Skip to main content

Mechanotransduction in Cardiac Hypertrophy and Ischemia

  • Chapter
  • First Online:
Translational Cardiology

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 1079 Accesses

Abstract

Mechanotransduction is the process by which load-bearing cells sense physical forces, transduce the forces into biochemical signals, and generate adaptive or maladaptive responses that lead to alterations in cell structure and function. Mechanotransduction in the heart not only affects the beat-to-beat regulation of cardiac performance, but also profoundly affects the growth, differentiation, and survival of the cellular components that comprise the human myocardium. Understanding the molecular basis for mechanotransduction is, therefore, important to our overall understanding of growth regulation and function during cardiac hypertrophy and ischemia. Cardiomyocytes rely on several intracellular components to sense mechanical load, and convert mechanical stimuli into biochemical events that affect cellular structure and function. These sensors include protein components within the myofilaments and Z-discs, integrins and other membrane-associated proteins that link the extracellular matrix to the cytoskeleton, and stretch-activated ion channels. A complex signaling web then transmits signals from mechanosensors to the nucleus and other organelles. Ultimately, it is hoped that new pharmacological and molecular genetic approaches targeted to specific components of the mechanotransduction machinery will be developed to translate this wealth of basic knowledge into therapeutic strategies designed to reduce cardiac hypertrophy, further protect the ischemic myocardium, and prevent its transition to heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samarel AM. Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol. 2005;289:H2291–301.

    PubMed  CAS  Google Scholar 

  2. Ganote CE, Vander Heide RS. Cytoskeletal lesions in anoxic myocardial injury. A conventional and high-voltage electron-microscopic and immunofluorescence study. Am J Pathol. 1987;129:327–44.

    PubMed  CAS  Google Scholar 

  3. Ganote C, Armstrong S. Ischaemia and the myocyte cytoskeleton: review and speculation. Cardiovasc Res. 1993;27:1387–403.

    PubMed  CAS  Google Scholar 

  4. Ruwhof C, van Wamel AE, Egas JM, et al. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol Cell Biochem. 2000;208:89–98.

    PubMed  CAS  Google Scholar 

  5. Wang J, Chen H, Seth A, et al. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol. 2003;285:H1871–81.

    PubMed  CAS  Google Scholar 

  6. Baudino TA, Carver W, Giles W, et al. Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol. 2006;291:H1015–26.

    PubMed  CAS  Google Scholar 

  7. Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res. 2009;105:1164–76.

    PubMed  CAS  Google Scholar 

  8. Bowers SL, Banerjee I, Baudino TA. The extracellular matrix: at the center of it all. J Mol Cell Cardiol. 2010;48:474–82.

    PubMed  CAS  Google Scholar 

  9. Carver W, Nagpal ML, Nachtigal M, et al. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res. 1991;69:116–22.

    PubMed  CAS  Google Scholar 

  10. Schouten VJ, Allaart CP, Westerhof N. Effect of perfusion pressure on force of contraction in thin papillary muscles and trabeculae from rat heart. J Physiol. 1992;451:585–604.

    PubMed  CAS  Google Scholar 

  11. Lamberts RR, Van Rijen MH, Sipkema P, et al. Coronary perfusion and muscle lengthening increase cardiac contraction: different stretch-triggered mechanisms. Am J Physiol Heart Circ Physiol. 2002;283:H1515–22.

    PubMed  CAS  Google Scholar 

  12. Westerhof N, Boer C, Lamberts RR, et al. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86:1263–308.

    PubMed  CAS  Google Scholar 

  13. Alvarez BV, Perez NG, Ennis IL, et al. Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res. 1999;85:716–22.

    PubMed  CAS  Google Scholar 

  14. Zhang YH, Dingle L, Hall R, et al. The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochim Biophys Acta. 2009;1787:811–7.

    PubMed  CAS  Google Scholar 

  15. McClellan G, Weisberg A, Kato NS, et al. Contractile proteins in myocardial cells are regulated by factor(s) released by blood vessels. Circ Res. 1992;70:787–803.

    PubMed  CAS  Google Scholar 

  16. Ramaciotti C, Sharkey A, McClellan G, et al. Endothelial cells regulate cardiac contractility. Proc Natl Acad Sci USA. 1992;89:4033–6.

    PubMed  CAS  Google Scholar 

  17. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.

    PubMed  CAS  Google Scholar 

  18. Robinson ME, Samarel AM. Regional differences in in vivo myocardial protein synthesis in the neonatal rabbit heart. J Mol Cell Cardiol. 1990;22:607–18.

    PubMed  CAS  Google Scholar 

  19. Capasso JM, Li P, Zhang X, et al. Heterogeneity of ventricular remodeling after acute myocardial infarction in rats. Am J Physiol. 1992;262:H486–95.

    PubMed  CAS  Google Scholar 

  20. Esposito G, Rapacciuolo A, Naga Prasad SV, et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation. 2002;105:85–92.

    PubMed  CAS  Google Scholar 

  21. Yamamoto K, Dang QN, Maeda Y, et al. Regulation of cardiomyocyte mechanotransduction by the cardiac cycle. Circulation. 2001;103:1459–64.

    PubMed  CAS  Google Scholar 

  22. Mann DL, Kent RL, Cooper GT. Load regulation of the properties of adult feline cardiocytes: growth induction by cellular deformation. Circ Res. 1989;64:1079–90.

    PubMed  CAS  Google Scholar 

  23. Vandenburgh H, Kaufman S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science. 1979;203:265–8.

    PubMed  CAS  Google Scholar 

  24. Peterson MB, Lesch M. Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Effect of isometric tension development. Circ Res. 1972;31:317–27.

    PubMed  CAS  Google Scholar 

  25. Schreiber SS, Morkin E. Protein synthesis in cardiac hypertrophy. Circ Res. 1972;31:629–30.

    PubMed  CAS  Google Scholar 

  26. Takala T. Protein synthesis in the isolated perfused rat heart. Effects of mechanical work load, diastolic ventricular pressure and coronary pressure on amino acid incorporation and its transmural distribution into left ventricular protein. Basic Res Cardiol. 1981;76:44–61.

    PubMed  CAS  Google Scholar 

  27. Smith DM, Sugden PH. Stimulation of left-atrial protein-synthesis rates by increased left-atrial filling pressures in the perfused working rat heart in vitro. Biochem J. 1983;216:537–42.

    PubMed  CAS  Google Scholar 

  28. Kira Y, Kochel PJ, Gordon EE, et al. Aortic perfusion pressure as a determinant of cardiac protein synthesis. Am J Physiol. 1984;246:C247–58.

    PubMed  CAS  Google Scholar 

  29. Samarel AM, Engelmann GL. Contractile activity modulates myosin heavy chain-ß expression in neonatal rat heart cells. Am J Physiol. 1991;261:H1067–77.

    PubMed  CAS  Google Scholar 

  30. Ivester CT, Kent RL, Tagawa H, et al. Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes. Am J Physiol. 1993;265:H666–74.

    PubMed  CAS  Google Scholar 

  31. Sharp WW, Terracio L, Borg TK, et al. Contractile activity modulates actin synthesis and turnover in cultured neonatal rat heart cells. Circ Res. 1993;73:172–83.

    PubMed  CAS  Google Scholar 

  32. Simpson DG, Terracio L, Terracio M, et al. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol. 1994;161:89–105.

    PubMed  CAS  Google Scholar 

  33. Simpson DG, Majeski M, Borg TK, et al. Regulation of cardiac myocyte protein turnover and myofibrillar structure in vitro by specific directions of stretch. Circ Res. 1999;85:e59–69.

    PubMed  CAS  Google Scholar 

  34. Gopalan SM, Flaim C, Bhatia SN, et al. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng. 2003;81:578–87.

    PubMed  CAS  Google Scholar 

  35. Senyo SE, Koshman YE, Russell B. Stimulus interval, rate and direction differentially regulate phosphorylation for mechanotransduction in neonatal cardiac myocytes. FEBS Lett. 2007;581:4241–7.

    PubMed  CAS  Google Scholar 

  36. Zhang Y, Sekar RB, McCulloch AD, et al. Cell cultures as models of cardiac mechanoelectric feedback. Prog Biophys Mol Biol. 2008;97:367–82.

    PubMed  CAS  Google Scholar 

  37. Zile MR, Cowles MK, Buckley JM, et al. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells. Am J Physiol. 1998;274:H2188–202.

    PubMed  CAS  Google Scholar 

  38. Mansour H, de Tombe PP, Samarel AM, et al. Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase Cε and focal adhesion kinase. Circ Res. 2004;94:642–9.

    PubMed  CAS  Google Scholar 

  39. Yu JG, Russell B. Cardiomyocyte remodeling and sarcomere addition after uniaxial static strain in vitro. J Histochem Cytochem. 2005;53:839–44.

    PubMed  CAS  Google Scholar 

  40. Hoshijima M. Mechanical stress–strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol. 2006;290:H1313–25.

    PubMed  CAS  Google Scholar 

  41. Sharif-Naeini R, Folgering JH, Bichet D, et al. Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. J Mol Cell Cardiol. 2010;48:83–9.

    PubMed  CAS  Google Scholar 

  42. Lammerding J, Kamm RD, Lee RT. Mechanotransduction in cardiac myocytes. Ann NY Acad Sci. 2004;1015:53–70.

    PubMed  Google Scholar 

  43. Fukuda N, Terui T, Ohtsuki I, et al. Titin and troponin: central players in the Frank-Starling mechanism of the heart. Curr Cardiol Rev. 2009;5:119–24.

    PubMed  CAS  Google Scholar 

  44. Cazorla O, Wu Y, Irving TC, et al. Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res. 2001;88:1028–35.

    PubMed  CAS  Google Scholar 

  45. Konhilas JP, Irving TC, de Tombe PP. Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation. Pflugers Arch. 2002;445:305–10.

    PubMed  CAS  Google Scholar 

  46. Du A, Sanger JM, Sanger JW. Cardiac myofibrillogenesis inside intact embryonic hearts. Dev Biol. 2008;318:236–46.

    PubMed  CAS  Google Scholar 

  47. Granzier HL, Labeit S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res. 2004;94:284–95.

    PubMed  CAS  Google Scholar 

  48. Kruger M, Linke WA. Titin-based mechanical signalling in normal and failing myocardium. J Mol Cell Cardiol. 2009;46:490–8.

    PubMed  Google Scholar 

  49. Linke WA, Kruger M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology (Bethesda). 2010;25:186–98.

    CAS  Google Scholar 

  50. Lahmers S, Wu Y, Call DR, et al. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res. 2004;94:505–13.

    PubMed  CAS  Google Scholar 

  51. Sheikh F, Raskin A, Chu PH, et al. An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Invest. 2008;118:3870–80.

    PubMed  CAS  Google Scholar 

  52. Samarel AM. Gq-coupled receptor signaling in pathological ventricular remodeling. J Mol Cell Cardiol. 2001;33:1399–403.

    PubMed  CAS  Google Scholar 

  53. Grutzner A, Garcia-Manyes S, Kotter S, et al. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys J. 2009;97:825–34.

    PubMed  Google Scholar 

  54. Knoll R, Hoshijima M, Hoffman HM, et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell. 2002;111:943–55.

    PubMed  CAS  Google Scholar 

  55. Wixler V, Geerts D, Laplantine E, et al. The LIM-only protein DRAL/FHL2 binds to the cytoplasmic domain of several α and ß integrin chains and is recruited to adhesion complexes. J Biol Chem. 2000;275:33669–78.

    PubMed  CAS  Google Scholar 

  56. Hongo M, Ryoke T, Schoenfeld J, et al. Effects of growth hormone on cardiac dysfunction and gene expression in genetic murine dilated cardiomyopathy. Basic Res Cardiol. 2000;95:431–41.

    PubMed  CAS  Google Scholar 

  57. McGrath MJ, Mitchell CA, Coghill ID, et al. Skeletal muscle LIM protein 1 (SLIM1/FHL1) induces α5ß1-integrin-dependent myocyte elongation. Am J Physiol Cell Physiol. 2003;285: C1513–26.

    PubMed  CAS  Google Scholar 

  58. Robinson PA, Brown S, McGrath MJ, et al. Skeletal muscle LIM protein 1 regulates integrin-mediated myoblast adhesion, spreading, and migration. Am J Physiol Cell Physiol. 2003;284: C681–95.

    PubMed  CAS  Google Scholar 

  59. Kong Y, Flick MJ, Kudla AJ, et al. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol. 1997;17:4750–60.

    PubMed  CAS  Google Scholar 

  60. Boateng SY, Senyo SE, Qi L, et al. Myocyte remodeling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J Mol Cell Cardiol. 2009;47: 426–35.

    PubMed  CAS  Google Scholar 

  61. Knoll R, Kostin S, Klede S, et al. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circ Res. 2010;106:695–704.

    PubMed  Google Scholar 

  62. Heineke J, Ruetten H, Willenbockel C, et al. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci USA. 2005;102:1655–60.

    PubMed  CAS  Google Scholar 

  63. Witte S, Villalba M, Bi K, et al. Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-κB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain. J Biol Chem. 2000;275:1902–9.

    PubMed  CAS  Google Scholar 

  64. Jeong D, Kim JM, Cha H, et al. PICOT attenuates cardiac hypertrophy by disrupting calcineurin-NFAT signaling. Circ Res. 2008;102:711–9.

    PubMed  CAS  Google Scholar 

  65. Dorn 2nd GW. Containing hypertrophy with a PICOT fence. Circ Res. 2006;99:228–30.

    PubMed  CAS  Google Scholar 

  66. Jeong D, Cha H, Kim E, et al. PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res. 2006;99:307–14.

    PubMed  CAS  Google Scholar 

  67. Samarel AM. PICOT: a multidomain scaffolding inhibitor of hypertrophic signal transduction. Circ Res. 2008;102:625–7.

    PubMed  CAS  Google Scholar 

  68. Sugden PH, Clerk A. Cellular mechanisms of cardiac hypertrophy. J Mol Med. 1998;76: 725–46.

    PubMed  CAS  Google Scholar 

  69. Arya R, Kedar V, Hwang JR, et al. Muscle ring finger protein-1 inhibits PKCε activation and prevents cardiomyocyte hypertrophy. J Cell Biol. 2004;167:1147–59.

    PubMed  CAS  Google Scholar 

  70. Faulkner G, Pallavicini A, Formentin E, et al. ZASP: a new Z-band alternatively spliced PDZ-motif protein. J Cell Biol. 1999;146:465–75.

    PubMed  CAS  Google Scholar 

  71. Sheikh F, Bang ML, Lange S, et al. “Z”eroing in on the role of Cypher in striated muscle function, signaling, and human disease. Trends Cardiovasc Med. 2007;17:258–62.

    PubMed  CAS  Google Scholar 

  72. Zheng M, Cheng H, Li X, et al. Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum Mol Genet. 2009;18:701–13.

    PubMed  CAS  Google Scholar 

  73. Zhou Q, Chu PH, Huang C, et al. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol. 2001;155:605–12.

    PubMed  CAS  Google Scholar 

  74. Vatta M, Mohapatra B, Jimenez S, et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol. 2003;42:2014–27.

    PubMed  CAS  Google Scholar 

  75. Theis JL, Bos JM, Bartleson VB, et al. Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2006;351:896–902.

    PubMed  CAS  Google Scholar 

  76. Pardo JV, Siliciano JD, Craig SW. A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci USA. 1983;80:1008–12.

    PubMed  CAS  Google Scholar 

  77. Pardo JV, Siliciano JD, Craig SW. Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol. 1983;97:1081–8.

    PubMed  CAS  Google Scholar 

  78. Ayalon G, Davis JQ, Scotland PB, et al. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell. 2008;135:1189–200.

    PubMed  CAS  Google Scholar 

  79. Ross RS, Borg TK. Integrins and the myocardium. Circ Res. 2001;88:1112–9.

    PubMed  CAS  Google Scholar 

  80. Shai SY, Harpf AE, Babbitt CJ, et al. Cardiac myocyte-specific excision of the ß1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res. 2002;90:458–64.

    PubMed  CAS  Google Scholar 

  81. Terracio L, Rubin K, Gullberg D, et al. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res. 1991;68:734–44.

    PubMed  CAS  Google Scholar 

  82. Babbitt CJ, Shai SY, Harpf AE, et al. Modulation of integrins and integrin signaling molecules in the pressure-loaded murine ventricle. Histochem Cell Biol. 2002;118:431–9.

    PubMed  CAS  Google Scholar 

  83. Ervasti JM. Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem. 2003;278:13591–4.

    PubMed  CAS  Google Scholar 

  84. Danowski BA, Imanaka-Yoshida K, Sanger JM, et al. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol. 1992;118:1411–20.

    PubMed  CAS  Google Scholar 

  85. Pyle WG, Solaro RJ. At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res. 2004;94:296–305.

    PubMed  CAS  Google Scholar 

  86. Wang P, Valentijn AJ, Gilmore AP, et al. Early events in the anoikis program occur in the absence of caspase activation. J Biol Chem. 2003;278:19917–25.

    PubMed  CAS  Google Scholar 

  87. Ding B, Price RL, Goldsmith EC, et al. Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation. 2000;101:2854–62.

    PubMed  CAS  Google Scholar 

  88. Torsoni AS, Constancio SS, Nadruz Jr W, et al. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res. 2003;93:140–7.

    PubMed  CAS  Google Scholar 

  89. Kuppuswamy D, Kerr C, Narishige T, et al. Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem. 1997;272:4500–8.

    PubMed  CAS  Google Scholar 

  90. Laser M, Willey CD, Jiang W, et al. Integrin activation and focal complex formation in cardiac hypertrophy. J Biol Chem. 2000;275:35624–30.

    PubMed  CAS  Google Scholar 

  91. Domingos PP, Fonseca PM, Nadruz Jr W, et al. Load-induced focal adhesion kinase activation in the myocardium: role of stretch and contractile activity. Am J Physiol Heart Circ Physiol. 2002;282:H556–64.

    PubMed  CAS  Google Scholar 

  92. Bayer AL, Heidkamp MC, Patel N, et al. PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2002;283:H695–706.

    PubMed  CAS  Google Scholar 

  93. Torsoni AS, Fonseca PM, Crosara-Alberto DP, et al. Early activation of p160ROCK by pressure overload in rat heart. Am J Physiol Cell Physiol. 2003;284:C1411–9.

    PubMed  CAS  Google Scholar 

  94. Ross RS, Pham C, Shai SY, et al. ß1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res. 1998;82:1160–72.

    PubMed  CAS  Google Scholar 

  95. Eble DM, Strait JB, Govindarajan G, et al. Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase. Am J Physiol Heart Circ Physiol. 2000;278:H1695–707.

    PubMed  CAS  Google Scholar 

  96. Taylor JM, Rovin JD, Parsons JT. A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J Biol Chem. 2000;275:19250–7.

    PubMed  CAS  Google Scholar 

  97. Pham CG, Harpf AE, Keller RS, et al. Striated muscle-specific ß1D-integrin and FAK are involved in cardiac myocyte hypertrophic response pathway. Am J Physiol Heart Circ Physiol. 2000;279:H2916–26.

    PubMed  CAS  Google Scholar 

  98. Kovacic-Milivojevic B, Roediger F, Almeida EA, et al. Focal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy. Mol Biol Cell. 2001;12:2290–307.

    PubMed  CAS  Google Scholar 

  99. Heidkamp MC, Bayer AL, Kalina JA, et al. GFP-FRNK disrupts focal adhesions and induces anoikis in neonatal rat ventricular myocytes. Circ Res. 2002;90:1282–9.

    PubMed  CAS  Google Scholar 

  100. Heidkamp MC, Bayer AL, Scully BT, et al. Activation of focal adhesion kinase by protein kinase Cε in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2003;285:H1684–96.

    PubMed  CAS  Google Scholar 

  101. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260:1124–7.

    PubMed  CAS  Google Scholar 

  102. Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta. 2004;1692:77–102.

    PubMed  CAS  Google Scholar 

  103. Schaller MD, Hildebrand JD, Shannon JD, et al. Autophosphorylation of the focal adhesion kinase, pp 125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994;14:1680–8.

    PubMed  CAS  Google Scholar 

  104. Yi XP, Zhou J, Huber L, et al. Nuclear compartmentalization of FAK and FRNK in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2006;290:H2509–15.

    PubMed  CAS  Google Scholar 

  105. Seko Y, Takahashi N, Tobe K, et al. Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Biochem Biophys Res Commun. 1999;259:8–14.

    PubMed  CAS  Google Scholar 

  106. Eble DM, Qi M, Strait J, et al. Contraction-dependent hypertrophy of neonatal rat venticular myocytes: potential role for focal adhesion kinase. In: Takeda N, Dhalla NS, editors. The hypertrophied heart. Boston, MA: Kluwer; 2000. p. 91–107.

    Google Scholar 

  107. Bayer AL, Ferguson AG, Lucchesi PA, et al. Pyk2 expression and phosphorylation in neonatal and adult cardiomyocytes. J Mol Cell Cardiol. 2001;33:1017–30.

    PubMed  CAS  Google Scholar 

  108. Schaller MD, Borgman CA, Parsons JT. Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp 125FAK. Mol Cell Biol. 1993;13:785–91.

    PubMed  CAS  Google Scholar 

  109. Taylor JM, Mack CP, Nolan K, et al. Selective expression of an endogenous inhibitor of FAK regulates proliferation and migration of vascular smooth muscle cells. Mol Cell Biol. 2001;21:1565–72.

    PubMed  CAS  Google Scholar 

  110. Sayers RL, Sundberg-Smith LJ, Rojas M, et al. FRNK expression promotes smooth muscle cell maturation during vascular development and after vascular injury. Arterioscler Thromb Vasc Biol. 2008;28:2115–22.

    PubMed  CAS  Google Scholar 

  111. Koshman YE, Engman SJ, Kim T, et al. Role of FRNK tyrosine phosphorylation in vascular smooth muscle spreading and migration. Cardiovasc Res. 2010;85:571–81.

    PubMed  CAS  Google Scholar 

  112. Yi XP, Wang X, Gerdes AM, et al. Subcellular redistribution of focal adhesion kinase and its related nonkinase in hypertrophic myocardium. Hypertension. 2003;41:1317–23.

    PubMed  CAS  Google Scholar 

  113. DiMichele LA, Hakim ZS, Sayers RL, et al. Transient expression of FRNK reveals stage-specific requirement for focal adhesion kinase activity in cardiac growth. Circ Res. 2009;104:1201–8.

    PubMed  CAS  Google Scholar 

  114. Richardson A, Parsons T. A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp 125FAK. Nature. 1996;380:538–40.

    PubMed  CAS  Google Scholar 

  115. Gilmore AP, Romer LH. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol Biol Cell. 1996;7:1209–24.

    PubMed  CAS  Google Scholar 

  116. Hauck CR, Hsia DA, Schlaepfer DD. Focal adhesion kinase facilitates platelet-derived growth factor-BB-stimulated ERK2 activation required for chemotaxis migration of vascular smooth muscle cells. J Biol Chem. 2000;275:41092–9.

    PubMed  CAS  Google Scholar 

  117. Govindarajan G, Eble DM, Lucchesi PA, et al. Focal adhesion kinase is involved in angiotensin II-mediated protein synthesis in cultured vascular smooth muscle cells. Circ Res. 2000;87:710–6.

    PubMed  CAS  Google Scholar 

  118. Brewster LP, Ucusian AA, Brey EM, et al. FRNK overexpression limits the depth and frequency of vascular smooth muscle cell invasion in a three-dimensional fibrin matrix. J Cell Physiol. 2010;225:562–8.

    PubMed  CAS  Google Scholar 

  119. Koshman YE, Kim T, Chu M, et al. FRNK inhibition of focal adhesion kinase-dependent signaling and migration in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2010;30:2226–33.

    PubMed  CAS  Google Scholar 

  120. Ilic D, Furuta Y, Kanazawa S, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 1995;377:539–44.

    PubMed  CAS  Google Scholar 

  121. Ilic D, Kovacic B, McDonagh S, et al. Focal adhesion kinase is required for blood vessel morphogenesis. Circ Res. 2003;92:300–7.

    PubMed  CAS  Google Scholar 

  122. Hakim ZS, DiMichele LA, Doherty JT, et al. Conditional deletion of focal adhesion kinase leads to defects in ventricular septation and outflow tract alignment. Mol Cell Biol. 2007;27:5352–64.

    PubMed  CAS  Google Scholar 

  123. Peng X, Kraus MS, Wei H, et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest. 2006;116:217–27.

    PubMed  CAS  Google Scholar 

  124. DiMichele LA, Doherty JT, Rojas M, et al. Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ Res. 2006;99:636–45.

    PubMed  CAS  Google Scholar 

  125. Nadruz Jr W, Corat MA, Marin TM, et al. Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Cardiovasc Res. 2005;68:87–97.

    PubMed  CAS  Google Scholar 

  126. Hagel M, George EL, Kim A, et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol. 2002;22:901–15.

    PubMed  CAS  Google Scholar 

  127. Honda H, Oda H, Nakamoto T, et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat Genet. 1998;19:361–5.

    PubMed  CAS  Google Scholar 

  128. Kawamura S, Miyamoto S, Brown JH. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem. 2003;278:31111–7.

    PubMed  CAS  Google Scholar 

  129. Del Re DP, Miyamoto S, Brown JH. Focal adhesion kinase as a RhoA-activable signaling scaffold mediating Akt activation and cardiomyocyte protection. J Biol Chem. 2008;283:35622–9.

    PubMed  Google Scholar 

  130. Heidkamp MC, Iyengar R, Szotek EL, et al. Protein kinase Cε-dependent MARCKS phosphorylation in neonatal and adult rat ventricular myocytes. J Mol Cell Cardiol. 2007;42:422–31.

    PubMed  CAS  Google Scholar 

  131. Guharay F, Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984;352:685–701.

    PubMed  CAS  Google Scholar 

  132. Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci. 2004;117:2449–60.

    PubMed  CAS  Google Scholar 

  133. Lacampagne A, Gannier F, Argibay J, et al. The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta. 1994;1191:205–8.

    PubMed  CAS  Google Scholar 

  134. Laine M, Arjamaa O, Vuolteenaho O, et al. Block of stretch-activated atrial natriuretic peptide secretion by gadolinium in isolated rat atrium. J Physiol. 1994;480:553–61.

    PubMed  CAS  Google Scholar 

  135. Sadoshima J, Jahn L, Takahashi T, et al. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem. 1992;267:10551–60.

    PubMed  CAS  Google Scholar 

  136. Yamazaki T, Komuro I, Kudoh S, et al. Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res. 1998;82:430–7.

    PubMed  CAS  Google Scholar 

  137. Ruwhof C, van Wamel JT, Noordzij LA, et al. Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium. 2001;29:73–83.

    PubMed  CAS  Google Scholar 

  138. Sadoshima J, Izumo S. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ Res. 1995;77:1040–52.

    PubMed  CAS  Google Scholar 

  139. Eble DM, Qi M, Waldschmidt S, et al. Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. Am J Physiol. 1998;274:C1226–37.

    PubMed  CAS  Google Scholar 

  140. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.

    PubMed  CAS  Google Scholar 

  141. Cadre BM, Qi M, Eble DM, et al. Cyclic stretch down-regulates calcium transporter gene expression in neonatal rat ventricular myocytes. J Mol Cell Cardiol. 1998;30:2247–59.

    PubMed  CAS  Google Scholar 

  142. Iribe G, Ward CW, Camelliti P, et al. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res. 2009;104:787–95.

    PubMed  CAS  Google Scholar 

  143. Vazquez G, Wedel BJ, Aziz O, et al. The mammalian TRPC cation channels. Biochim Biophys Acta. 2004;1742:21–36.

    PubMed  CAS  Google Scholar 

  144. Ambudkar IS, Ong HL, Liu X, et al. TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium. 2007;42:213–23.

    PubMed  CAS  Google Scholar 

  145. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–47.

    PubMed  CAS  Google Scholar 

  146. Oh-hora M. Calcium signaling in the development and function of T-lineage cells. Immunol Rev. 2009;231:210–24.

    PubMed  CAS  Google Scholar 

  147. Spassova MA, Hewavitharana T, Xu W, et al. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA. 2006;103:16586–91.

    PubMed  CAS  Google Scholar 

  148. Maroto R, Raso A, Wood TG, et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol. 2005;7:179–85.

    PubMed  CAS  Google Scholar 

  149. Mederos y Schnitzler M, Storch U, Meibers S, et al. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J. 2008;27:3092–103.

    PubMed  CAS  Google Scholar 

  150. Seth M, Sumbilla C, Mullen SP, et al. Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA. 2004;101:16683–8.

    PubMed  CAS  Google Scholar 

  151. Kuwahara K, Wang Y, McAnally J, et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest. 2006;116:3114–26.

    PubMed  CAS  Google Scholar 

  152. Onohara N, Nishida M, Inoue R, et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 2006;25:5305–16.

    PubMed  CAS  Google Scholar 

  153. Seth M, Zhang ZS, Mao L, et al. TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res. 2009;105:1023–30.

    PubMed  CAS  Google Scholar 

  154. Vindis C, D’Angelo R, Mucher E, et al. Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochem Biophys Res Commun. 2010;391:979–83.

    PubMed  CAS  Google Scholar 

  155. Usui S, Konno D, Hori K, et al. Synaptic targeting of PSD-Zip45 (Homer 1c) and its involvement in the synaptic accumulation of F-actin. J Biol Chem. 2003;278:10619–28.

    PubMed  CAS  Google Scholar 

  156. Stiber JA, Zhang ZS, Burch J, et al. Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol. 2008;28:2637–47.

    PubMed  CAS  Google Scholar 

  157. Inoue R, Jensen LJ, Jian Z, et al. Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ Res. 2009;104:1399–409.

    PubMed  CAS  Google Scholar 

  158. Kinoshita H, Kuwahara K, Nishida M, et al. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res. 2010;106:1849–60.

    PubMed  CAS  Google Scholar 

  159. Wu X, Eder P, Chang B, et al. TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA. 2010;107:7000–5.

    PubMed  CAS  Google Scholar 

  160. Sharp WW, Simpson DG, Borg TK, et al. Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. Am J Physiol. 1997;273:H546–56.

    PubMed  CAS  Google Scholar 

  161. Yamada K, Green KG, Samarel AM, et al. Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch. Circ Res. 2005;97:346–53.

    PubMed  CAS  Google Scholar 

  162. Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993;12:1681–92.

    PubMed  CAS  Google Scholar 

  163. Cingolani HE, Alvarez BV, Ennis IL, et al. Stretch-induced alkalinization of feline papillary muscle: an autocrine-paracrine system. Circ Res. 1998;83:775–80.

    PubMed  CAS  Google Scholar 

  164. Sussman MA, McCulloch A, Borg TK. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy. Circ Res. 2002;91:888–98.

    PubMed  CAS  Google Scholar 

  165. Saito Y, Berk BC. Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors. J Mol Cell Cardiol. 2001;33:3–7.

    PubMed  CAS  Google Scholar 

  166. Kodama H, Fukuda K, Takahashi T, et al. Role of EGF receptor and Pyk2 in endothelin-1-induced ERK activation in rat cardiomyocytes. J Mol Cell Cardiol. 2002;34:139–50.

    PubMed  CAS  Google Scholar 

  167. Howes AL, Miyamoto S, Adams JW, et al. Galphaq expression activates EGFR and induces Akt mediated cardiomyocyte survival: dissociation from Gαq mediated hypertrophy. J Mol Cell Cardiol. 2006;40:597–604.

    PubMed  CAS  Google Scholar 

  168. Shah BH, Catt KJ. A central role of EGF receptor transactivation in angiotensin II-induced cardiac hypertrophy. Trends Pharmacol Sci. 2003;24:239–44.

    PubMed  CAS  Google Scholar 

  169. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 1997;59:551–71.

    PubMed  CAS  Google Scholar 

  170. Molkentin JD, Dorn II IG. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 2001;63:391–426.

    PubMed  CAS  Google Scholar 

  171. Sugden PH. Ras, Akt, and mechanotransduction in the cardiac myocyte. Circ Res. 2003;93:1179–92.

    PubMed  CAS  Google Scholar 

  172. Samarel AM. In vivo measurements of protein turnover during muscle growth and atrophy. FASEB J. 1991;5:2020–8.

    PubMed  CAS  Google Scholar 

  173. Chien KR, Knowlton KU, Zhu H, et al. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991;5:3037–46.

    PubMed  CAS  Google Scholar 

  174. Rajabi M, Kassiotis C, Razeghi P, et al. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007;12:331–43.

    PubMed  CAS  Google Scholar 

  175. Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann NY Acad Sci. 2010;1188:191–8.

    PubMed  CAS  Google Scholar 

  176. Wang YG, Ji X, Pabbidi M, et al. Laminin acts via focal adhesion kinase/phosphatidylinositol-3′ kinase/protein kinase B to down-regulate ß1-adrenergic receptor signalling in cat atrial myocytes. J Physiol. 2009;587:541–50.

    PubMed  CAS  Google Scholar 

  177. Husse B, Sopart A, Isenberg G. Cyclical mechanical stretch-induced apoptosis in myocytes from young rats but necrosis in myocytes from old rats. Am J Physiol Heart Circ Physiol. 2003;285:H1521–7.

    PubMed  CAS  Google Scholar 

  178. Liao XD, Tang AH, Chen Q, et al. Role of Ca2+ signaling in initiation of stretch-induced apoptosis in neonatal heart cells. Biochem Biophys Res Commun. 2003;310:405–11.

    PubMed  CAS  Google Scholar 

  179. Liao X, Liu JM, Du L, et al. Nitric oxide signaling in stretch-induced apoptosis of neonatal rat cardiomyocytes. FASEB J. 2006;20:1883–5.

    PubMed  CAS  Google Scholar 

  180. Sadoshima J, Qiu Z, Morgan JP, et al. Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J. 1996;15:5535–46.

    PubMed  CAS  Google Scholar 

  181. Sadoshima J, Izumo S. Tyrosine kinases mediation of c-fos expression by cell swelling in cardiac myocytes. Heart Vessels. 1997;12:194–7.

    Google Scholar 

  182. Wei H, Vander Heide RS. Ischemic preconditioning and heat shock activate Akt via a focal adhesion kinase-mediated pathway in Langendorff-perfused adult rat hearts. Am J Physiol Heart Circ Physiol. 2010;298:H152–7.

    PubMed  CAS  Google Scholar 

  183. Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101:660–7.

    PubMed  CAS  Google Scholar 

  184. Wei H, Vander Heide RS. Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008;295:H561–8.

    PubMed  CAS  Google Scholar 

  185. Hakim ZS, DiMichele LA, Rojas M, et al. FAK regulates cardiomyocyte survival following ischemia/reperfusion. J Mol Cell Cardiol. 2009;46:241–8.

    PubMed  CAS  Google Scholar 

  186. Latimer DC, Roth BJ, Parker KK. Analytical model for predicting mechanotransduction effects in engineered cardiac tissue. Tissue Eng. 2003;9:283–9.

    PubMed  Google Scholar 

  187. Ovize M, Kloner RA, Przyklenk K. Stretch preconditions canine myocardium. Am J Physiol. 1994;266:H137–46.

    PubMed  CAS  Google Scholar 

  188. Gysembergh A, Margonari H, Loufoua J, et al. Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabbit heart. Am J Physiol. 1998;274:H955–64.

    PubMed  CAS  Google Scholar 

  189. Mosca SM. Cardioprotective effects of stretch are mediated by activation of sarcolemmal, not mitochondrial, ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol. 2007;293:H1007–12.

    PubMed  CAS  Google Scholar 

  190. Pimentel DR, Amin JK, Xiao L, et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res. 2001;89:453–60.

    PubMed  CAS  Google Scholar 

  191. Boutahar N, Guignandon A, Vico L, et al. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem. 2004;279:30588–99.

    PubMed  CAS  Google Scholar 

  192. Melendez J, Welch S, Schaefer E, et al. Activation of Pyk2/related focal adhesion tyrosine kinase and focal adhesion kinase in cardiac remodeling. J Biol Chem. 2002;277:45203–10.

    PubMed  CAS  Google Scholar 

  193. Melendez J, Turner C, Avraham H, et al. Cardiomyocyte apoptosis triggered by RAFTK/Pyk2 via Src kinase is antagonized by paxillin. J Biol Chem. 2004;279:53516–23.

    PubMed  CAS  Google Scholar 

  194. Heidkamp MC, Scully BT, Vijayan K, et al. PYK2 regulates SERCA2 gene expression in neonatal rat ventricular myocytes. Am J Physiol Cell Physiol. 2005;289:C471–82.

    PubMed  CAS  Google Scholar 

  195. Hart DL, Heidkamp MC, Iyengar R, et al. CRNK gene transfer improves function and reverses the myosin heavy chain isoenzyme switch during post-myocardial infarction left ventricular remodeling. J Mol Cell Cardiol. 2008;45:93–105.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Chu and Dr. Samarel are supported by NIH 2PO1 HL062426, and Dr. Koshman is supported by NIH 1F32 HL096143. The authors also gratefully acknowledge the support of the Dr. Ralph and Marian Falk Medical Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen M. Samarel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chu, M., Koshman, Y.E., Samarel, A.M. (2012). Mechanotransduction in Cardiac Hypertrophy and Ischemia. In: Patterson, C., Willis, M. (eds) Translational Cardiology. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-891-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-891-7_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-890-0

  • Online ISBN: 978-1-61779-891-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics