Skip to main content

The Electroencephalogram in Hepatic Encephalopathy

  • Chapter
  • First Online:
  • 1511 Accesses

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

The electroencephalogram (EEG) corresponds to cortical postsynaptic activity that is modulated by both physiological and pathological diencephalic and brain-stem influences. It is extremely sensitive to metabolic and toxic influences; therefore, the EEG is a reliable tool to detect metabolic brain dysfunction. The EEG can have two diagnostic roles in cirrhotic patients with consciousness/cognitive alterations. The first one is the occasional possibility for the EEG to detect a cause of brain dysfunction different from hepatic encephalopathy. The second one is the possibility to obtain quantitative data on brain dysfunction that are independent of cultural influences and of patient cooperation. Therefore, the EEG monitoring of patients with HE can provide information useful for their follow up. The resting eye-closed EEG of patients with cirrhosis or non-cirrhotic portal hypertension and portal-systemic shunt can be classified by visual-pattern recognition; however, this approach is poorly reproducible. An improvement is provided by the visual reading of the frequency of the posterior background activity. Further improvement is obtainable by quantitative analysis that can be obtained by spectral analysis. Spectral analysis of the background activity of the EEG in patients with cirrhosis provides measures that have prognostic value both on the occurrence of bouts of overt HE and on survival. New quantitative techniques are developing: their real utility should be scrutinized.

The EEG recorded during cognitive tasks allows the extraction of the electric potentials evoked by the tasks themselves. These event-related potentials have more theoretical than practical utility, due to their poor reproducibility and inconstancy of appearance across various individuals.

In conclusion, the EEG provides functional data that are similar and complimentary to the behavioural ones, but more objective and quantifiable, that can improve the neuromonitoring of HE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The MDF is given by the ratio of the sum of each frequency band multiplied by its electric power over the total electric power of the interval of examined frequencies.

References

  1. Hjorth B. An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol. 1975;39(5):526–30.

    Article  PubMed  CAS  Google Scholar 

  2. Parsons-Smith BG, Summerskill WHJ, Dawson AM, Sherlock S. The electroencephalograph in liver disease. Lancet. 1957;2:867–71.

    Article  Google Scholar 

  3. Montagnese S, Biancardi A, Schiff S, et al. Different biochemical correlates for different neuropsychiatric abnormalities in patients with cirrhosis. Hepatology. 2010;53(2):558–66.

    Article  Google Scholar 

  4. Montagnese S, Jackson C, Morgan MY. Spatio-temporal decomposition of the electroencephalogram in patients with cirrhosis. J Hepatol. 2007;46(3):447–58.

    Article  PubMed  Google Scholar 

  5. Bickford RG, Butt HR. Hepatic coma: the electroencephalographic pattern. J Clin Invest. 1955;34: 790–9.

    Article  PubMed  CAS  Google Scholar 

  6. Kaplan PW. The EEG in metabolic encephalopathy and coma. J Clin Neurophysiol. 2004;21(5): 307–18.

    PubMed  Google Scholar 

  7. Karnaze DS, Bickford RG. Triphasic waves: a reassessment of their significance. Electroencephalogr Clin Neurophysiol. 1984;57(3):193–8.

    Article  PubMed  CAS  Google Scholar 

  8. Amodio P, Gatta A. Neurophysiological investigation of hepatic encephalopathy. Metab Brain Dis. 2005;20(4):369–79.

    Article  PubMed  Google Scholar 

  9. Guerit JM, Amantini A, Fischer C, et al. Neurophysiological investigations of hepatic encephalopathy: ISHEN practice guidelines. Liver Int. 2009;29(6):789–96.

    Article  PubMed  Google Scholar 

  10. Amodio P, Pellegrini A, Ubiali E, et al. The EEG assessment of low-grade hepatic encephalopathy: comparison of an artificial neural network-expert system (ANNES) based evaluation with visual EEG readings and EEG spectral analysis. Clin Neurophysiol. 2006;117(10): 2243–51.

    Article  PubMed  CAS  Google Scholar 

  11. Van der Rijt CC, Schalm SW, De GG, De VM. Objective measurement of hepatic encephalopathy by means of automated EEG analysis. Electroencephalogr Clin Neurophysiol. 1984;57(5):423–6.

    Article  PubMed  Google Scholar 

  12. Amodio P, Marchetti P, Del Piccolo F, et al. Spectral versus visual EEG analysis in mild hepatic encephalopathy. Clin Neurophysiol. 1999;110(8):1334–44.

    Article  PubMed  CAS  Google Scholar 

  13. Amodio P, Orsato R, Marchetti P, et al. Electroencephalographic analysis for the assessment of hepatic encephalopathy: comparison of non-parametric and parametric spectral estimation techniques. Neurophysiol Clin. 2009;39(2):107–15.

    Article  PubMed  CAS  Google Scholar 

  14. Onton J, Westerfield M, Townsend J, Makeig S. Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev. 2006;30(6):808–22.

    Article  PubMed  Google Scholar 

  15. Saxena N, Bhatia M, Joshi YK, Garg PK, Dwivedi SN, Tandon RK. Electrophysiological and neuropsychological tests for the diagnosis of subclinical hepatic encephalopathy and prediction of overt encephalopathy. Liver. 2002;22(3):190–7.

    Article  PubMed  Google Scholar 

  16. Epstein CM, Riether AM, Henderson RM, Cotsonis GA. EEG in liver transplantation: visual and computerized analysis. Electroencephalogr Clin Neurophysiol. 1992;83(6):367–71.

    Article  PubMed  CAS  Google Scholar 

  17. Steg RE, Wszolek ZK. Electroencephalographic abnormalities in liver transplant recipients: practical considerations and review. J Clin Neurophysiol. 1996;13(1):60–8.

    Article  PubMed  CAS  Google Scholar 

  18. Amodio P, Valenti P, Del PF, et al. P300 latency for the diagnosis of minimal hepatic encephalopathy: evidence that spectral EEG analysis and psychometric tests are enough. Dig Liver Dis. 2005;37(11):861–8.

    Article  PubMed  CAS  Google Scholar 

  19. Schiff S, Vallesi A, Mapelli D, Orsato R, Pellegrini A, Umilta C, Gatta A, Amodio P. Impairment of response inhibition precedes motor alteration in the early stage of liver cirrhosis: a behavioral and electrophysiological study. Metab Brain Dis. 2005;20:381–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Amodio MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Amodio, P. (2012). The Electroencephalogram in Hepatic Encephalopathy. In: Mullen, K., Prakash, R. (eds) Hepatic Encephalopathy. Clinical Gastroenterology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-836-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-836-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-835-1

  • Online ISBN: 978-1-61779-836-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics