Skip to main content

The Role of Natural Benzodiazepines Receptor Ligands in Hepatic Encephalopathy

  • Chapter
  • First Online:
  • 1321 Accesses

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

The hypothesis that agonist ligands of the central benzodiazepine (BZ) receptor contribute to the manifestations of hepatic encephalopathy (HE) by enhancing the action of GABA was originally suggested by anecdotal observations of ameliorations of HE following administration of a BZ receptor antagonist. The term natural BZs has been introduced for BZ receptor ligands which have been demonstrated in brain, cerebrospinal fluid, and plasma of normal animals and humans and which cannot be attributed to ingestion of pharmaceutical BZs. Possible sources of natural BZs or their precursors include the food cycle and intestinal bacteria, but probably not mammalian tissues. In liver failure, mean levels of natural BZ agonist ligands are increased in both animal models and humans and correlate with the severity of HE; the levels associated with HE are sufficient to induce at least mild neuroinhibitory behavioral effects. Flumazenil is the only BZ receptor antagonist currently available for clinical use. Intravenously administered flumazenil has been shown to induce ameliorations of HE in large proportions of patients with acute or chronic liver failure. Its beneficial effects on HE are limited by its weak partial agonist properties and, because of rapid metabolism, the transience of its effects. Reports of lack of effects of flumazenil on HE may be attributable to studying inappropriate animal models and/or complex encephalopathic states rather than HE uncomplicated by other encephalopathies. Other experimental BZ receptor antagonists with partial inverse agonist properties have been reported to be more effective than flumazenil in ameliorating HE in animal models. The contribution of BZ receptor antagonists on the management of HE may be enhanced further by (1) assessing the efficacy of an oral preparation of flumazenil on chronic portal-systemic encephalopathy; (2) conducting preliminary clinical trials of the efficacy of BZ antagonists with partial inverse agonists properties on HE; and (3) developing new BZ antagonists with properties superior to those of flumazenil, such as milder partial agonist properties and slower metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tallman JF, Paul SM, Skolnick P, Gallager DW. Receptors for the age of anxiety: the pharmacology of benzodiazepines. Science. 1980;207:274–81.

    PubMed  CAS  Google Scholar 

  2. Paul SM, Marangos PJ, Skolnick P. The benzodiazepine-GABA-chloride ionophore receptor complex. Common site of minor tranquilizer action. Biol Psychiatry. 1981;16:213–29.

    PubMed  CAS  Google Scholar 

  3. Anholt RR, Pedersen PL, De Souza EB, Snyder SH. The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J Biol Chem. 1986;261:576–83.

    PubMed  CAS  Google Scholar 

  4. Skolnick P, Paul SM. The benzodiazepine/GABA receptor chloride channel complex. ISI Atlas Sci Pharmacol. 1988;2:19–22.

    CAS  Google Scholar 

  5. Haefely W, Kyburaz E, Gerecke M, Mohler H. Recent advances in the molecular pharmacology of benzodiazepine receptors and in the structure-activity relationships if their agonists and antagonists. Adv Drug Res. 1985;14:165–322.

    CAS  Google Scholar 

  6. Haefely WE, Martin JR, Richards JG, Schoch P. The multiplicity of actions of benzodiazepine receptor ligands. Can J Psychiatry. 1993;38 Suppl 4:S102.

    PubMed  Google Scholar 

  7. Haefely WE. Allosteric modulation of the GABAA receptor channel: a mechanism for interaction with a multitude of central nervous system functions. In: Mohler H, De Prada M, editors. The challenge of neuropharmacology. A Tribute to the Memory of Willy Haefely. Basel: Editiones Roche; 1994. p. 15–39.

    Google Scholar 

  8. Study RE, Barker JL. Diazepam and (-)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurones. Proc Natl Acad Sci U S A. 1981;78:7180–4.

    PubMed  CAS  Google Scholar 

  9. Jones EA, Weissenborn K. Neurology and the liver. J Neurol Neurosurg Psychiatry. 1997;63:279–93.

    PubMed  CAS  Google Scholar 

  10. Jones EA, Basile AS, Mullen KD, Gammal SH. Flumazenil: potential implications for hepatic encephalopathy. Pharmacol Ther. 1990;45:331–43.

    PubMed  CAS  Google Scholar 

  11. Gardner CR. Pharmacological profiles in vivo of benzodiazepine receptor ligands. Drug Dev Res. 1988;12:1–28.

    CAS  Google Scholar 

  12. Jones EA. Benzodiazepine receptor ligands and hepatic encephalopathy: further unfolding of the GABA story. Hepatology. 1991;14:1286–90.

    PubMed  CAS  Google Scholar 

  13. Schafer DF, Jones EA. Hepatic encephalopathy and the γ-aminobutyric acid neurotransmitter system. Lancet. 1982;1:18–20.

    PubMed  CAS  Google Scholar 

  14. Schafer DF, Pappas SC, Brody LE, Jacobs R, Jones EA. Visual evoked potentials in a rabbit model of hepatic encephalopathy. I. Sequential changes and comparisons with drug-induced comas. Gastroenterology. 1984;86:540–5.

    PubMed  CAS  Google Scholar 

  15. Jones DB, Mullen KD, Roessle M, Maynard T, Jones EA. Hepatic encephalopathy: application of visual evoked responses to test hypotheses of its pathogenesis in rats. J Hepatol. 1987;4:118–26.

    PubMed  CAS  Google Scholar 

  16. Jones EA. Potential mechanisms of enhanced GABA-mediated inhibitory neurotransmission in liver failure. Neurochem Int. 2003;43:509–16.

    PubMed  Google Scholar 

  17. Anderson B. A proposed theory for the encephalopathies of Reye’s syndrome and hepatic encephalopathy. Med Hypotheses. 1984;15:415–20.

    PubMed  CAS  Google Scholar 

  18. Bansky G, Meier PJ, Zeigler WH, et al. Reversal of hepatic coma by benzodiazepine antagonist (Ro 15-1788). Lancet. 1985;1:1324–5.

    Google Scholar 

  19. Baraldi M, Zeneroli ML, Ventura E, et al. Supersensitivity of benzodiazepine receptors in hepatic encephalopathy due to fulminant hepatic failure in the rat: reversal by a benzodiazepine antagonist. Clin Sci. 1984;67:167–75.

    PubMed  CAS  Google Scholar 

  20. Scollo-Lavizzari G, Steinmann E. Reversal of hepatic coma by benzodiazepine antagonist (Ro 15-1788). Lancet. 1985;1:1324.

    Google Scholar 

  21. Mullen KD, Martin JV, Mendelson WB, Bassett ML, Jones EA. Could an endogenous benzodiazepine ligand contribute to hepatic encephalopathy? Lancet. 1988;1:457–9.

    PubMed  CAS  Google Scholar 

  22. Basile AS, Jones EA, Skolnick P. The pathogenesis and treatment of hepatic encephalopathy: evidence for the involvement of benzodiazepine receptor ligands. Pharmacol Rev. 1991;43:27–71.

    PubMed  CAS  Google Scholar 

  23. Mullen KD, Kaminsky-Russ K. Pathogenesis of hepatic encephalopathy: potential future approaches. Dig Dis. 1996;14 Suppl 1:20–9.

    PubMed  Google Scholar 

  24. Klotz U, Ziegler G, Reiman IW. Pharmacokinetics of the selective benzodiazepine antagonist Ro 15-1788 in man. Eur J Clin Pharmacol. 1984;27:115–7.

    PubMed  CAS  Google Scholar 

  25. Mullen KD, Martin JV, Mendelson WB, Jones EA. Further evidence that HE in the galactosamine rabbit model may be mediated by an endogenous BZ compound. In: Soeters PB, Wilson JHP, Meier AJ, Holm E, editors. Advances in ammonia metabolism and hepatic encephalopathy. Amsterdam: Elsevier Science; 1988. p. 333–7.

    Google Scholar 

  26. Mullen KD, Martin JV, Mendelson WB, Kaminsky-Russ K, Jones EA. Evidence for the presence of a benzodiazepine receptor binding substance in cerebrospinal fluid of a rabbit model of hepatic encephalopathy. Metab Brain Dis. 1989;4:253–60.

    PubMed  CAS  Google Scholar 

  27. Mullen KD, Szauter KM, Kaminsky-Russ K, et al. Detection and characterization of endogenous benzodiazepine activity in both animal models and humans with hepatic encephalopathy. In: Butterworth RF, Layrargues GP, editors. Hepatic encephalopathy: pathophysiology and treatment. Clifton: Humana; 1989. p. 287–94.

    Google Scholar 

  28. Mullen KD, Szauter KM, Kaminsky-Russ K. “Endogenous” benzodiazepine activity in body fluids of patients with hepatic encephalopathy. Lancet. 1990;336:81–3.

    PubMed  CAS  Google Scholar 

  29. Basile AS, Gammal SH, Jones EA, Skolnick P. The GABAA receptor complex in an experimental model of hepatic encephalopathy: evidence for elevated levels of an endogenous benzodiazepine receptor ligand. J Neurochem. 1989;53:1057–63.

    PubMed  CAS  Google Scholar 

  30. Basile AS, Ostrowski NK, Gammal SH, Jones EA, The SP. The GABAA receptor complex in hepatic encephalopathy. Autoradiographic evidence for the presence of elevated levels of a benzodiazepine receptor ligand. Neuropsychopharmacology. 1990;3:61–7.

    PubMed  CAS  Google Scholar 

  31. Basile AS, Pannell L, Jaouni T, et al. Brain concentrations of benzodiazepines are elevated in an animal model of hepatic encephalopathy. Proc Natl Acad Sci. 1990;87:5263–7.

    PubMed  CAS  Google Scholar 

  32. Olasmaa M, Rothstein JD, Guidotti A, et al. Endogenous benzodiazepine receptor ligands in human and animal hepatic encephalopathy. J Neurochem. 1990;55:2015–23.

    PubMed  CAS  Google Scholar 

  33. Basile AS. The contribution of endogenous benzodiazepine receptor ligands to the pathogenesis of hepatic encephalopathy. Synapse. 1991;7:141–50.

    PubMed  CAS  Google Scholar 

  34. Mohler H, Richards JG. Agonist and antagonist benzodiazepine receptor interactions in vitro. Nature. 1981;294:763–5.

    PubMed  CAS  Google Scholar 

  35. Braestrup C, Schmiechen R, Neef G, et al. Interaction of convulsive ligands with benzodiazepine receptors. Science. 1982;216:1241–3.

    PubMed  CAS  Google Scholar 

  36. Skolnick P, Schweri MM, Williams ER, et al. An in vitro binding assay which differentiates benzodiazepine “agonists” and “antagonists”. Eur J Pharmacol. 1982;78:133–6.

    PubMed  CAS  Google Scholar 

  37. Olasmaa M, Guidotti A, Costa E, et al. Endogenous benzodiazepines in hepatic encephalopathy. Lancet. 1989;1:491–2.

    PubMed  CAS  Google Scholar 

  38. Widler P, Fisch HU, Schoch P, et al. Increased benzodiazepine-like activity is neither necessary nor sufficient to explain acute hepatic encephalopathy in the thioacetamide-treated rat. Hepatology. 1993;18:1459–64.

    PubMed  CAS  Google Scholar 

  39. Basile AS, Jones EA. The involvement of benzodiazepine receptor ligands in hepatic encephalopathy. Hepatology. 1994;20:541–2.

    PubMed  CAS  Google Scholar 

  40. Basile AS, Hughes RD, Harrison PM, et al. Elevated brain concentrations of 1,4-benzodiazepines in fulminant hepatic failure. N Engl J Med. 1991;325:473–8.

    PubMed  CAS  Google Scholar 

  41. Mullen KD. Benzodiazepine compounds and hepatic encephalopathy. N Engl J Med. 1991;325:509–11.

    PubMed  CAS  Google Scholar 

  42. Mullen KD, Roessle M, Jones DB, Grun M, Jones EA. Precipitation of overt encephalopathy in the portacaval shunted rat: towards the development of an adequate model of chronic portal-systemic encephalopathy. Eur J Gastroenterol Hepatol. 1997;9:293–8.

    PubMed  CAS  Google Scholar 

  43. Yurdaydin C, Gu Z-Q, Nowak G, et al. Benzodiazepine receptor ligands are elevated in an animal model of hepatic encephalopathy: relationship between brain concentration and severity of encephalopathy. J Pharmacol Exp Ther. 1993;265:565–71.

    PubMed  CAS  Google Scholar 

  44. Basile AS, Harrison PM, Hughes RD, et al. Relationship between plasma benzodiazepine receptor ligand concentrations and severity of hepatic encephalopathy. Hepatology. 1994;19:112–21.

    PubMed  CAS  Google Scholar 

  45. Guidotti A, Forchetti CM, Corda MG, et al. Isolation, characterization and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci U S A. 1983;80:3531–5.

    PubMed  CAS  Google Scholar 

  46. Shoyab M, Gentry L, Marquardt H, Todaro G. Isolation and characterization of a putative endogenous benzodiazepine (endozepine) from bovine and human brain. J Biol Chem. 1986;261:1168–73.

    Google Scholar 

  47. Matquardt H, Todaro G, Shoyab M. Complete amino acid sequences of bovine and human endozepines. J Biol Chem. 1986;262:9227–31.

    Google Scholar 

  48. Gray PW. Molecular biology of diazepam binding inhibitor. Neuropharmacology. 1987;26:863–6.

    PubMed  CAS  Google Scholar 

  49. Rothstein JD, McKhann G, Guarneri P, et al. Cerebrospinal fluid content of diazepam binding inhibitor in chronic hepatic encephalopathy. Ann Neurol. 1989;26:57–62.

    PubMed  CAS  Google Scholar 

  50. Mullen KD, Szauter KM, Kaminsky-Russ K, et al. Detection and characterization of endogenous benzodiazepine activity in both animal models and humans with hepatic encephalopathy. In: Butterworth RF, Layrargues GP, editors. Hepatic encephalopathy: pathophysiology and treatment. Clifton: Humana; 1989. p. 287–94.

    Google Scholar 

  51. de Blas AL, Park D, Friedrich P. Endogenous benzodiazepine-like molecules in the human, rat and bovine brains studied with a monoclonal antibody to benzodiazepines. Brain Res. 1987;413:275–84.

    PubMed  Google Scholar 

  52. Baraldi M, Avallone R, Corsi L, Venturini I, Baraldi C, Zeneroli ML. Natural endogenous ligands for benzodiazepine receptors in hepatic encephalopathy. Metab Brain Dis. 2009;24:81–93.

    PubMed  CAS  Google Scholar 

  53. Medina JH, Pena C, Piva M, et al. Presence of benzodiazepine-like molecules in mammalian brain and milk. Biochem Biophys Res Commun. 1988;152:534–9.

    PubMed  CAS  Google Scholar 

  54. Unseld E, Krishna DR, Fischer C, Klotz U. Detection of desmethyldiazepam and diazepam in brain of different species and plants. Biochem Pharmacol. 1989;38:2473–8.

    PubMed  CAS  Google Scholar 

  55. Wildmann J, Vetter W, Ranalder UB, et al. Occurrence of pharmacologically active benzodiazepines in trace amounts in wheat and potato. Biochem Pharmacol. 1988;37:3549–59.

    PubMed  CAS  Google Scholar 

  56. Wildmann J. Increase in neural benzodiazepines in wheat and potato during germination. Biochem Biophys Res Commun. 1988;157:1436–43.

    PubMed  CAS  Google Scholar 

  57. Yurdaydin C, Walsh TJ, Engler HD, et al. Gut bacteria provide precursors of benzodiazepine receptor ligands in a rat model of hepatic encephalopathy. Brain Res. 1995;679:42–8.

    PubMed  CAS  Google Scholar 

  58. Sangameswaran L, Fales HM, Friedrich P, DeBlas A. Purification of a benzodiazepine from bovine brain and detection of benzodiazepine-like immunoreactivity in human brain. Proc Natl Acad Sci U S A. 1986;83:9236–40.

    PubMed  CAS  Google Scholar 

  59. Wildmann J, Niemann J, Matthaei H. Endogenous benzodiazepine receptor agonist in human and mammalian plasma. J Neural Transm. 1986;66:151–60.

    PubMed  CAS  Google Scholar 

  60. Wildmann J, Ranalder U. Presence of lorazepam in the blood plasma of drug free rats. Life Sci. 1988;43:1257–60.

    CAS  Google Scholar 

  61. Unseld E, Fischer C, Rothemund E, Klotz U. Occurrence of “natural” diazepam in human brain. Biochem Pharmacol. 1990;39:210–2.

    PubMed  CAS  Google Scholar 

  62. Luckner M. Secondary metabolism in microorganisms, plants and animals. Berlin: Springer; 1984. p. 274.

    Google Scholar 

  63. Haefely W. The preclinical pharmacology of Flumazenil. Eur J Anaesthesiol Suppl. 1988;2:25–36.

    PubMed  CAS  Google Scholar 

  64. Basile AS, Gammal SH, Mullen KD, Jones EA, Skolnick P. Differential responsiveness of cerebellar Purkinje neurons to GABA and benzodiazepine receptor ligands in a animal model of hepatic encephalopathy. J Neurosci. 1988;8:2414–21.

    PubMed  CAS  Google Scholar 

  65. Jones EA, Skolnick P. Benzodiazepine receptor ligands and the syndrome of hepatic encephalopathy. In: Popper H, Schaffner F, editors. Progress in liver diseases, vol. IX. Philadelphia: WB Saunders; 1990. p. 345–70.

    Google Scholar 

  66. Pomier-Layrargues G, Giguere J-F, Lavoie J, et al. Pharmacokinetics of benzodiazepine antagonist Ro 15-1788 in cirrhotic patients with moderate and severe liver dysfunction. Hepatology. 1989;10:969–72.

    PubMed  CAS  Google Scholar 

  67. Samson Y, Hantraye P, Baron JC, et al. Kinetics and displacement of [11  C]Ro 15-1788, a benzodiazepine antagonist, studied in human brain in vivo by positron tomography. Eur J Pharmacol. 1985;110:247–51.

    PubMed  CAS  Google Scholar 

  68. Samson Y, Bernuau J, Pappata S, Chavoix C, Baron JC, Maziere MA. Cerebral uptake of benzodiazepine measured by positron emission tomography in hepatic encephalopathy. N Engl J Med. 1987;316:414–5.

    PubMed  CAS  Google Scholar 

  69. Savic I, Widen L, Stone-Elander S. Feasibility of reversing benzodiazepine tolerance with flumazenil. Lancet. 1991;337:133–7.

    PubMed  CAS  Google Scholar 

  70. File SE, Pellow S. Intrinsic actions of benzodiazepine receptor antagonist Ro 15-1788. Psychopharmacology. 1986;88:1–11.

    PubMed  CAS  Google Scholar 

  71. Scollo-Lavizzari G. The anticonvulsant effect of the benzodiazepine antagonist, Ro 15-1788: an EEG study in 4 cases. Eur Neurol. 1984;23:1–6.

    PubMed  CAS  Google Scholar 

  72. Grimm G, Ferenci P, Katzenschlager R, et al. Improvement of hepatic encephalopathy treated with flumazenil. Lancet. 1988;2:1392–4.

    PubMed  CAS  Google Scholar 

  73. Bansky G, Meier PJ, Riederer E, et al. Effects of the benzodiazepine receptor antagonist flumazenil in hepatic encephalopathy in humans. Gastroenterology. 1989;97:744–50.

    PubMed  CAS  Google Scholar 

  74. Jones EA, Ferenci P. Hepatic encephalopathy, GABAergic neurotransmission and the benzodiazepines. In: Conn HO, Bircher J, editors. Hepatic encephalopathy: syndromes and therapies. Bloomington: Medi-Ed Press; 1994. p. 75–100.

    Google Scholar 

  75. Burke DA, Mitchel KW, Burke DA, Mitchel KW, Al Mardini H, et al. Reversal of hepatic coma with flumazenil with improvement in visual evoked potentials. Lancet. 1988;1:505–6.

    Google Scholar 

  76. Googay R, Hayes PC, Bzeizi K, O’Carroll RE. Benzodiazepine receptor antagonism improves reaction time in latent hepatic encephalopathy. Psychopharmacology. 1995;119:295–8.

    Google Scholar 

  77. Jones EA, Giger-Mateeva VI, Reits D, et al. Visual event-related potentials in cirrhotic patients without overt encephalopathy: the effects of flumazenil. Metab Brain Dis. 2001;16:43–53.

    PubMed  CAS  Google Scholar 

  78. Ferenci P, Grimm G, Meryn S, Gangl A. Successful long-term treatment of portal-systemic encephalopathy by the benzodiazepine receptor antagonist flumazenil. Gastroenterology. 1989;96:240–3.

    PubMed  CAS  Google Scholar 

  79. Bassett ML, Mullen KD, Skolnick P, Jones EA. Amelioration of hepatic encephalopathy by pharmacological antagonism of the GABAA-benzodiazepine receptor complex in a rabbit model of fulminant hepatic failure. Gastroenterology. 1987;93:1069–77.

    PubMed  CAS  Google Scholar 

  80. Gammal SH, Basile AS, Geller D, Skolnick P, Jones EA. Reversal of the behavioral and electrophysiological abnormalities of an animal model of hepatic encephalopathy by benzodiazepine receptor ligands. Hepatology. 1990;11:371–78.

    PubMed  CAS  Google Scholar 

  81. Van der Rijt CCD, de Knegt RJ, Schalm SW, et al. Flumazenil does not improve hepatic encephalopathy associated with acute ischemic liver failure in the rabbit. Metab Brain Dis. 1990;5:131–41.

    PubMed  Google Scholar 

  82. Bosman DK, van den Buijs CACG, de Haan JG, Maas MAW, Chamuleau RAFM. The effects of benzodiazepine-receptor antagonists and partial inverse agonists on acute hepatic encephalopathy in the rat. Gastroenterology. 1991;101:772–81.

    PubMed  CAS  Google Scholar 

  83. Steindl P, Puspok A, Druml W, Ferenci P. Beneficial effect of pharmacological modulation of the GABAA-benzodiazepine receptor on hepatic encephalopathy in the rat: comparison with uremic encephalopathy. Hepatology. 1991;14:963–8.

    PubMed  CAS  Google Scholar 

  84. Puspok A, Herneth A, Steindl P, Ferenci P. Hepatic encephalopathy in rats with thioacetamide-induced acute liver failure is not mediated by endogenous benzodiazepines. Gastroenterology. 1993;105:851–7.

    PubMed  CAS  Google Scholar 

  85. Maher HP, Legemate DA, van den Brom W, Rothuizen J. Improvement of chronic hepatic encephalopathy in dogs by the benzodiazepine-receptor partial inverse agonist sarmazenil, but not by the antagonist flumazenil. Metab Brain Res. 1998;13:241–51.

    Google Scholar 

  86. Mullen KD, Basile AS. Benzodiazepine receptor antagonists and hepatic encephalopathy: where do we stand? Gastroenterology. 1993;105:937–40.

    PubMed  CAS  Google Scholar 

  87. Zieve L, Ferenci P, Rzepczynski D, Ebner J, Zimmermann Ch. A benzodiazepine antagonist does not alter the course of hepatic encephalopathy or neural gamma-aminobutyric acid (GABA) binding. Metab Brain Dis. 1987;2:201–5.

    PubMed  CAS  Google Scholar 

  88. Jones EA. Hepatocellular failure. In: Warrell DA, Cox TM, Firth JD, editors. Oxford textbook of medicine. 5th ed. Oxford: Oxford University Press; 2010. p. 2493–505.

    Google Scholar 

  89. Blitzer BL, Waggoner JG, Jones EA, et al. A model of fulminant hepatic failure in the rabbit. Gastroenterology. 1978;74:664–71.

    PubMed  CAS  Google Scholar 

  90. Mullen KD, Schafer DF, Cuchi P, et al. Evaluation of the suitability of galactosamine-induce fulminant hepatic failure as a model of hepatic encephalopathy in the rat and rabbit. In: Soeters PB, Wilson JMP, Meijer AJ, Holm E, editors. Recent advances in ammonia metabolism and hepatic encephalopathy. Amsterdam: Elsevier; 1988. p. 205–12.

    Google Scholar 

  91. Als-Nielsen B, Gluud LL, Gluud C. Benzodiazepine receptor antagonists for hepatic encephalopathy. Cochrane Database Syst Rev. 2004;(2):CD002798.

    Google Scholar 

  92. Schafer DF. In hepatic coma, the problem comes from the colon, but will the answer come from there? J Lab Clin Med. 1987;110:253–4.

    PubMed  CAS  Google Scholar 

  93. Schafer DF. Hepatic coma: studies on the target organ. Gastroenterology. 1987;93:1131–4.

    PubMed  CAS  Google Scholar 

  94. Jones EA, Yurdaydin C, Basile AS. Benzodiazepine antagonists and the management of hepatic encephalopathy. In: Capacaccia L, Merli M, Riggio O, editors. Advances in hepatic encephalopathy and metabolic nitrogen exchange. Boca Raton: CRC Press; 1995. p. 549–63.

    Google Scholar 

  95. Sutherland LR, Minuk GY. Ro 15-1788 and hepatic failure. Ann Intern Med. 1988;108:158.

    PubMed  CAS  Google Scholar 

  96. Ferenci P, Herneth A, Steindl P. Newer approaches to therapy of hepatic encephalopathy. In: Blei AT, Butterworth RF (Eds). Hepatic encephalopathy. Semin Liver Dis. 1996;16:329–38.

    PubMed  CAS  Google Scholar 

  97. Van der Rijt CCD, Schalm SW, Meulster J, Stijnen T. Flumazenil therapy for hepatic encephalopathy: a double-blind cross-over study. Hepatology. 1989;10:590.

    Google Scholar 

  98. Klotz U, Walker S. Flumazenil and hepatic encephalopathy. Lancet. 1989;1:155–6.

    PubMed  CAS  Google Scholar 

  99. Ahboucha S, Coyne L, Hirakawa R, Butterworth RF, Halliwell RF. An interaction between benzodiazepines and neuroactive steroids at GABAA receptors in cultured hippocampal neurons. Neurochem Int. 2006;48:703–7.

    PubMed  CAS  Google Scholar 

  100. Bassett ML, Mullen KD, Scholz B, et al. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy. Gastroenterology. 1990;98:747–57.

    PubMed  CAS  Google Scholar 

  101. Albrecht J, Jones EA. Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurolog Sci. 1999;170:138–46.

    CAS  Google Scholar 

  102. Gammal SH, Basile AS, Skolnick P, Jones EA. Isolated CNS neurons from a model of hepatic encephalopathy exhibit increased sensitivity to a benzodiazepine. In: Butterworth RF, Pomier Layrarques G, editors. Hepatic encephalopathy: pathophysiology and treatment. Clifton: Humana; 1989. p. 295–304.

    Google Scholar 

  103. Bakti G, Fisch HU, Karlaganis G, Minder C, Bircher J. Mechanism of the excessive sedative response of cirrhotics to benzodiazepines: model experiments with triazolam. Hepatology. 1987;7:629–38.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Mullen MD, FRCPI .

Editor information

Editors and Affiliations

Additional information

This is one of the last publications of E. Anthony Jones who died unexpectedly on January 23rd 2012. His memory will live-on in his many proteges (K.D. Mullen).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jones, E.A., Mullen, K.D. (2012). The Role of Natural Benzodiazepines Receptor Ligands in Hepatic Encephalopathy. In: Mullen, K., Prakash, R. (eds) Hepatic Encephalopathy. Clinical Gastroenterology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-836-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-836-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-835-1

  • Online ISBN: 978-1-61779-836-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics