Skip to main content

Mechanisms of Cardiac Dysfunction Associated with Cancer Therapeutics

  • Chapter
  • First Online:
Translational Cardiology

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 1013 Accesses

Abstract

Novel anticancer therapeutics have transformed subsets of human cancers from fatal illnesses to chronic diseases. As more individuals survive cancer, cardiovascular disease begins to represent a growing cause of morbidity and mortality in cancer patients and cancer survivors. Complications seen with novel treatment regimens can include cardiomyopathy, arrhythmias, myocardial infarction, thromboembolism, and hypertension. Recent findings suggest that cardiotoxicity of novel anticancer agents may be due to “on-target” drug effects, suggesting an overlap between the signaling pathways that drive cancer growth and progression and the signaling pathways that are critical for maintenance of normal cardiovascular function or cardiac function under conditions of physiologic stress. The cardiotoxic effects of anticancer drugs warrant further careful evaluation in regard to various targets in both the clinical and preclinical settings. A more comprehensive understanding of the long-term side effects anticancer agents on the cardiovascular system may provide clues about proper management of heart disease in cancer patients on this therapy. In this chapter, we discuss the cardiovascular effects of anticancer agents used in the treatment of various cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zunino F, Capranico G. DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anticancer Drug Des. 1990;5:307–17.

    PubMed  CAS  Google Scholar 

  2. Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9:338–50.

    PubMed  CAS  Google Scholar 

  3. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.

    PubMed  CAS  Google Scholar 

  4. Khakoo AY, Yeh ET. Therapy insight: management of cardiovascular disease in patients with cancer and cardiac complications of cancer therapy. Nat Clin Pract Oncol. 2008;5:655–67.

    PubMed  CAS  Google Scholar 

  5. Carver JR, Shapiro CL, Ng A, et al. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25:3991–4008.

    PubMed  CAS  Google Scholar 

  6. Kremer LC, van Dalen EC, Offringa M, Ottenkamp J, Voute PA. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol. 2001;19:191–6.

    PubMed  CAS  Google Scholar 

  7. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.

    Google Scholar 

  8. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.

    PubMed  CAS  Google Scholar 

  9. Wojnowski L, Kulle B, Schirmer M, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112:3754–62.

    PubMed  CAS  Google Scholar 

  10. Deng S, Wojnowski L. Genotyping the risk of anthracycline-induced cardiotoxicity. Cardiovasc Toxicol. 2007;7:129–34.

    PubMed  CAS  Google Scholar 

  11. Lum BL, Svec JM, Torti FM. Doxorubicin: alteration of dose scheduling as a means of reducing cardiotoxicity. Drug Intell Clin Pharm. 1985;19:259–64.

    PubMed  CAS  Google Scholar 

  12. Hequet O, Le QH, Moullet I, et al. Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J Clin Oncol. 2004;22:1864–71.

    PubMed  CAS  Google Scholar 

  13. Mackay B, Ewer MS, Carrasco CH, Benjamin RS. Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol. 1994;18:203–11.

    PubMed  CAS  Google Scholar 

  14. Singal PK, Li T, Kumar D, Danelisen I, Iliskovic N. Adriamycin-induced heart failure: mechanism and modulation. Mol Cell Biochem. 2000;207:77–86.

    PubMed  CAS  Google Scholar 

  15. Delpy E, Hatem SN, Andrieu N, et al. Doxorubicin induces slow ceramide accumulation and late apoptosis in cultured adult rat ventricular myocytes. Cardiovasc Res. 1999;43:398–407.

    PubMed  CAS  Google Scholar 

  16. Singal PK, Panagia V. Direct effects of adriamycin on the rat heart sarcolemma. Res Commun Chem Pathol Pharmacol. 1984;43:67–77.

    PubMed  CAS  Google Scholar 

  17. Green PS, Leeuwenburgh C. Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta. 2002;1588:94–101.

    PubMed  CAS  Google Scholar 

  18. Menna P, Salvatorelli E, Minotti G. Cardiotoxicity of antitumor drugs. Chem Res Toxicol. 2008;21:978–89.

    PubMed  CAS  Google Scholar 

  19. Olson RD, Mushlin PS, Brenner DE, et al. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA. 1988;85:3585–9.

    PubMed  CAS  Google Scholar 

  20. Charlier Jr HA, Olson RD, Thornock CM, et al. Investigations of calsequestrin as a target for anthracyclines: comparison of functional effects of daunorubicin, daunorubicinol, and trifluoperazine. Mol Pharmacol. 2005;67:1505–12.

    PubMed  CAS  Google Scholar 

  21. Olson RD, Gambliel HA, Vestal RE, Shadle SE, Charlier Jr HA, Cusack BJ. Doxorubicin cardiac dysfunction: effects on calcium regulatory proteins, sarcoplasmic reticulum, and ­triiodothyronine. Cardiovasc Toxicol. 2005;5:269–83.

    PubMed  CAS  Google Scholar 

  22. Salvatorelli E, Menna P, Cascegna S, et al. Paclitaxel and docetaxel stimulation of doxorubicinol formation in the human heart: implications for cardiotoxicity of doxorubicin-taxane chemotherapies. J Pharmacol Exp Ther. 2006;318:424–33.

    PubMed  CAS  Google Scholar 

  23. Giordano SH, Booser DJ, Murray JL, et al. A detailed evaluation of cardiac toxicity: a phase II study of doxorubicin and one- or three-hour-infusion paclitaxel in patients with metastatic breast cancer. Clin Cancer Res. 2002;8:3360–8.

    PubMed  CAS  Google Scholar 

  24. Biganzoli L, Cufer T, Bruning P, et al. Doxorubicin-paclitaxel: a safe regimen in terms of cardiac toxicity in metastatic breast carcinoma patients. Results from a European Organization for Research and Treatment of Cancer multicenter trial. Cancer. 2003;97:40–5.

    PubMed  CAS  Google Scholar 

  25. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.

    PubMed  CAS  Google Scholar 

  26. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21.

    PubMed  CAS  Google Scholar 

  27. Ewer MS, O’Shaughnessy JA. Cardiac toxicity of trastuzumab-related regimens in HER2-overexpressing breast cancer. Clin Breast Cancer. 2007;7:600–7.

    PubMed  CAS  Google Scholar 

  28. de Korte MA, de Vries EG, Lub-de Hooge MN, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43:2046–51.

    PubMed  Google Scholar 

  29. Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342:1077–84.

    PubMed  CAS  Google Scholar 

  30. Legha SS, Benjamin RS, Mackay B, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med. 1982;96:133–9.

    PubMed  CAS  Google Scholar 

  31. Lipshultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91–01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol. 2002;20:1677–82.

    PubMed  CAS  Google Scholar 

  32. Coukell AJ, Faulds D. Epirubicin. An updated review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of breast cancer. Drugs. 1997;53:453–82.

    PubMed  CAS  Google Scholar 

  33. Nair R, Ramakrishnan G, Nair NN, et al. A randomized comparison of the efficacy and toxicity of epirubicin and doxorubicin in the treatment of patients with non-Hodgkin’s lymphoma. Cancer. 1998;82:2282–8.

    PubMed  CAS  Google Scholar 

  34. O’Brien ME, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15:440–9.

    PubMed  Google Scholar 

  35. Safra T. Cardiac safety of liposomal anthracyclines. Oncologist. 2003;8 Suppl 2:17–24.

    PubMed  CAS  Google Scholar 

  36. Hasinoff BB, Herman EH. Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovasc Toxicol. 2007;7:140–4.

    PubMed  CAS  Google Scholar 

  37. Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Walker UA. Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol. 2007;151:771–8.

    PubMed  CAS  Google Scholar 

  38. Speyer JL, Green MD, Zeleniuch-Jacquotte A, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol. 1992;10:117–27.

    PubMed  CAS  Google Scholar 

  39. Seymour L, Bramwell V, Moran LA. Use of dexrazoxane as a cardioprotectant in patients receiving doxorubicin or epirubicin chemotherapy for the treatment of cancer. The Provincial Systemic Treatment Disease Site Group. Cancer Prev Control. 1999;3:145–59.

    PubMed  CAS  Google Scholar 

  40. Swain SM, Whaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15:1318–32.

    PubMed  CAS  Google Scholar 

  41. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.

    PubMed  CAS  Google Scholar 

  42. Vaynblat M, Shah HR, Bhaskaran D, et al. Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail. 2002;4:583–6.

    PubMed  CAS  Google Scholar 

  43. Cardinale D, Colombo A, Cipolla CM. Treating asymptomatic chemotherapy-induced cardiac dysfunction a chance that cardiologists and oncologists should not miss. J Am Coll Cardiol. 2011;57:1790.

    PubMed  Google Scholar 

  44. Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37:837–46.

    PubMed  CAS  Google Scholar 

  45. Matsui H, Morishima I, Numaguchi Y, Toki Y, Okumura K, Hayakawa T. Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci. 1999;65:1265–74.

    PubMed  CAS  Google Scholar 

  46. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.

    PubMed  CAS  Google Scholar 

  47. Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80.

    PubMed  CAS  Google Scholar 

  48. Koeller J, Eble M. Mitoxantrone: a novel anthracycline derivative. Clin Pharm. 1988;7:574–81.

    PubMed  CAS  Google Scholar 

  49. Wang GX, Zhou XB, Eschenhagen T, Korth M. Effects of mitoxantrone on action potential and membrane currents in isolated cardiac myocytes. Br J Pharmacol. 1999;127:321–30.

    PubMed  CAS  Google Scholar 

  50. Chugun A, Uchide T, Tsurimaki C, et al. Mechanisms responsible for reduced cardiotoxicity of mitoxantrone compared to doxorubicin examined in isolated guinea-pig heart preparations. J Vet Med Sci. 2008;70:255–64.

    PubMed  CAS  Google Scholar 

  51. van Dalen EC, van der Pal HJ, Bakker PJ, Caron HN, Kremer LC. Cumulative incidence and risk factors of mitoxantrone-induced cardiotoxicity in children: a systematic review. Eur J Cancer. 2004;40:643–52.

    PubMed  Google Scholar 

  52. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    PubMed  CAS  Google Scholar 

  53. Henderson IC, Allegra JC, Woodcock T, et al. Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J Clin Oncol. 1989;7:560–71.

    PubMed  CAS  Google Scholar 

  54. Aviles A, Neri N, Nambo JM, Huerta-Guzman J, Talavera A, Cleto S. Late cardiac toxicity secondary to treatment in Hodgkin’s disease. A study comparing doxorubicin, epirubicin and mitoxantrone in combined therapy. Leuk Lymphoma. 2005;46:1023–8.

    PubMed  CAS  Google Scholar 

  55. Grem JL. 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest New Drugs. 2000;18:299–313.

    PubMed  CAS  Google Scholar 

  56. Keefe DL. Cardiovascular emergencies in the cancer patient. Semin Oncol. 2000;27:244–55.

    PubMed  CAS  Google Scholar 

  57. de Forni M, Malet-Martino MC, Jaillais P, et al. Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol. 1992;10:1795–801.

    PubMed  Google Scholar 

  58. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G. Cardiac toxicity of 5-fluorouracil: a study on 1083 patients. Tumori. 1982;68:505–10.

    PubMed  CAS  Google Scholar 

  59. Kosmas C, Kallistratos MS, Kopterides P, et al. Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol. 2008;134:75–82.

    PubMed  CAS  Google Scholar 

  60. Mosseri M, Fingert HJ, Varticovski L, Chokshi S, Isner JM. In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle. Cancer Res. 1993;53:3028–33.

    PubMed  CAS  Google Scholar 

  61. Dalzell JR, Samuel LM. The spectrum of 5-fluorouracil cardiotoxicity. Anticancer Drugs. 2009;20:79–80.

    PubMed  CAS  Google Scholar 

  62. Loehrer PJ, Einhorn LH. Drugs five years later. Cisplatin. Ann Intern Med. 1984;100:704–13.

    PubMed  CAS  Google Scholar 

  63. Berliner S, Rahima M, Sidi Y, et al. Acute coronary events following cisplatin-based chemotherapy. Cancer Invest. 1990;8:583–6.

    PubMed  CAS  Google Scholar 

  64. Doll DC, List AF, Greco FA, Hainsworth JD, Hande KR, Johnson DH. Acute vascular ischemic events after cisplatin-based combination chemotherapy for germ-cell tumors of the testis. Ann Intern Med. 1986;105:48–51.

    PubMed  CAS  Google Scholar 

  65. Czaykowski PM, Moore MJ, Tannock IF. High risk of vascular events in patients with urothelial transitional cell carcinoma treated with cisplatin based chemotherapy. J Urol. 1998;160:2021–4.

    PubMed  CAS  Google Scholar 

  66. Dumontet C, Sikic BI. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol. 1999;17:1061–70.

    PubMed  CAS  Google Scholar 

  67. Shimoyama M, Murata Y, Sumi KI, Hamazoe R, Komuro I. Docetaxel induced cardiotoxicity. Heart. 2001;86:219.

    PubMed  CAS  Google Scholar 

  68. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol. 1993;20:1–15.

    PubMed  CAS  Google Scholar 

  69. Arbuck SG, Strauss H, Rowinsky E, et al. A reassessment of cardiac toxicity associated with Taxol. J Natl Cancer Inst Monogr 1993:117–30.

    Google Scholar 

  70. Gutierrez C, Schiff R. HER2: biology, detection, and clinical implications. Arch Pathol Lab Med. 2011;135:55–62.

    PubMed  Google Scholar 

  71. Hudis CA. Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med. 2007;357:39–51.

    PubMed  CAS  Google Scholar 

  72. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6:443–6.

    PubMed  CAS  Google Scholar 

  73. Tagliabue E, Balsari A, Campiglio M, Pupa SM. HER2 as a target for breast cancer therapy. Expert Opin Biol Ther. 2010;10:711–24.

    PubMed  CAS  Google Scholar 

  74. Chien KR. Herceptin and the heart – a molecular modifier of cardiac failure. N Engl J Med. 2006;354:789–90.

    PubMed  CAS  Google Scholar 

  75. Ewer MS, Gibbs HR, Swafford J, Benjamin RS. Cardiotoxicity in patients receiving transtuzumab (Herceptin): primary toxicity, synergistic or sequential stress, or surveillance artifact? Semin Oncol. 1999;26:96–101.

    PubMed  CAS  Google Scholar 

  76. Hayes DF, Picard MH. Heart of darkness: the downside of trastuzumab. J Clin Oncol. 2006;24:4056–8.

    PubMed  CAS  Google Scholar 

  77. Eschenhagen T, Force T, Ewer MS, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13:1–10.

    PubMed  Google Scholar 

  78. Perez EA, Rodeheffer R. Clinical cardiac tolerability of trastuzumab. J Clin Oncol. 2004;22:322–9.

    PubMed  CAS  Google Scholar 

  79. Ewer MS, Vooletich MT, Durand JB, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23:7820–6.

    PubMed  CAS  Google Scholar 

  80. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95:1592–600.

    PubMed  CAS  Google Scholar 

  81. Jerian S, Keegan P. Cardiotoxicity associated with paclitaxel/trastuzumab combination therapy. J Clin Oncol. 1999;17:1647–8.

    PubMed  CAS  Google Scholar 

  82. Pentassuglia L, Graf M, Lane H, et al. Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Exp Cell Res. 2009;315:1302–12.

    PubMed  CAS  Google Scholar 

  83. Crone SA, Zhao YY, Fan L, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8:459–65.

    PubMed  CAS  Google Scholar 

  84. Schneider JW, Chang AY, Rocco TP. Cardiotoxicity in signal transduction therapeutics: erbB2 antibodies and the heart. Semin Oncol. 2001;28:18–26.

    PubMed  CAS  Google Scholar 

  85. Lemmens K, Doggen K, De Keulenaer GW. Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation. 2007;116:954–60.

    PubMed  CAS  Google Scholar 

  86. De Keulenaer GW, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res. 2010;106:35–46.

    PubMed  Google Scholar 

  87. Liu X, Gu X, Li Z, et al. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J Am Coll Cardiol. 2006;48:1438–47.

    PubMed  CAS  Google Scholar 

  88. Gao R, Zhang J, Cheng L, et al. A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol. 2010;55:1907–14.

    PubMed  CAS  Google Scholar 

  89. Chien KR. Myocyte survival pathways and cardiomyopathy: implications for trastuzumab cardiotoxicity. Semin Oncol. 2000;27:9–14. discussion 92–100.

    PubMed  CAS  Google Scholar 

  90. Guarneri V, Lenihan DJ, Valero V, et al. Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson Cancer Center experience. J Clin Oncol. 2006;24:4107–15.

    PubMed  CAS  Google Scholar 

  91. Kerkela R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16. Epub 2006 Jul 23.

    PubMed  Google Scholar 

  92. Fernandez A, Sanguino A, Peng Z, et al. An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest. 2007;117:4044–54.

    PubMed  CAS  Google Scholar 

  93. Atallah E, Durand JB, Kantarjian H, Cortes J. Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood. 2007;110:1233–7.

    PubMed  CAS  Google Scholar 

  94. Trent JC, Patel SS, Zhang J, et al. Rare incidence of congestive heart failure in gastrointestinal stromal tumor and other sarcoma patients receiving imatinib mesylate. Cancer. 2010;116(1):184–92.

    PubMed  CAS  Google Scholar 

  95. Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    PubMed  CAS  Google Scholar 

  96. Yogi A, O’Connor SE, Callera GE, Tostes RC, Touyz RM. Receptor and nonreceptor tyrosine kinases in vascular biology of hypertension. Curr Opin Nephrol Hypertens. 2010;19:169–76.

    PubMed  CAS  Google Scholar 

  97. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21:60–5.

    PubMed  CAS  Google Scholar 

  98. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. NEJM. 2004;350:2335–42.

    PubMed  CAS  Google Scholar 

  99. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    PubMed  CAS  Google Scholar 

  100. Wagner AD, Arnold D, Grothey AA, Haerting J, Unverzagt S. Anti-angiogenic therapies for metastatic colorectal cancer. Cochrane Database Syst Rev 2009:CD005392.

    Google Scholar 

  101. Vaklavas C, Lenihan D, Kurzrock R, Tsimberidou AM. Anti-vascular endothelial growth factor therapies and cardiovascular toxicity: what are the important clinical markers to target? Oncologist. 2010;15:130–41.

    PubMed  CAS  Google Scholar 

  102. Yardley DA. Integrating Bevacizumab Into the treatment of patients with early-stage breast cancer: focus on cardiac safety. Clin Breast Cancer. 2010;10:119–29.

    PubMed  CAS  Google Scholar 

  103. Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. NEJM. 2007;357:2666–76.

    PubMed  CAS  Google Scholar 

  104. Zhou Y, Bourcy K, Kang YJ. Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway. Cardiovasc Res. 2009;84:54–63.

    PubMed  CAS  Google Scholar 

  105. Giordano FJ, Gerber H-P, Williams S-P, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA. 2001;98:5780–5.

    PubMed  CAS  Google Scholar 

  106. Rock EP, Goodman V, Jiang JX, et al. Food and drug administration drug approval summary: sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist. 2007;12:107–13.

    PubMed  CAS  Google Scholar 

  107. Hasinoff BB, Patel D, O’Hara KA. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol. 2008;74:1722–8.

    PubMed  CAS  Google Scholar 

  108. Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368:1329–38.

    PubMed  CAS  Google Scholar 

  109. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. NEJM. 2007;356:115–24.

    PubMed  CAS  Google Scholar 

  110. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.

    PubMed  CAS  Google Scholar 

  111. Zhu X, Stergiopoulos K, Wu S. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009;48:9–17.

    PubMed  CAS  Google Scholar 

  112. Di Lorenzo G, Autorino R, Bruni G, et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann Oncol. 2009;20:1535–42.

    PubMed  Google Scholar 

  113. Telli ML, Witteles RM, Fisher GA, Srinivas S. Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann Oncol. 2008;19:1613–8.

    PubMed  CAS  Google Scholar 

  114. Heldin C-H, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79:1283–316.

    PubMed  CAS  Google Scholar 

  115. Wang C, Wu L-L, Liu J, Zhang Z-G, Fan D, Li L. Crosstalk between angiotensin II and platelet derived growth factor receptor BB mediated signal pathways in cardiomyocytes. Chin Med J. 2008;121:236–40.

    PubMed  CAS  Google Scholar 

  116. Hellstrom M, Kalén M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126:3047–55.

    PubMed  CAS  Google Scholar 

  117. Zhang J, Chintalgattu V, Shih T, Ai D, Xia Y, Khakoo AY. MicroRNA-9 is an activation-induced regulator of PDGFR-beta expression in cardiomyocytes. J Mol Cell Cardiol. 2011;51(3):337–46. Epub 2011 Jun 17.

    PubMed  CAS  Google Scholar 

  118. Edelberg JM, Aird WC, Wu W, et al. PDGF mediates cardiac microvascular communication. J Clin Invest. 1998;102:837–43.

    PubMed  CAS  Google Scholar 

  119. Zheng J, Shin JH, Xaymardan M, et al. Platelet-derived growth factor improves cardiac function in a rodent myocardial infarction model. Coron Artery Dis. 2004;15:59–64.

    PubMed  Google Scholar 

  120. Das H, George JC, Joseph M, et al. Stem cell therapy with overexpressed VEGF and PDGF genes improves cardiac function in a rat infarct model. PLoS One. 2009;4:e7325.

    PubMed  Google Scholar 

  121. Chintalgattu V, Ai D, Langley RR, et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest. 2010;120:472–84.

    PubMed  CAS  Google Scholar 

  122. Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:2505–12.

    PubMed  CAS  Google Scholar 

  123. Wu S, Chen JJ, Kudelka A, Lu J, Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9:117–23.

    PubMed  CAS  Google Scholar 

  124. Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26:5204–12.

    PubMed  Google Scholar 

  125. Hasinoff BB, Patel D. Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovasc Toxicol. 2010;10:1–8.

    PubMed  CAS  Google Scholar 

  126. French KJ, Coatney RW, Renninger JP, et al. Differences in effects on myocardium and mitochondria by angiogenic inhibitors suggest separate mechanisms of cardiotoxicity. Toxicol Pathol. 2010;38:691–702.

    PubMed  CAS  Google Scholar 

  127. Jabbour A, Hayward CS, Keogh AM, et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail. 2011;13:83–92.

    PubMed  CAS  Google Scholar 

  128. Geisberg CA, Lenihan DJ. Neuregulin in heart failure: reverse translation from cancer cardiotoxicity to new heart failure therapy. Herz. 2011;36:306–10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarif Y. Khakoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chintalgattu, V., Khakoo, A.Y. (2012). Mechanisms of Cardiac Dysfunction Associated with Cancer Therapeutics. In: Patterson, C., Willis, M. (eds) Translational Cardiology. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-891-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-891-7_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-890-0

  • Online ISBN: 978-1-61779-891-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics