Skip to main content

Microvascular Changes in the Diabetic Foot

  • Chapter
  • First Online:
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Microvascular changes in diabetes are related to the presence of neuropathy and highlighted by increased vascular permeability and impaired autoregulation of blood flow and vascular tone. The functional impairment of the microcirculation has been attributed to deficiencies at the level of the nerve-axon reflex and endothelial cell dysfunction, resulting in diminished expression of endothelial nitric oxide synthetase and poly polymerase. Consequently, there is a diminished hyperemic response, resulting in failure to achieve maximal blood flow following injury. This observed functional ischemia may be a possible mechanism for the poor wound healing in diabetic foot ulcers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PAS:

Periodic acid Schiff

ACh:

Acetylcholine

SNP:

Sodium nitroprusside

EDRF:

Endothelium-derived relaxing factor

EDNO:

Endothelial-derived nitric oxide

PKC:

Protein kinase C

PARP:

Poly ADP-ribose polymerase

AGEs:

Advanced glycosylated end products

VPF:

Vascular permeability factor

TXA2 :

Thromboxane

PGH2 :

Prostaglandin

vWF:

von Willebrand factor

CAM:

Cellular adhesion molecule

sICAM:

Soluble intercellular adhesion molecule

sVCAM:

Soluble vascular cell adhesion molecule

References

  1. Strandness Jr DE, Priest RE, Gibbons GE. Combined clinical and pathologic study of diabetic and nondiabetic peripheral arterial disease. Diabetes. 1964;13:366–72.

    PubMed  Google Scholar 

  2. Conrad MC. Large and small artery occlusion in diabetics and nondiabetics with severe vascular disease. Circulation. 1967;36:83–91.

    Article  PubMed  CAS  Google Scholar 

  3. Barner HB, Kaiser GC, Willman VL. Blood flow in the diabetic leg. Circulation. 1971;43:391–4.

    Article  PubMed  CAS  Google Scholar 

  4. LoGerfo FW, Coffman JD. Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care. N Engl J Med. 1984;311:1615–9.

    Article  PubMed  CAS  Google Scholar 

  5. Rayman G, Malik RA, Sharma AK, Day JL. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients. Clin Sci (Lond). 1995;89:467–74.

    CAS  Google Scholar 

  6. Jaap AJ, Shore AC, Stockman AJ, Tooke JE. Skin capillary density in subjects with impaired glucose tolerance and patients with type 2 diabetes. Diabet Med. 1996;13:160–4.

    Article  PubMed  CAS  Google Scholar 

  7. Malik RA, Newrick PG, Sharma AK, et al. Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia. 1989;32:92–102.

    Article  PubMed  CAS  Google Scholar 

  8. Williamson JR, Kilo C. Basement membrane physiology and pathophysiology. In: Alberti KGMM, DeFronzo RA, Keen H, Zimmet P, editors. International textbook of diabetes mellitus. Chichester: Wiley; 1992. p. 1245–65.

    Google Scholar 

  9. Raskin P, Pietri AO, Unger R, Shannon Jr WA. The effect of diabetic control on the width of skeletal-muscle capillary basement membrane in patients with type I diabetes mellitus. N Engl J Med. 1983;309:1546–50.

    Article  PubMed  CAS  Google Scholar 

  10. Rayman G, Williams SA, Spencer PD, Smaje LH, Wise PH, Tooke JE. Impaired microvascular hyperaemic response to minor skin trauma in type I diabetes. Br Med J (Clin Res Ed). 1986;292:1295–8.

    Article  CAS  Google Scholar 

  11. Tilton RG, Faller AM, Burkhardt JK, Hoffmann PL, Kilo C, Williamson JR. Pericyte degeneration and acellular capillaries are increased in the feet of human diabetic patients. Diabetologia. 1985;28:895–900.

    Article  PubMed  CAS  Google Scholar 

  12. Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes. 1995;44:721–6.

    Article  PubMed  CAS  Google Scholar 

  13. Parving HH, Viberti GC, Keen H, Christiansen JS, Lassen NA. Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism. 1983;32:943–9.

    Article  PubMed  CAS  Google Scholar 

  14. Flynn MD, Tooke JE. Aetiology of diabetic foot ulceration: a role for the microcirculation? Diabet Med. 1992;9:320–9.

    Article  PubMed  CAS  Google Scholar 

  15. Szabo C, Zanchi A, Komjati K, et al. Poly(ADP-ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation. 2002;106:2680–6.

    Article  PubMed  CAS  Google Scholar 

  16. Veves A, Akbari CM, Primavera J, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47:457–63.

    Article  PubMed  CAS  Google Scholar 

  17. Caselli A, Rich J, Hanane T, Uccioli L, Veves A. Role of C-nociceptive fibers in the nerve axon reflex-related vasodilation in diabetes. Neurology. 2003;60:297–300.

    Article  PubMed  CAS  Google Scholar 

  18. Hamdy O, Abou-Elenin K, LoGerfo FW, Horton ES, Veves A. Contribution of nerve-axon reflex-related vasodilation to the total skin vasodilation in diabetic patients with and without neuropathy. Diabetes Care. 2001;24:344–9.

    Article  PubMed  CAS  Google Scholar 

  19. Parkhouse N, Le Quesne PM. Impaired neurogenic vascular response in patients with diabetes and neuropathic foot lesions. N Engl J Med. 1988;318:1306–9.

    Article  PubMed  CAS  Google Scholar 

  20. Jorneskog G, Brismar K, Fagrell B. Skin capillary circulation severely impaired in toes of patients with IDDM, with and without late diabetic complications. Diabetologia. 1995;38:474–80.

    Article  PubMed  CAS  Google Scholar 

  21. Conrad MC. Functional anatomy of the circulation to the lower extremities, with color atlas. Chicago: Year Book Medical; 1971.

    Google Scholar 

  22. Boulton AJ, Scarpello JH, Ward JD. Venous oxygenation in the diabetic neuropathic foot: evidence of arteriovenous shunting? Diabetologia. 1982;22:6–8.

    Article  PubMed  CAS  Google Scholar 

  23. Murray HJ, Boulton AJ. The pathophysiology of diabetic foot ulceration. Clin Podiatr Med Surg. 1995;12:1–17.

    PubMed  CAS  Google Scholar 

  24. Flynn MD, Williams SA, Tooke JE. Clinical television microscopy. J Med Eng Technol. 1989;13:278–84.

    Article  PubMed  CAS  Google Scholar 

  25. Flynn MD, Tooke JE. Diabetic neuropathy and the microcirculation. Diabet Med. 1995;12:298–301.

    Article  PubMed  CAS  Google Scholar 

  26. Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control. Circ Res. 2000;87:474–9.

    Article  PubMed  CAS  Google Scholar 

  27. Sandow SL, Tare M, Coleman HA, Hill CE, Parkington HC. Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor. Circ Res. 2002;90:1108–13.

    Article  PubMed  CAS  Google Scholar 

  28. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  PubMed  CAS  Google Scholar 

  29. Dusting GJ, Moncada S, Vane JR. Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins. 1977;13:3–15.

    Article  PubMed  CAS  Google Scholar 

  30. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94:2511–5.

    Article  PubMed  CAS  Google Scholar 

  31. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100:2153–7.

    Article  PubMed  CAS  Google Scholar 

  32. Caballero AE, Arora S, Saouaf R, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48:1856–62.

    Article  PubMed  CAS  Google Scholar 

  33. Morris SJ, Shore AC, Tooke JE. Responses of the skin microcirculation to acetylcholine and sodium nitroprusside in patients with NIDDM. Diabetologia. 1995;38:1337–44.

    Article  PubMed  CAS  Google Scholar 

  34. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27:567–74.

    Article  PubMed  CAS  Google Scholar 

  35. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664–6.

    Article  PubMed  CAS  Google Scholar 

  36. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993;88:2510–6.

    Article  PubMed  CAS  Google Scholar 

  37. Elhadd TA, Kennedy G, Hill A, et al. Abnormal markers of endothelial cell activation and oxidative stress in children, adolescents and young adults with type 1 diabetes with no clinical vascular disease. Diabetes Metab Res Rev. 1999;15:405–11.

    Article  PubMed  CAS  Google Scholar 

  38. Sarman B, Farkas K, Toth M, Somogyi A, Tulassay Z. Circulating plasma endothelin-1, plasma lipids and complications in type 1 diabetes mellitus. Diabetes Nutr Metab. 2000;13:142–8.

    PubMed  CAS  Google Scholar 

  39. Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS. Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J Am Coll Cardiol. 1999;34:2002–6.

    Article  PubMed  CAS  Google Scholar 

  40. Karamanos B, Porta M, Songini M, et al. Different risk factors of microangiopathy in patients with type I diabetes mellitus of short versus long duration. The EURODIAB IDDM complications study. Diabetologia. 2000;43:348–55.

    Article  PubMed  CAS  Google Scholar 

  41. Lambert J, Aarsen M, Donker AJ, Stehouwer CD. Endothelium-dependent and -independent vasodilation of large arteries in normoalbuminuric insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16:705–11.

    Article  PubMed  CAS  Google Scholar 

  42. Watts GF, O’Brien SF, Silvester W, Millar JA. Impaired endothelium-dependent and independent dilatation of forearm resistance arteries in men with diet-treated non-insulin-dependent diabetes: role of dyslipidaemia. Clin Sci (Lond). 1996;91:567–73.

    CAS  Google Scholar 

  43. Dogra G, Rich L, Stanton K, Watts GF. Endothelium-dependent and independent vasodilation studies at normoglycaemia in type I diabetes mellitus with and without microalbuminuria. Diabetologia. 2001;44:593–601.

    Article  PubMed  CAS  Google Scholar 

  44. McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35:771–6.

    PubMed  CAS  Google Scholar 

  45. Meeking DR, Cummings MH, Thorne S, et al. Endothelial dysfunction in type 2 diabetic subjects with and without microalbuminuria. Diabet Med. 1999;16:841–7.

    Article  PubMed  CAS  Google Scholar 

  46. Hernandez C, Burgos R, Canton A, Garcia-Arumi J, Segura RM, Simo R. Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: a case-control study. Diabetes Care. 2001;24:516–21.

    Article  PubMed  CAS  Google Scholar 

  47. Taddei S, Virdis A, Mattei P, Natali A, Ferrannini E, Salvetti A. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation. 1995;92:2911–8.

    Article  PubMed  CAS  Google Scholar 

  48. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47:859–66.

    Article  PubMed  CAS  Google Scholar 

  49. Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci. 2000;21:181–7.

    Article  PubMed  CAS  Google Scholar 

  50. Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and ­insulin resistance. Arterioscler Thromb Vasc Biol. 2005;25:487–96.

    Article  PubMed  CAS  Google Scholar 

  51. Meier M, King GL. Protein kinase C activation and its pharmacological inhibition in vascular disease. Vasc Med. 2000;5:173–85.

    PubMed  CAS  Google Scholar 

  52. Yamagishi S, Uehara K, Otsuki S, Yagihashi S. Differential influence of increased polyol pathway on protein kinase C expressions between endoneurial and epineurial tissues in diabetic mice. J Neurochem. 2003;87:497–507.

    Article  PubMed  CAS  Google Scholar 

  53. Vinik AI, Bril V, Kempler P, et al. Treatment of ­symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, ­double-blind clinical trial. Clin Ther. 2005;27:1164–80.

    Article  PubMed  CAS  Google Scholar 

  54. Joannides R, Haefeli WE, Linder L, et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995;91:1314–9.

    Article  PubMed  CAS  Google Scholar 

  55. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of ‘autoxidative ­glycosylation’ in diabetes. Biochem J. 1987;245:243–50.

    PubMed  CAS  Google Scholar 

  56. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:154–60.

    Article  PubMed  CAS  Google Scholar 

  57. Bursell SE, Clermont AC, Aiello LP, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care. 1999;22:1245–51.

    Article  PubMed  CAS  Google Scholar 

  58. Economides PA, Khaodhiar L, Caselli A, et al. The effect of vitamin E on endothelial function of micro- and macrocirculation and left ventricular function in type 1 and type 2 diabetic patients. Diabetes. 2005;54:204–11.

    Article  PubMed  CAS  Google Scholar 

  59. Quehenberger P, Bierhaus A, Fasching P, et al. Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes. 2000;49:1561–70.

    Article  PubMed  CAS  Google Scholar 

  60. Keynan S, Khamaisi M, Dahan R, et al. Increased expression of endothelin-converting enzyme-1c isoform in response to high glucose levels in endothelial cells. J Vasc Res. 2004;41:131–40.

    Article  PubMed  CAS  Google Scholar 

  61. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  PubMed  CAS  Google Scholar 

  62. Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol. 2002;50:325–92.

    Article  PubMed  CAS  Google Scholar 

  63. Price SA, Agthong S, Middlemas AB, Tomlinson DR. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes. 2004;53:1851–6.

    Article  PubMed  CAS  Google Scholar 

  64. Obrosova IG, Van Huysen C, Fathallah L, Cao XC, Greene DA, Stevens MJ. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J. 2002;16:123–5.

    PubMed  CAS  Google Scholar 

  65. Stevens MJ, Lattimer SA, Kamijo M, Van Huysen C, Sima AA, Greene DA. Osmotically-induced nerve taurine depletion and the compatible osmolyte hypothesis in experimental diabetic neuropathy in the rat. Diabetologia. 1993;36:608–14.

    Article  PubMed  CAS  Google Scholar 

  66. Winegrad AI. Banting lecture 1986. Does a common mechanism induce the diverse complications of diabetes? Diabetes. 1987;36:396–406.

    PubMed  CAS  Google Scholar 

  67. Greene DA, Chakrabarti S, Lattimer SA, Sima AA. Role of sorbitol accumulation and myo-inositol depletion in paranodal swelling of large myelinated nerve fibers in the insulin-deficient spontaneously diabetic bio-breeding rat. Reversal by insulin replacement, an aldose reductase inhibitor, and myo-inositol. J Clin Invest. 1987;79:1479–85.

    Article  PubMed  CAS  Google Scholar 

  68. Chalk C, Benstead TJ, Moore F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst Rev 2007;(4)CD004572.

    Google Scholar 

  69. Makita Z, Radoff S, Rayfield EJ, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325:836–42.

    Article  PubMed  CAS  Google Scholar 

  70. Schernthaner G. Cardiovascular mortality and morbidity in type-2 diabetes mellitus. Diabetes Res Clin Pract. 1996;31 Suppl:S3–13.

    Google Scholar 

  71. Arora S, Smakowski P, Frykberg RG, et al. Differences in foot and forearm skin microcirculation in diabetic patients with and without neuropathy. Diabetes Care. 1998;21:1339–44.

    Article  PubMed  CAS  Google Scholar 

  72. Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest. 1995;96:786–92.

    Article  PubMed  CAS  Google Scholar 

  73. Cersosimo E, DeFronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev. 2006;22:423–36.

    Article  PubMed  CAS  Google Scholar 

  74. Steinberg HO, Baron AD. Vascular function, insulin resistance and fatty acids. Diabetologia. 2002;45:623–34.

    Article  PubMed  CAS  Google Scholar 

  75. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78:539–52.

    Article  PubMed  CAS  Google Scholar 

  76. Verrotti A, Greco R, Basciani F, Morgese G, Chiarelli F. von Willebrand factor and its propeptide in children with diabetes. Relation between endothelial dysfunction and microalbuminuria. Pediatr Res. 2003;53:382–6.

    Article  PubMed  CAS  Google Scholar 

  77. Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet. 1998;351:88–92.

    Article  PubMed  CAS  Google Scholar 

  78. Ferri C, Desideri G, Baldoncini R, et al. Early activation of vascular endothelium in nonobese, nondiabetic essential hypertensive patients with multiple metabolic abnormalities. Diabetes. 1998;47:660–7.

    Article  PubMed  CAS  Google Scholar 

  79. Otsuki M, Hashimoto K, Morimoto Y, Kishimoto T, Kasayama S. Circulating vascular cell adhesion molecule-1 (VCAM-1) in atherosclerotic NIDDM patients. Diabetes. 1997;46:2096–101.

    Article  PubMed  CAS  Google Scholar 

  80. Altannavch TS, Roubalova K, Kucera P, Andel M. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res. 2004;53:77–82.

    PubMed  CAS  Google Scholar 

  81. Vinik AI, Erbas T, Park TS, Stansberry KB, Scanelli JA, Pittenger GL. Dermal neurovascular dysfunction in type 2 diabetes. Diabetes Care. 2001;24:1468–75.

    Article  PubMed  CAS  Google Scholar 

  82. Morris SJ, Shore AC. Skin blood flow responses to the iontophoresis of acetylcholine and sodium nitroprusside in man: possible mechanisms. J Physiol. 1996;496(Pt 2):531–42.

    PubMed  CAS  Google Scholar 

  83. Walmsley D, Wiles PG. Assessment of the neurogenic flare response as a measure of nociceptor C fibre function. J Med Eng Technol. 1990;14:194–6.

    Article  PubMed  CAS  Google Scholar 

  84. Rendell M, Bergman T, O’Donnell G, Drobny E, Borgos J, Bonner RF. Microvascular blood flow, volume, and velocity measured by laser Doppler techniques in IDDM. Diabetes. 1989;38:819–24.

    Article  PubMed  CAS  Google Scholar 

  85. Smith DG, Boyko EJ, Ahroni JH, Stensel VL, Davignon DR, Pecoraro RE. Paradoxical transcutaneous oxygen response to cutaneous warming on the plantar foot surface: a caution for interpretation of plantar foot TcPO2 measurements. Foot Ankle Int. 1995;16:787–91.

    PubMed  CAS  Google Scholar 

  86. Boyko EJ, Ahroni JH, Stensel VL, Smith DG, Davignon DR, Pecoraro RE. Predictors of transcutaneous oxygen tension in the lower limbs of diabetic subjects. Diabet Med. 1996;13:549–54.

    Article  PubMed  CAS  Google Scholar 

  87. Colarusso PKL, Levin IW, Fraser JC, Arens JE, Lewis EN. Infrared spectroscopic imaging: from planetary to cellular systems. Appl Spectrosc. 1998;52:106A–20.

    Article  CAS  Google Scholar 

  88. Pecoraro RE, Ahroni JH, Boyko EJ, Stensel VL. Chronology and determinants of tissue repair in ­diabetic lower-extremity ulcers. Diabetes. 1991;40:1305–13.

    Article  PubMed  CAS  Google Scholar 

  89. Greenman RL, Panasyuk S, Wang X, et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366:1711–7.

    Article  PubMed  CAS  Google Scholar 

  90. Khaodhiar L, Dinh T, Schomacker KT, et al. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care. 2007;30:903–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Tecilazich MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tecilazich, F., Dinh, T., Kafanas, A., Veves, A. (2012). Microvascular Changes in the Diabetic Foot. In: Veves, A., Giurini, J., LoGerfo, F. (eds) The Diabetic Foot. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-791-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-791-0_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-790-3

  • Online ISBN: 978-1-61779-791-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics