 

  107. Wu G, Meininger CJ. Arginine nutrition and cardiovascular function. J Nutr. 2000;130:2626–9.

    PubMed  CAS  Google Scholar 

  108. Bloomer RJ, Williams SA, Canale RE, Farney TM, Kabir MM. Acute effect of nitric oxide supplement on blood nitrate/nitrite and hemodynamic variables in resistance trained men. J Strength Cond Res. 2010;24:2587–92.

    PubMed  Google Scholar 

  109. Bloomer RJ, Farney TM, Trepanowski JF, McCarthy CG, Canale RE, Schilling BK. Comparison of pre-workout nitric oxide stimulating dietary supplements on skeletal muscle oxygen saturation, blood nitrate/nitrite, lipid peroxidation, and upper body exercise performance in resistance trained men. J Int Soc Sports Nutr. 2010;7:16.

    PubMed  Google Scholar 

  110. Bloomer RJ, Tschume LC, Smith WA. Glycine propionyl-L-carnitine modulates lipid peroxidation and nitric oxide in human subjects. Int J Vitam Nutr Res. 2009;79:131–41.

    PubMed  CAS  Google Scholar 

  111. Colombani P, Wenk C, Kunz I, et al. Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study. Eur J Appl Physiol Occup Physiol. 1996;73:434–9.

    PubMed  CAS  Google Scholar 

  112. Colombani PC, Bitzi R, Frey-Rindova P, et al. Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run. Eur J Nutr. 1999;38:263–70.

    PubMed  CAS  Google Scholar 

  113. Tuttle JL, Potteiger JA, Evans BW, Ozmun JC. Effect of acute potassium-magnesium aspartate supplementation on ammonia concentrations during and after resistance training. Int J Sport Nutr. 1995;5:102–9.

    PubMed  CAS  Google Scholar 

  114. Coombes JS, McNaughton LR. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J Sports Med Phys Fitness. 2000;40:240–6.

    PubMed  CAS  Google Scholar 

  115. Bigard AX, Lavier P, Ullmann L, Legrand H, Douce P, Guezennec CY. Branched-chain amino acid supplementation during repeated prolonged skiing exercises at altitude. Int J Sport Nutr. 1996;6:295–306.

    PubMed  CAS  Google Scholar 

  116. Candeloro N, Bertini I, Melchiorri G, De Lorenzo A. [Effects of prolonged administration of branched-chain amino acids on body composition and physical fitness]. Minerva Endocrinol. 1995;20:217–23.

    PubMed  CAS  Google Scholar 

  117. Schena F, Guerrini F, Tregnaghi P, Kayser B. Branched-chain amino acid supplementation during trekking at high altitude. The effects on loss of body mass, body composition, and muscle power. Eur J Appl Physiol Occup Physiol. 1992;65:394–8.

    PubMed  CAS  Google Scholar 

  118. Williams MH. Facts and fallacies of purported ergogenic amino acid supplements. Clin Sports Med. 1999;18:633–49.

    PubMed  CAS  Google Scholar 

  119. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244:89–94.

    PubMed  CAS  Google Scholar 

  120. Kreider RB, Melton C, Rasmussen CJ, et al. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol Cell Biochem. 2003;244:95–104.

    PubMed  CAS  Google Scholar 

  121. Volek JS, Duncan ND, Mazzetti SA, et al. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc. 1999;31:1147–56.

    PubMed  CAS  Google Scholar 

  122. Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001;33:1674–81.

    PubMed  CAS  Google Scholar 

  123. Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc. 2003;35:923–9.

    PubMed  CAS  Google Scholar 

  124. Graham AS, Hatton RC. Creatine: a review of efficacy and safety. J Am Pharm Assoc (Wash). 1999;39:803–10.

    CAS  Google Scholar 

  125. Juhn MS, Tarnopolsky M. Potential side effects of oral creatine supplementation: a critical review. Clin J Sport Med. 1998;8:298–304.

    PubMed  CAS  Google Scholar 

  126. Schilling BK, Stone MH, Utter A, Kearney JT, Johnson M, Coglianese R, et al. Creatine supplementation and health variables: a retrospective study. Med Sci Sports Exerc. 2001;33:183–8.

    PubMed  CAS  Google Scholar 

  127. Taes YE, Delanghe JR, Wuyts B, Van De Voorde J, Lameire NH. Creatine supplementation does not affect kidney function in an animal model with pre-existing renal failure. Nephrol Dial Transplant. 2003;18:258–64.

    PubMed  CAS  Google Scholar 

  128. Greenwood L, Greenwood M, Kreider R, et al. Effects of creatine supplementation on the incidence of cramping/injury during eighteen weeks of division I football training/competition. Med Sci Sports Exerc. 2002;34:S146.

    Google Scholar 

  129. Watsford ML, Murphy AJ, Spinks WL, Walshe AD. Creatine supplementation and its effect on musculotendinous stiffness and performance. J Strength Cond Res. 2003;17:26–33.

    PubMed  Google Scholar 

  130. Greenwood M, Kreider RB, Greenwood L, Byars A. Cramping and injury incidence in collegiate football players are reduced by creatine supplementation. J Athl Train. 2003;38:216–9.

    PubMed  Google Scholar 

  131. Greenwood M, Kreider RB, Melton C, et al. Creatine supplementation during college football training does not increase the incidence of cramping or injury. Mol Cell Biochem. 2003;244:83–8.

    PubMed  CAS  Google Scholar 

  132. Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR. Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab. 2003;284:E76–89.

    PubMed  CAS  Google Scholar 

  133. Wolfe RR. Regulation of muscle protein by amino acids. J Nutr. 2002;132:3219S–24.

    PubMed  CAS  Google Scholar 

  134. Biolo G, Williams BD, Fleming RY, Wolfe RR. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999;48:949–57.

    PubMed  CAS  Google Scholar 

  135. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR. Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003;35:449–55.

    PubMed  CAS  Google Scholar 

  136. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000;88:386–92.

    PubMed  CAS  Google Scholar 

  137. Rasmussen BB, Wolfe RR, Volpi E. Oral and intravenously administered amino acids produce similar effects on muscle protein synthesis in the elderly. J Nutr Health Aging. 2002;6:358–62.

    PubMed  CAS  Google Scholar 

  138. Tipton KD, Rasmussen BB, Miller SL, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001;281:E197–206.

    PubMed  CAS  Google Scholar 

  139. Ferrando AA, Paddon-Jones D, Hays NP, et al. EAA supplementation to increase nitrogen intake improves muscle function during bed rest in the elderly. Clin Nutr. 2010;29:18–23.

    PubMed  CAS  Google Scholar 

  140. Katsanos CS, Aarsland A, Cree MG, Wolfe RR. Muscle protein synthesis and balance responsiveness to essential amino acids ingestion in the presence of elevated plasma free fatty acid concentrations. J Clin Endocrinol Metab. 2009;94:2984–90.

    PubMed  CAS  Google Scholar 

  141. Katsanos CS, Chinkes DL, Paddon-Jones D, Zhang XJ, Aarsland A, Wolfe RR. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res. 2008;28:651–8.

    PubMed  CAS  Google Scholar 

  142. Paddon-Jones D, Sheffield-Moore M, Katsanos CS, Zhang XJ, Wolfe RR. Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein. Exp Gerontol. 2006;41:215–9.

    PubMed  CAS  Google Scholar 

  143. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291:E381–7.

    PubMed  CAS  Google Scholar 

  144. Borsheim E, Kobayashi H, Traber DL, Wolfe RR. Compartmental distribution of amino acids during hemodialysis-induced hypoaminoacidemia. Am J Physiol Endocrinol Metab. 2006;290:E643–52.

    PubMed  CAS  Google Scholar 

  145. Paddon-Jones D, Wolfe RR, Ferrando AA. Amino acid supplementation for reversing bed rest and steroid myopathies. J Nutr. 2005;135:1809S–12.

    PubMed  CAS  Google Scholar 

  146. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr. 2005;82:1065–73.

    PubMed  CAS  Google Scholar 

  147. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, et al. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab. 2004;286:E321–8.

    PubMed  CAS  Google Scholar 

  148. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003;78:250–8.

    PubMed  CAS  Google Scholar 

  149. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001;535(Pt 1):301–11.

    PubMed  CAS  Google Scholar 

  150. Low SY, Taylor PM, Rennie MJ. Responses of glutamine transport in cultured rat skeletal muscle to osmotically induced changes in cell volume. J Physiol. 1996;492:877–85.

    PubMed  CAS  Google Scholar 

  151. Rennie MJ, Ahmed A, Khogali SE, Low SY, Hundal HS, Taylor PM. Glutamine metabolism and transport in skeletal muscle and heart and their clinical relevance. J Nutr. 1996;126(Suppl):1142S–9.

    PubMed  CAS  Google Scholar 

  152. Varnier M, Leese GP, Thompson J, Rennie MJ. Stimulatory effect of glutamine on glycogen accumulation in human skeletal muscle. Am J Physiol. 1995;269(2 Pt 1):E309–15.

    PubMed  CAS  Google Scholar 

  153. Colker CM. Effects of supplemental protein on body composition and muscular strength in healthy athletic male adults. Curr Ther Res. 2000;61:19–28.

    CAS  Google Scholar 

  154. Candow DG, Chilibeck PD, Burke DG, Davison KS, Smith-Palmer T. Effect of glutamine supplementation combined with resistance training in young adults. Eur J Appl Physiol. 2001;86:142–9.

    PubMed  CAS  Google Scholar 

  155. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW. Beta-hydroxy-beta-methylbutyrate ingestion, Part I: effects on strength and fat free mass. Med Sci Sports Exerc. 2000;32:2109–15.

    PubMed  CAS  Google Scholar 

  156. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW. Beta-hydroxy-beta-methylbutyrate ingestion, Part II: effects on hematology, hepatic and renal function. Med Sci Sports Exerc. 2000;32:2116–9.

    PubMed  CAS  Google Scholar 

  157. Nissen S, Sharp R, Ray M, et al. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol. 1996;81:2095–104.

    PubMed  CAS  Google Scholar 

  158. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite beta-hydroxy-beta- methylbutyrate (hmb) during resistance training. Nutrition. 2000;16:734–9.

    PubMed  CAS  Google Scholar 

  159. Vukovich MD, Stubbs NB, Bohlken RM. Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J Nutr. 2001;131:2049–52.

    PubMed  CAS  Google Scholar 

  160. Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R. Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol. 2000;89:1340–4.

    PubMed  CAS  Google Scholar 

  161. Jowko E, Ostaszewski P, Jank M, Sacharuk J, Zieniewicz A, Wilczak J, et al. Creatine and beta-hydroxy-beta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition. 2001;17:558–66.

    PubMed  CAS  Google Scholar 

  162. O’Connor DM, Crowe MJ. Effects of beta-hydroxy-beta-methylbutyrate and creatine monohydrate supplementation on the aerobic and anaerobic capacity of highly trained athletes. J Sports Med Phys Fitness. 2003;43:64–8.

    PubMed  Google Scholar 

  163. Kreider RB, Ferreira M, Wilson M, Almada AL. Effects of calcium beta-hydroxy-beta-methylbutyrate (HMB) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med. 1999;20:503–9.

    PubMed  CAS  Google Scholar 

  164. Ransone J, Neighbors K, Lefavi R, Chromiak J. The effect of beta-hydroxy beta-methylbutyrate on muscular strength and body composition in collegiate football players. J Strength Cond Res. 2003;17:34–9.

    PubMed  Google Scholar 

  165. Slater G, Jenkins D, Logan P, et al. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab. 2001;11:384–96.

    PubMed  CAS  Google Scholar 

  166. Chetlin RD, Yeater RA, Ullrich IH, Hornsby WG, Malanga CJ, Byrner RW. The effect of ornithine alpha-ketoglutarate (OKG) on healthy, weight trained men. J Exerc Physiol Online. 2000;3(4). http://www.css.edu/users/tboone2/asep/ChetlinV.pdf.

  167. Segura R, Ventura JL. Effect of L-tryptophan supplementation on exercise performance. Int J Sports Med. 1988;9:301–5.

    PubMed  CAS  Google Scholar 

  168. Stensrud T, Ingjer F, Holm H, Stromme SB. L-tryptophan supplementation does not improve running performance. Int J Sports Med. 1992;13:481–5.

    PubMed  CAS  Google Scholar 

  169. Williams MH. Vitamin supplementation and athletic performance. Int J Vitam Nutr Res Suppl. 1989;30:163–91.

    PubMed  CAS  Google Scholar 

  170. Reid IR. Therapy of osteoporosis: calcium, vitamin D, and exercise. Am J Med Sci. 1996;312:278–86.

    PubMed  CAS  Google Scholar 

  171. Appell HJ, Duarte JA, Soares JM. Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med. 1997;18:157–60.

    PubMed  CAS  Google Scholar 

  172. Goldfarb AH. Antioxidants: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc. 1993;25:232–6.

    PubMed  CAS  Google Scholar 

  173. Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol. 1999;24:249–66.

    PubMed  CAS  Google Scholar 

  174. Tiidus PM, Houston ME. Vitamin E status and response to exercise training. Sports Med. 1995;20:12–23.

    PubMed  CAS  Google Scholar 

  175. Craciun AM, Wolf J, Knapen MH, Brouns F, Vermeer C. Improved bone metabolism in female elite athletes after vitamin K supplementation. Int J Sports Med. 1998;19:479–84.

    PubMed  CAS  Google Scholar 

  176. Fogelholm M, Ruokonen I, Laakso JT, Vuorimaa T, Himberg JJ. Lack of association between indices of vitamin B1, B2, and B6 status and exercise-induced blood lactate in young adults. Int J Sport Nutr. 1993;3:165–76.

    PubMed  CAS  Google Scholar 

  177. Alaswad K, O’Keefe Jr JH, Moe RM. Combination drug therapy for dyslipidemia. Curr Atheroscler Rep. 1999;1:44–9.

    PubMed  CAS  Google Scholar 

  178. Garg R, Malinow M, Pettinger M, Upson B, Hunninghake D. Niacin treatment increases plasma homocyst(e)ine levels. Am Heart J. 1999;138(6 Pt 1):1082–7.

    PubMed  CAS  Google Scholar 

  179. Murray R, Bartoli WP, Eddy DE, Horn MK. Physiological and performance responses to nicotinic-acid ingestion during exercise. Med Sci Sports Exerc. 1995;27:1057–62.

    PubMed  CAS  Google Scholar 

  180. Bonke D. Influence of vitamin B1, B6, and B12 on the control of fine motoric movements. Bibl Nutr Dieta. 1986;38:104–9.

    PubMed  CAS  Google Scholar 

  181. Bonke D, Nickel B. Improvement of fine motoric movement control by elevated dosages of vitamin B1, B6, and B12 in target shooting. Int J Vitam Nutr Res Suppl. 1989;30:198–204.

    PubMed  CAS  Google Scholar 

  182. Van Dyke DC, Stumbo PJ, Mary JB, Niebyl JR. Folic acid and prevention of birth defects. Dev Med Child Neurol. 2002;44:426–9.

    PubMed  Google Scholar 

  183. Mattson MP, Kruman II, Duan W. Folic acid and homocysteine in age-related disease. Ageing Res Rev. 2002;1:95–111.

    PubMed  CAS  Google Scholar 

  184. Weston PM, King RF, Goode AW, Williams NS. Diet-induced thermogenesis in patients with gastrointestinal cancer cachexia. Clin Sci (Lond). 1989;77:133–8.

    CAS  Google Scholar 

  185. Webster MJ. Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. Eur J Appl Physiol Occup Physiol. 1998;77:486–91.

    PubMed  CAS  Google Scholar 

  186. van der Beek EJ. Vitamin supplementation and physical exercise performance. J Sports Sci. 1991;9(Spec No):77–90.

    Google Scholar 

  187. van der Beek EJ, Lowik MR, Hulshof KF, Kistemaker C. Combinations of low thiamin, riboflavin, vitamin B6 and vitamin C intake among Dutch adults (Dutch Nutrition Surveillance System). J Am Coll Nutr. 1994;13:383–91.

    PubMed  Google Scholar 

  188. Nieman DC. Exercise immunology: nutritional countermeasures. Can J Appl Physiol. 2001;26(Suppl):S45–55.

    PubMed  CAS  Google Scholar 

  189. Pedersen BK, Bruunsgaard H, Jensen M, Krzywkowski K, Ostrowski K. Exercise and immune function: effect of ageing and nutrition. Proc Nutr Soc. 1999;58:733–42.

    PubMed  CAS  Google Scholar 

  190. Petersen EW, Ostrowski K, Ibfelt T, et al. Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol Cell Physiol. 2001;280:C1570–5.

    PubMed  CAS  Google Scholar 

  191. Ferrando AA, Green NR. The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders. Int J Sport Nutr. 1993;3:140–9.

    PubMed  CAS  Google Scholar 

  192. Green NR, Ferrando AA. Plasma boron and the effects of boron supplementation in males. Environ Health Perspect. 1994;102 Suppl 7:73–7.

    PubMed  CAS  Google Scholar 

  193. Grados F, Brazier M, Kamel S, et al. Effects on bone mineral density of calcium and vitamin D supplementation in elderly women with vitamin D deficiency. Joint Bone Spine. 2003;70:203–8.

    PubMed  Google Scholar 

  194. Zemel MB. Role of dietary calcium and dairy products in modulating adiposity. Lipids. 2003;38:139–246.

    PubMed  CAS  Google Scholar 

  195. Zemel MB. Mechanisms of dairy modulation of adiposity. J Nutr. 2003;133:252S–6.

    PubMed  Google Scholar 

  196. Hasten DL, Rome EP, Franks BD, Hegsted M. Effects of chromium picolinate on beginning weight training students. Int J Sport Nutr. 1992;2:343–50.

    PubMed  CAS  Google Scholar 

  197. Campbell WW, Joseph LJ, Anderson RA, Davey SL, Hinton J, Evans WJ. Effects of resistive training and chromium picolinate on body composition and skeletal muscle size in older women. Int J Sport Nutr Exerc Metab. 2002;12:125–35.

    PubMed  CAS  Google Scholar 

  198. Volpe SL, Huang HW, Larpadisorn K, Lesser II. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J Am Coll Nutr. 2001;20:293–306.

    PubMed  CAS  Google Scholar 

  199. Brutsaert TD, Hernandez-Cordero S, Rivera J, Viola T, Hughes G, Haas JD. Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am J Clin Nutr. 2003;77:441–8.

    PubMed  CAS  Google Scholar 

  200. Bohl CH, Volpe SL. Magnesium and exercise. Crit Rev Food Sci Nutr. 2002;42:533–63.

    PubMed  CAS  Google Scholar 

  201. Lukaski HC. Magnesium, zinc, and chromium nutrition and athletic performance. Can J Appl Physiol. 2001;26(Suppl):S13–22.

    PubMed  CAS  Google Scholar 

  202. Cade R, Conte M, Zauner C, et al. Effects of phosphate loading on 2,3 diphosphoglycerate and maximal oxygen uptake. Med Sci Sports Exerc. 1984;16:263–8.

    PubMed  CAS  Google Scholar 

  203. Morton DP, Callister R. Characteristics and etiology of exercise-related transient abdominal pain. Med Sci Sports Exerc. 2000;32:432–8.

    PubMed  CAS  Google Scholar 

  204. Noakes TD. Fluid and electrolyte disturbances in heat illness. Int J Sports Med. 1998;19 Suppl 2:S146–9.

    PubMed  Google Scholar 

  205. Shirreffs SM, Armstrong LE, Cheuvront SN. Fluid and electrolyte needs for preparation and recovery from training and competition. J Sports Sci. 2004;22:57–63.

    PubMed  Google Scholar 

  206. Margaritis I, Tessier F, Prou E, Marconnet P, Marini JF. Effects of endurance training on skeletal muscle oxidative capacities with and without selenium supplementation. J Trace Elem Med Biol. 1997;11:37–43.

    PubMed  CAS  Google Scholar 

  207. Tessier F, Margaritis I, Richard MJ, Moynot C, Marconnet P. Selenium and training effects on the glutathione system and aerobic performance. Med Sci Sports Exerc. 1995;27:390–6.

    PubMed  CAS  Google Scholar 

  208. McCutcheon LJ, Geor RJ. Sweating. Fluid and ion losses and replacement. Vet Clin North Am Equine Pract. 1998;14:75–95.

    PubMed  CAS  Google Scholar 

  209. Fawcett JP, Farquhar SJ, Thou T, Shand BI. Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans. Pharmacol Toxicol. 1997;80:202–6.

    PubMed  CAS  Google Scholar 

  210. Fawcett JP, Farquhar SJ, Walker RJ, Thou T, Lowe G, Goulding A. The effect of oral vanadyl sulfate on body composition and performance in weight-training athletes. Int J Sport Nutr. 1996;6:382–90.

    PubMed  CAS  Google Scholar 

  211. Gibson RS, Heath AL, Ferguson EL. Risk of suboptimal iron and zinc nutriture among adolescent girls in Australia and New Zealand: causes, consequences, and solutions. Asia Pac J Clin Nutr. 2002;11 Suppl 3:S543–52.

    PubMed  CAS  Google Scholar 

  212. Gleeson M, Bishop NC. Elite athlete immunology: importance of nutrition. Int J Sports Med. 2000;21 Suppl 1:S44–50.

    PubMed  CAS  Google Scholar 

  213. Singh A, Failla ML, Deuster PA. Exercise-induced changes in immune function: effects of zinc supplementation. J Appl Physiol. 1994;76:2298–303.

    PubMed  CAS  Google Scholar 

  214. Williams MH. Ergogenic and ergolytic substances. Med Sci Sports Exerc. 1992;24(9 Suppl):S344–8.

    PubMed  CAS  Google Scholar 

  215. Kraemer WJ, Gordon SE, Lynch JM, Pop ME, Clark KL. Effects of multibuffer supplementation on acid-base balance and 2,3- diphosphoglycerate following repetitive anaerobic exercise. Int J Sport Nutr. 1995;5:300–14.

    PubMed  CAS  Google Scholar 

  216. McNaughton L, Backx K, Palmer G, Strange N. Effects of chronic bicarbonate ingestion on the performance of high- intensity work. Eur J Appl Physiol Occup Physiol. 1999;80:333–6.

    PubMed  CAS  Google Scholar 

  217. Matson LG, Tran ZV. Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr. 1993;3:2–28.

    PubMed  CAS  Google Scholar 

  218. Lindh AM, Peyrebrune MC, Ingham SA, Bailey DM, Folland JP. Sodium bicarbonate improves swimming performance. Int J Sports Med. 2008;29:519–23.

    PubMed  CAS  Google Scholar 

  219. Applegate E. Effective nutritional ergogenic aids. Int J Sport Nutr. 1999;9:229–39.

    PubMed  CAS  Google Scholar 

  220. Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31:785–807.

    PubMed  CAS  Google Scholar 

  221. Carr A, Dawson B, Schneiker K, Goodman C, Lay B. Effect of caffeine supplementation on repeated sprint running performance. J Sports Med Phys Fitness. 2008;48:472–8.

    PubMed  CAS  Google Scholar 

  222. Glaister M, Howatson G, Abraham CS, Lockey RA, Goodwin JE, Foley P, et al. Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc. 2008;40:1835–40.

    PubMed  CAS  Google Scholar 

  223. Tarnopolsky MA, Atkinson SA, MacDougall JD, Sale DG, Sutton JR. Physiological responses to caffeine during endurance running in habitual caffeine users. Med Sci Sports Exerc. 1989;21:418–24.

    PubMed  CAS  Google Scholar 

  224. Armstrong LE. Caffeine, body fluid-electrolyte balance, and exercise performance. Int J Sport Nutr Exerc Metab. 2002;12:189–206.

    PubMed  CAS  Google Scholar 

  225. Falk B, Burstein R, Rosenblum J, Shapiro Y, Zylber-Katz E, Bashan N. Effects of caffeine ingestion on body fluid balance and thermoregulation during exercise. Can J Physiol Pharmacol. 1990;68:889–92.

    PubMed  CAS  Google Scholar 

  226. Rama Rao SV, Sunder GS, Reddy MR, Praharaj NK, Raju MV, Panda AK. Effect of supplementary choline on the performance of broiler breeders fed on different energy sources. Br Poult Sci. 2001;42:362–7.

    PubMed  CAS  Google Scholar 

  227. Buchman AL, Awal M, Jenden D, Roch M, Kang SH. The effect of lecithin supplementation on plasma choline concentrations during a marathon. J Am Coll Nutr. 2000;19:768–70.

    PubMed  CAS  Google Scholar 

  228. Buchman AL, Jenden D, Roch M. Plasma free, phospholipid-bound and urinary free choline all decrease during a marathon run and may be associated with impaired performance. J Am Coll Nutr. 1999;18:598–601.

    PubMed  CAS  Google Scholar 

  229. Kaikkonen J, Kosonen L, Nyyssonen K, et al. Effect of combined coenzyme Q10 and d-alpha-tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage: a placebo-controlled double-blind study in marathon runners. Free Radic Res. 1998;29:85–92.

    PubMed  CAS  Google Scholar 

  230. Svensson M, Malm C, Tonkonogi M, Ekblom B, Sjodin B, Sahlin K. Effect of Q10 supplementation on tissue Q10 levels and adenine nucleotide catabolism during high-intensity exercise. Int J Sport Nutr. 1999;9:166–80.

    PubMed  CAS  Google Scholar 

  231. Bowers CY. Growth hormone-releasing peptide (GHRP). Cell Mol Life Sci. 1998;54:1316–29.

    PubMed  CAS  Google Scholar 

  232. Camanni F, Ghigo E, Arvat E. Growth hormone-releasing peptides and their analogs. Front Neuroendocrinol. 1998;19:47–72.

    PubMed  CAS  Google Scholar 

  233. Hargreaves M, McKenna MJ, Jenkins DG, et al. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol. 1998;84:1687–91.

    PubMed  CAS  Google Scholar 

  234. McNaughton L, Dalton B, Tarr J. Inosine supplementation has no effect on aerobic or anaerobic cycling performance. Int J Sport Nutr. 1999;9:333–44.

    PubMed  CAS  Google Scholar 

  235. Starling RD, Trappe TA, Short KR, et al. Effect of inosine supplementation on aerobic and anaerobic cycling performance. Med Sci Sports Exerc. 1996;28:1193–8.

    PubMed  CAS  Google Scholar 

  236. Williams MH, Kreider RB, Hunter DW, et al. Effect of inosine supplementation on 3-mile treadmill run performance and VO2 peak. Med Sci Sports Exerc. 1990;22:517–22.

    PubMed  CAS  Google Scholar 

  237. Messina M, Messina V. Soyfoods, soybean isoflavones, and bone health: a brief overview. J Ren Nutr. 2000;10:63–8.

    PubMed  CAS  Google Scholar 

  238. Brilla LR, Conte V. Effects of a novel zinc-magnesium formulation on hormones and strength. J Exerc Physiol Online. 2000;3(4). http://www.css.edu/users/tboone2/asep/BrillaV.pdf.

Download references

Acknowledgments

This chapter represents an update to a number of articles and book chapters researchers in the Exercise and Sport Nutrition Laboratory have developed over the years. In addition, the chapter incorporates guidelines developed as position stands by a number of colleagues for the International Society of Sports Nutrition. While we could not acknowledge everyone’s contributions to this work, the authors would like to thank all of the students, colleagues, and research participants who have contributed to the research and exercise and sport nutrition guidelines presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Kreider PhD, FACSM, FISSN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kreider, R.B., Schwarz, N.A., Leutholtz, B. (2012). Optimizing Nutrition for Exercise and Sports. In: Temple, N., Wilson, T., Jacobs, Jr., D. (eds) Nutritional Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-894-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-894-8_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-893-1

  • Online ISBN: 978-1-61779-894-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics