Skip to main content

Imaging of Infection in the Diabetic Foot

  • Chapter
  • First Online:
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Information derived from imaging studies can play an important role in the management of complicated foot problems in the diabetic patient. This chapter reviews the various modalities available for imaging of the diabetic foot—radiography, nuclear medicine studies such as bone scanning, labeled leukocyte scans, gallium, and Flourine-18-flourodeoxyglucose positron emission tomography (FDG PET) scans, cross-sectional studies such as magnetic resonance imaging (MRI), CT, and ultrasound, and various forms of angiography—and highlights their relative strengths and weaknesses for the diagnosis of osteomyelitis, soft tissue infection, and neuroarthropathy. A suggested imaging algorithm for the diagnosis of osteomyelitis in the diabetic foot is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman LG, Waller J, Palestro CJ, et al. Unsuspected osteomyelitis in diabetic foot ulcers. Diagnosis and monitoring by leukocyte scanning with indium in 111 oxyquinoline. JAMA. 1991;266:1246–51.

    PubMed  CAS  Google Scholar 

  2. Scher KS, Steele FJ. The septic foot in patients with diabetes. Surgery. 1988;104:661–6.

    PubMed  CAS  Google Scholar 

  3. Kaufman MW, Bowsher JE. Preventing diabetic foot ulcers. Medsurg Nurs. 1994;3:204–10.

    PubMed  CAS  Google Scholar 

  4. Bild DE, Selby JV, Sinnock P, Browner WS, Braveman P, Showstack JA. Lower-extremity amputation in people with diabetes. Epidemiology and prevention. Diabetes Care. 1989;12:24–31.

    PubMed  CAS  Google Scholar 

  5. Ecker ML, Jacobs BS. Lower extremity amputation in diabetic patients. Diabetes. 1970;19:189–95.

    PubMed  CAS  Google Scholar 

  6. Penn I. Infectins in the diabetic foot. In: Sammarco GJ, editor. The foot in diabetes. Philadelphia: Lea & Febiger; 1991. p. 106–23.

    Google Scholar 

  7. Gold RH, Tong DJ, Crim JR, Seeger LL. Imaging the diabetic foot. Skeletal Radiol. 1995;24:563–71.

    PubMed  CAS  Google Scholar 

  8. American Diabetes Association. Economic costs of diabetes in the U.S. Diabetes Care. 2008;31:596–615.

    Google Scholar 

  9. Horowitz JD, Durham JR, Nease DB, Lukens ML, Wright JG, Smead WL. Prospective evaluation of magnetic resonance imaging in the management of acute diabetic foot infections. Ann Vasc Surg. 1993;7:44–50.

    PubMed  CAS  Google Scholar 

  10. Edmonds ME, Roberts VC, Watkins PJ. Blood flow in the diabetic neuropathic foot. Diabetologia. 1982;22:9–15.

    PubMed  CAS  Google Scholar 

  11. Murray HJ, Young MJ, Hollis S, Boulton AJ. The association between callus formation, high pressures and neuropathy in diabetic foot ulceration. Diabet Med. 1996;13:979–82.

    PubMed  CAS  Google Scholar 

  12. Gooding GA, Stess RM, Graf PM, Moss KM, Louie KS, Grunfeld C. Sonography of the sole of the foot. Evidence for loss of foot pad thickness in diabetes and its relationship to ulceration of the foot. Invest Radiol. 1986;21:45–8.

    PubMed  CAS  Google Scholar 

  13. Bamberger DM, Daus GP, Gerding DN. Osteomyelitis in the feet of diabetic patients. Long-term results, prognostic factors, and the role of antimicrobial and surgical therapy. Am J Med. 1987;83:653–60.

    PubMed  CAS  Google Scholar 

  14. Linklater J, Potter HG. Emergent musculoskeletal magnetic resonance imaging. Top Magn Reson Imaging. 1998;9:238–60.

    PubMed  CAS  Google Scholar 

  15. Marcus CD, Ladam-Marcus VJ, Leone J, Malgrange D, Bonnet-Gausserand FM, Menanteau BP. MR imaging of osteomyelitis and neuropathic osteoarthropathy in the feet of diabetics. Radiographics. 1996;16:1337–48.

    PubMed  CAS  Google Scholar 

  16. Moore TE, Yuh WT, Kathol MH, el-Khoury GY, Corson JD. Abnormalities of the foot in patients with diabetes mellitus: findings on MR imaging. AJR Am J Roentgenol. 1991;157:813–6.

    PubMed  CAS  Google Scholar 

  17. Grayson ML, Gibbons GW, Balogh K, Levin E, Karchmer AW. Probing to bone in infected pedal ulcers. A clinical sign of underlying osteomyelitis in diabetic patients. JAMA. 1995;273:721–3.

    PubMed  CAS  Google Scholar 

  18. Cook TA, Rahim N, Simpson HC, Galland RB. Magnetic resonance imaging in the management of diabetic foot infection. Br J Surg. 1996;83:245–8.

    PubMed  CAS  Google Scholar 

  19. Wrobel JS, Connolly JE. Making the diagnosis of osteomyelitis. The role of prevalence. J Am Podiatr Med Assoc. 1998;88:337–43.

    PubMed  CAS  Google Scholar 

  20. Dinh MT, Abad CL, Safdar N. Diagnostic accuracy of the physical examination and imaging tests for osteomyelitis underlying diabetic foot ulcers: meta-analysis. Clin Infect Dis. 2008;47:519–27.

    PubMed  Google Scholar 

  21. Smith CD, Bilmen JG, Iqbal S, Robey S, Pereira M. Medial artery calcification as an indicator of diabetic peripheral vascular disease. Foot Ankle Int. 2008;29:185–90.

    Google Scholar 

  22. Bonakdar-pour A, Gaines VD. The radiology of osteomyelitis. Orthop Clin North Am. 1983;14:21–37.

    PubMed  CAS  Google Scholar 

  23. Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR Am J Roentgenol. 1992;158:9–18.

    PubMed  CAS  Google Scholar 

  24. Schweitzer ME, Daffner RH, Weissman BN, et al. ACR Appropriateness Criteria on suspected osteomyelitis in patients with diabetes mellitus. J Am Coll Radiol. 2008;5:881–6.

    PubMed  Google Scholar 

  25. Palestro CJ, Love C, Miller TT. Infection and musculoskeletal conditions: imaging of musculoskeletal infections. Best Pract Res Clin Rheumatol. 2006;20:1197–218.

    PubMed  Google Scholar 

  26. Keenan AM, Tindel NL, Alavi A. Diagnosis of pedal osteomyelitis in diabetic patients using current scintigraphic techniques. Arch Intern Med. 1989;149:2262–6.

    PubMed  CAS  Google Scholar 

  27. Larcos G, Brown ML, Sutton RT. Diagnosis of osteomyelitis of the foot in diabetic patients: value of 111In-leukocyte scintigraphy. AJR Am J Roentgenol. 1991;157:527–31.

    PubMed  CAS  Google Scholar 

  28. McCarthy K, Velchik MG, Alavi A, Mandell GA, Esterhai JL, Goll S. Indium-111-labeled white blood cells in the detection of osteomyelitis complicated by a pre-existing condition. J Nucl Med. 1988;29:1015–21.

    PubMed  CAS  Google Scholar 

  29. Maurer AH, Millmond SH, Knight LC, et al. Infection in diabetic osteoarthropathy: use of indium-labeled leukocytes for diagnosis. Radiology. 1986;161:221–5.

    PubMed  CAS  Google Scholar 

  30. Splittgerber GF, Spiegelhoff DR, Buggy BP. Combined leukocyte and bone imaging used to evaluate diabetic osteoarthropathy and osteomyelitis. Clin Nucl Med. 1989;14:156–60.

    PubMed  CAS  Google Scholar 

  31. Schauwecker DS, Park HM, Burt RW, Mock BH, Wellman HN. Combined bone scintigraphy and indium-111 leukocyte scans in neuropathic foot disease. J Nucl Med. 1988;29:1651–5.

    PubMed  CAS  Google Scholar 

  32. Seabold JE, Flickinger FW, Kao SC, et al. Indium-111-leukocyte/technetium-99 m-MDP bone and magnetic resonance imaging: difficulty of diagnosing osteomyelitis in patients with neuropathic osteoarthropathy. J Nucl Med. 1990;31:549–56.

    PubMed  CAS  Google Scholar 

  33. Palestro CJ, Torres MA. Radionuclide imaging in orthopedic infections. Semin Nucl Med. 1997;27:334–45.

    PubMed  CAS  Google Scholar 

  34. Abreu SH. Skeletal uptake of indium 111-labeled white blood cells. Semin Nucl Med. 1989;19:152–5.

    PubMed  CAS  Google Scholar 

  35. Losbona R, Rosenthall L. Observations on the sequential use of 99mTc-phosphate complex and 67 Ga imaging in osteomyelitis, cellulitis, and septic arthritis. Radiology. 1977;123:123–9.

    PubMed  CAS  Google Scholar 

  36. Tumeh SS, Aliabadi P, Weissman BN, McNeil BJ. Chronic osteomyelitis: bone and gallium scan patterns associated with active disease. Radiology. 1986;158:685–8.

    PubMed  CAS  Google Scholar 

  37. Schober O, Heindel W. PET-CT hybrid imaging. Stuttgart: Thieme; 2010.

    Google Scholar 

  38. Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O. The diabetic foot: initial experience with 18 F-FDG PET/CT. J Nucl Med. 2005;46:444–9.

    PubMed  Google Scholar 

  39. Chacko TK, Zhuang H, Nakhoda KZ, Moussavian B, Alavi A. Applications of fluorodeoxyglucose positron emission tomography in the diagnosis of infection. Nucl Med Commun. 2003;24:615–24.

    PubMed  CAS  Google Scholar 

  40. Meller J, Koster G, Liersch T, et al. Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy. Eur J Nucl Med Mol Imaging. 2002;29:53–60.

    PubMed  CAS  Google Scholar 

  41. Zhuang H, Alavi A. 18-Fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med. 2002;32:47–59.

    PubMed  Google Scholar 

  42. Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005;87:2464–71.

    PubMed  CAS  Google Scholar 

  43. Schmitz A, Risse HJ, Kalicke T, Grunwald F, Schmitt O. FDG-PET for diagnosis and follow-up of inflammatory processes: initial results from the orthopedic viewpoint. Z Orthop Ihre Grenzgeb. 2000;138:407–12.

    PubMed  CAS  Google Scholar 

  44. Kalicke T, Schmitz A, Risse JH, et al. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med. 2000;27:524–8.

    PubMed  CAS  Google Scholar 

  45. Hopfner S, Krolak C, Kessler S, et al. Preoperative imaging of Charcot neuroarthropathy in diabetic patients: comparison of ring PET, hybrid PET, and magnetic resonance imaging. Foot Ankle Int. 2004;25:890–5.

    PubMed  Google Scholar 

  46. Schwegler B, Stumpe KD, Weishaupt D, et al. Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18 F-FDG PET or 99mTc-MOAB. J Intern Med. 2008;263:99–106.

    PubMed  CAS  Google Scholar 

  47. Hara T, Higashi T, Nakamoto Y, et al. Significance of chronic marked hyperglycemia on FDG-PET: is it really problematic for clinical oncologic imaging? Ann Nucl Med. 2009;23:657–69.

    PubMed  Google Scholar 

  48. Boutin RD, Brossmann J, Sartoris DJ, Reilly D, Resnick D. Update on imaging of orthopedic infections. Orthop Clin North Am. 1998;29:41–66.

    PubMed  CAS  Google Scholar 

  49. Pomposelli F. Arterial imaging in patients with lower extremity ischemia and diabetes mellitus. J Vasc Surg. 2010;52:81S–91S.

    PubMed  Google Scholar 

  50. Smith DC, Yahiku PY, Maloney MD, Hart KL. Three new low-osmolality contrast agents: a comparative study of patient discomfort. AJNR Am J Neuroradiol. 1988;9:137–9.

    PubMed  CAS  Google Scholar 

  51. Waybill MM, Waybill PN. Contrast media-induced nephrotoxicity: identification of patients at risk and algorithms for prevention. J Vasc Interv Radiol. 2001;12:3–9.

    PubMed  CAS  Google Scholar 

  52. Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331:1416–20.

    PubMed  CAS  Google Scholar 

  53. Sartoris DJ. Cross-sectional imaging of the diabetic foot. J Foot Ankle Surg. 1994;33:531–45.

    PubMed  CAS  Google Scholar 

  54. Sartoris DJ, Devine S, Resnick D, et al. Plantar ­compartmental infection in the diabetic foot. The role of computed tomography. Invest Radiol. 1985;20:772–84.

    PubMed  CAS  Google Scholar 

  55. Gold RH, Hawkins RA, Katz RD. Bacterial osteomyelitis: findings on plain radiography, CT, MR, and scintigraphy. AJR Am J Roentgenol. 1991;157:365–70.

    PubMed  CAS  Google Scholar 

  56. Chandnani VP, Beltran J, Morris CS, et al. Acute experimental osteomyelitis and abscesses: detection with MR imaging versus CT. Radiology. 1990;174:233–6.

    PubMed  CAS  Google Scholar 

  57. Magid D, Fishman EK. Musculoskeletal infections in patients with AIDS: CT findings. AJR Am J Roentgenol. 1992;158:603–7.

    PubMed  CAS  Google Scholar 

  58. van Holsbeeck MT, Introcaso JH. Musculoskeletal ultrasound. St. Louis: Mosby; 2001.

    Google Scholar 

  59. Pineda C, Espinosa R, Pena A. Radiographic imaging in osteomyelitis: the role of plain radiography, computed tomography, ultrasonography, magnetic resonance imaging, and scintigraphy. Semin Plast Surg. 2009;23:80–9.

    PubMed  Google Scholar 

  60. Riebel TW, Nasir R, Nazarenko O. The value of sonography in the detection of osteomyelitis. Pediatr Radiol. 1996;26:291–7.

    PubMed  CAS  Google Scholar 

  61. Cardinal E, Bureau NJ, Aubin B, Chhem RK. Role of ultrasound in musculoskeletal infections. Radiol Clin North Am. 2001;39:191–201.

    PubMed  CAS  Google Scholar 

  62. Howard CB, Einhorn M, Dagan R, Nyska M. Ultrasound in diagnosis and management of acute haematogenous osteomyelitis in children. J Bone Joint Surg Br. 1993;75:79–82.

    PubMed  CAS  Google Scholar 

  63. Kaiser S, Rosenborg M. Early detection of subperiosteal abscesses by ultrasonography. A means for further successful treatment in pediatric osteomyelitis. Pediatr Radiol. 1994;24:336–9.

    PubMed  CAS  Google Scholar 

  64. Howard CB, Einhorn M, Dagan R, Nyska M. Ultrasonic features of acute osteomyelitis. J Bone Joint Surg Br. 1995;77:663–4.

    PubMed  CAS  Google Scholar 

  65. Chao HC, Kong MS, Lin TY, Chiu CH, Wang CR, Lee ZL. Sonographic and color Doppler sonographic diagnosis of acute osteomyelitis: report of one case. Acta Paediatr Taiwan. 1999;40:268–70.

    PubMed  CAS  Google Scholar 

  66. Enderle MD, Coerper S, Schweizer HP, et al. Correlation of imaging techniques to histopathology in patients with diabetic foot syndrome and clinical suspicion of chronic osteomyelitis. The role of ­high-resolution ultrasound. Diabetes Care. 1999;22:294–9.

    PubMed  CAS  Google Scholar 

  67. Steiner GM, Sprigg A. The value of ultrasound in the assessment of bone. Br J Radiol. 1992;65:589–93.

    PubMed  CAS  Google Scholar 

  68. Bray PW, Mahoney JL, Campbell JP. Sensitivity and specificity of ultrasound in the diagnosis of foreign bodies in the hand. J Hand Surg Am. 1995;20:661–6.

    PubMed  CAS  Google Scholar 

  69. Boyse TD, Fessell DP, Jacobson JA, Lin J, van Holsbeeck MT, Hayes CW. US of soft-tissue foreign bodies and associated complications with surgical correlation. Radiographics. 2001;21:1251–6.

    PubMed  CAS  Google Scholar 

  70. Duffin AC, Lam A, Kidd R, Chan AK, Donaghue KC. Ultrasonography of plantar soft tissues thickness in young people with diabetes. Diabet Med. 2002;19:1009–13.

    PubMed  CAS  Google Scholar 

  71. Hsu TC, Wang CL, Shau YW, Tang FT, Li KL, Chen CY. Altered heel-pad mechanical properties in patients with Type 2 diabetes mellitus. Diabet Med. 2000;17:854–9.

    PubMed  CAS  Google Scholar 

  72. Morrison WB, Schweitzer ME, Wapner KL, Hecht PJ, Gannon FH, Behm WR. Osteomyelitis in feet of diabetics: clinical accuracy, surgical utility, and cost-effectiveness of MR imaging. Radiology. 1995;196:557–64.

    PubMed  CAS  Google Scholar 

  73. Wertman R, Altun E, Martin DR, et al. Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology. 2008;248:799–806.

    PubMed  Google Scholar 

  74. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol. 2007;188:586–92.

    PubMed  Google Scholar 

  75. Sena BF, Stern JP, Pandharipande PV, et al. Screening patients to assess renal function before administering gadolinium chelates: assessment of the Choyke questionnaire. AJR Am J Roentgenol. 2010;195:424–8.

    PubMed  Google Scholar 

  76. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm225375.htm.

  77. Miller TT, Randolph Jr DA, Staron RB, Feldman F, Cushin S. Fat-suppressed MRI of musculoskeletal infection: fast T2-weighted techniques versus gadolinium-enhanced T1-weighted images. Skeletal Radiol. 1997;26:654–8.

    PubMed  CAS  Google Scholar 

  78. Morrison WB, Schweitzer ME, Batte WG, Radack DP, Russel KM. Osteomyelitis of the foot: relative importance of primary and secondary MR imaging signs. Radiology. 1998;207:625–32.

    PubMed  CAS  Google Scholar 

  79. Horowitz SH. Diabetic neuropathy. Clin Orthop Relat Res. 1993;296:78–85.

    PubMed  Google Scholar 

  80. Nigro ND, Bartynski WS, Grossman SJ, Kruljac S. Clinical impact of magnetic resonance imaging in foot osteomyelitis. J Am Podiatr Med Assoc. 1992;82:603–15.

    PubMed  CAS  Google Scholar 

  81. Wang A, Weinstein D, Greenfield L, et al. MRI and diabetic foot infections. Magn Reson Imaging. 1990;8:805–9.

    PubMed  CAS  Google Scholar 

  82. Yu JS. Diabetic foot and neuroarthropathy: magnetic resonance imaging evaluation. Top Magn Reson Imaging. 1998;9:295–310.

    PubMed  CAS  Google Scholar 

  83. Weinstein D, Wang A, Chambers R, Stewart CA, Motz HA. Evaluation of magnetic resonance imaging in the diagnosis of osteomyelitis in diabetic foot infections. Foot Ankle. 1993;14:18–22.

    PubMed  CAS  Google Scholar 

  84. Beltran J, Campanini DS, Knight C, McCalla M. The diabetic foot: magnetic resonance imaging evaluation. Skeletal Radiol. 1990;19:37–41.

    PubMed  CAS  Google Scholar 

  85. Berquist TH. Infection. In: Berquist TH, editor. Imaging of the foot and ankle. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2011. p. 436–86.

    Google Scholar 

  86. Ledermann HP, Schweitzer ME, Morrison WB. Nonenhancing tissue on MR imaging of pedal ­infection: characterization of necrotic tissue and associated limitations for diagnosis of osteomyelitis and abscess. AJR Am J Roentgenol. 2002;178:215–22.

    PubMed  Google Scholar 

  87. Bus SA, Maas M, Cavanagh PR, Michels RP, Levi M. Plantar fat-pad displacement in neuropathic diabetic patients with toe deformity: a magnetic resonance imaging study. Diabetes Care. 2004;27:2376–81.

    PubMed  Google Scholar 

  88. Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles—a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia. 2009;52:1182–91.

    PubMed  CAS  Google Scholar 

  89. Brash PD, Foster J, Vennart W, Anthony P, Tooke JE. Magnetic resonance imaging techniques demonstrate soft tissue damage in the diabetic foot. Diabet Med. 1999;16:55–61.

    PubMed  CAS  Google Scholar 

  90. Dinh T, Doupis J, Lyons TE, et al. Foot muscle energy reserves in diabetic patients without and with clinical peripheral neuropathy. Diabetes Care. 2009;32:1521–4.

    PubMed  Google Scholar 

  91. Greenman RL, Panasyuk S, Wang X, et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366:1711–7.

    PubMed  CAS  Google Scholar 

  92. Suzuki E, Kashiwagi A, Hidaka H, et al. 1 H- and 31P-magnetic resonance spectroscopy and imaging as a new diagnostic tool to evaluate neuropathic foot ulcers in Type II diabetic patients. Diabetologia. 2000;43:165–72.

    PubMed  CAS  Google Scholar 

  93. Weaver JB, Doyley M, Cheung Y, et al. Imaging the shear modulus of the heel fat pads. Clin Biomech (Bristol, Avon). 2005;20:312–9.

    Google Scholar 

  94. Pomposelli Jr FB, Marcaccio EJ, Gibbons GW, et al. Dorsalis pedis arterial bypass: durable limb salvage for foot ischemia in patients with diabetes mellitus. J Vasc Surg. 1995;21:375–84.

    PubMed  Google Scholar 

  95. Sze DY. Conventional angiography in the noninvasive era. In: Rubin Geoffrey D, Rofsky NM, editors. CT and MR angiography: comprehensive vascular assessment. Philadelphia: Wolters Kluwer/Lippincott, Williams & Wilkins; 2009. p. 87–127.

    Google Scholar 

  96. Lindholt JS. Radiocontrast induced nephropathy. Eur J Vasc Endovasc Surg. 2003;25:296–304.

    PubMed  CAS  Google Scholar 

  97. Cotroneo AR, Manfredi R, Settecasi C, Prudenzano R, Di Stasi C. Angiography and MR-angiography in the diagnosis of peripheral arterial occlusive disease in diabetic patients. Rays. 1997;22:579–90.

    PubMed  CAS  Google Scholar 

  98. Kreitner KF, Kalden P, Neufang A, et al. Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced three-dimensional MR angiography with conventional digital subtraction angiography. AJR Am J Roentgenol. 2000;174:171–9.

    PubMed  CAS  Google Scholar 

  99. Meaney JF. Magnetic resonance angiography of the peripheral arteries: current status. Eur Radiol. 2003;13:836–52.

    PubMed  Google Scholar 

  100. Sharafuddin MJ, Stolpen AH, Sun S, et al. High-resolution multiphase contrast-enhanced three-dimensional MR angiography compared with two-dimensional time-of-flight MR angiography for the identification of pedal vessels. J Vasc Interv Radiol. 2002;13:695–702.

    PubMed  Google Scholar 

  101. Berquist TH, Adelson AB. Bone and soft tissue ischemia. In: Berquist TH, editor. Imaging of the foot and ankle. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2011. p. 375–435.

    Google Scholar 

  102. Herborn CU, Goyen M, Quick HH, et al. Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol. 2004;182:1427–34.

    PubMed  Google Scholar 

  103. Owen RS, Carpenter JP, Baum RA, Perloff LJ, Cope C. Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med. 1992;326:1577–81.

    PubMed  CAS  Google Scholar 

  104. Leiner T, Fleischmann D, Rofsky NM. Conventional angiography in the noninvasive era. In: Rubin GD, Rofsky NM, editors. CT and MR angiography: comprehensive vascular assessment. Philadelphia: Wolters Kluwer/Lippincott, Williams & Wilkins; 2009. p. 921–1016.

    Google Scholar 

  105. Nelemans PJ, Leiner T, de Vet HC, van Engelshoven JM. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology. 2000;217:105–14.

    PubMed  CAS  Google Scholar 

  106. Dorweiler B, Neufang A, Kreitner KF, Schmiedt W, Oelert H. Magnetic resonance angiography unmasks reliable target vessels for pedal bypass grafting in patients with diabetes mellitus. J Vasc Surg. 2002;35:766–72.

    PubMed  Google Scholar 

  107. Andros G. Diagnostic and therapeutic arterial interventions in the ulcerated diabetic foot. Diabetes Metab Res Rev. 2004;20 Suppl 1:S29–33.

    PubMed  Google Scholar 

  108. Roos JE, Hellinger JC, Hallet R, Fleischmann D, Zarins CK, Rubin GD. Detection of endograft fractures with multidetector row computed tomography. J Vasc Surg. 2005;42:1002–6.

    PubMed  Google Scholar 

  109. Hartnell GG. Contrast angiography and MR angiography: still not optimum. J Vasc Interv Radiol. 1999;10:99–100.

    PubMed  CAS  Google Scholar 

  110. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    PubMed  CAS  Google Scholar 

  111. Willmann JK, Baumert B, Schertler T, et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology. 2005;236:1083–93.

    PubMed  Google Scholar 

  112. Ouwendijk R, Kock MC, van Dijk LC, van Sambeek MR, Stijnen T, Hunink MG. Vessel wall calcifications at multi-detector row CT angiography in patients with peripheral arterial disease: effect on clinical utility and clinical predictors. Radiology. 2006;241:603–8.

    PubMed  Google Scholar 

  113. Zweibel WJ, Pellerito JS. Basic concepts of Doppler frequency spectrum analysis and ultrasound blood flow imaging. In: John S, Zweibel William JP, editors. Introduction to vascular ultrasonography. Philadelphia: Elsevier Saunders; 2005. p. 61–89.

    Google Scholar 

  114. de Smet AA, Ermers EJ, Kitslaar PJ. Duplex velocity characteristics of aortoiliac stenoses. J Vasc Surg. 1996;23:628–36.

    PubMed  Google Scholar 

  115. Cossman DV, Ellison JE, Wagner WH, et al. Comparison of contrast arteriography to arterial mapping with color-flow duplex imaging in the lower extremities. J Vasc Surg. 1989;10:522–8. ­discussion 528–9.

    PubMed  CAS  Google Scholar 

  116. Dyet JF, Nicholson AA, Ettles DF. Vascular imaging and intervention in peripheral arteries in the diabetic patient. Diabetes Metab Res Rev. 2000;16 Suppl 1:S16–22.

    PubMed  Google Scholar 

  117. Edwards JM, Coldwell DM, Goldman ML, Strandness Jr DE. The role of duplex scanning in the selection of patients for transluminal angioplasty. J Vasc Surg. 1991;13:69–74.

    PubMed  CAS  Google Scholar 

  118. Larch E, Minar E, Ahmadi R, et al. Value of color duplex sonography for evaluation of tibioperoneal arteries in patients with femoropopliteal obstruction: a prospective comparison with anterograde intraarterial digital subtraction angiography. J Vasc Surg. 1997;25:629–36.

    PubMed  CAS  Google Scholar 

  119. Hofmann WJ, Walter J, Ugurluoglu A, Czerny M, Forstner R, Magometschnigg H. Preoperative high-frequency duplex scanning of potential pedal target vessels. J Vasc Surg. 2004;39:169–75.

    PubMed  CAS  Google Scholar 

  120. Levy MM, Baum RA, Carpenter JP. Endovascular surgery based solely on noninvasive preprocedural imaging. J Vasc Surg. 1998;28:995–1003. discussion 1003–5.

    PubMed  CAS  Google Scholar 

  121. Beltran J. MR imaging of soft tissue infection. Magn Reson Imaging Clin N Am. 1995;3:743–51.

    PubMed  CAS  Google Scholar 

  122. Sequeira W. The neuropathic joint. Clin Exp Rheumatol. 1994;12:325–37.

    PubMed  CAS  Google Scholar 

  123. Zlatkin MB, Pathria M, Sartoris DJ, Resnick D. The diabetic foot. Radiol Clin North Am. 1987;25:1095–105.

    PubMed  CAS  Google Scholar 

  124. Brower AC, Allman RM. Pathogenesis of the neurotrophic joint: neurotraumatic vs. neurovascular. Radiology. 1981;139:349–54.

    PubMed  CAS  Google Scholar 

  125. Donohoe KJ. Selected topics in orthopedic nuclear medicine. Orthop Clin North Am. 1998;29:85–101.

    PubMed  CAS  Google Scholar 

  126. Newman LG, Waller J, Palestro CJ, et al. Unsuspected osteomyelitis in diabetic foot ulcers. Diagnosis and monitoring by leukocyte scanning with indium in 111 oxyquinoline [see comments]. JAMA. 1991;266:1246–51.

    PubMed  CAS  Google Scholar 

  127. Segall GM, Nino-Murcia M, Jacobs T, Chang K. The role of bone scan and radiography in the diagnostic evaluation of suspected pedal osteomyelitis. Clin Nucl Med. 1989;14:255–60.

    PubMed  CAS  Google Scholar 

  128. Seldin DW, Heiken JP, Feldman F, Alderson PO. Effect of soft-tissue pathology on detection of pedal osteomyelitis in diabetics. J Nucl Med. 1985;26:988–93.

    PubMed  CAS  Google Scholar 

  129. Newman LG. Imaging techniques in the diabetic foot. Clin Podiatr Med Surg. 1995;12:75–86.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks to Drs. Yvonne Cheung, J. Anthony Parker, and David Brophy for their contributions. Thanks as well to Ms. Clotell Forde for her assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary G. Hochman MD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hochman, M.G. (2012). Imaging of Infection in the Diabetic Foot. In: Veves, A., Giurini, J., LoGerfo, F. (eds) The Diabetic Foot. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-791-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-791-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-790-3

  • Online ISBN: 978-1-61779-791-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics