Skip to main content

Actin Mutations and Deafness

  • Chapter
  • First Online:
Cytoskeleton and Human Disease

Abstract

Hearing loss comprises a group of disorders with great social implications. During the past decade, tremendous progress has been made in the investigation of hereditary hearing impairment, especially in the nonsyndromic forms, in which the hearing deficit is not accompanied by other clinical signs. These isolated conditions are the most frequent traits and are characterized by a vast genetic and clinical heterogeneity. Among them, those inherited following an autosomal dominant pattern (ADNSHL) represents around 10–20% of hereditary cases for which more than 50 loci (DFNA) have been mapped so far. One of these subtypes, DFNA20/A26, has been reported to be associated with ACTG1, the gene encoding γ-actin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci U S A 100:13958–13963

    Article  PubMed  CAS  Google Scholar 

  2. Belyantseva IA, Perrin BJ, Sonnemann KJ, Zhu M, Stepanyan R, McGee J, Frolenkov GI, Walsh EJ, Friderici KH, Friedman TB, Ervasti JM (2009) Gamma-actin is required for cytoskeletal maintenance but not development. Proc Natl Acad Sci U S A 106(24):9703–9708

    Article  PubMed  CAS  Google Scholar 

  3. Bryan KE, Rubenstein PA (2009) Allele-specific effects of human deafness gamma-actin mutations (DFNA20/26) on the actin/cofilin interaction. J Biol Chem 284(27):18260–18269

    Article  PubMed  CAS  Google Scholar 

  4. Bryan KE, Wen KK, Zhu M, Rendtorff ND, Feldkamp M, Tranebjaerg L, Friderici KH, Rubenstein PA (2006) Effects of human deafness gamma-actin mutations (DFNA20/26) on actin function. J Biol Chem 281(29):20129–20139

    Article  PubMed  CAS  Google Scholar 

  5. Bunnell TM, Ervasti JM (2010) Delayed embryonic development and impaired cell growth and survival in ACTG1 null mice. Cytoskeleton (Hoboken) 67(9):564–572

    CAS  Google Scholar 

  6. DeWan AT, Parrado AR, Leal SM (2003) A second kindred linked to the DFNA20 (17q25.3) reduces the genetic interval. Clin Genet 63:39–45

    Article  PubMed  CAS  Google Scholar 

  7. Elfenbein JL, Fisher RA, Wei S, Morell RJ, Stewart C, Friedman TB, Fridirici K (2001) Audiologic aspects of the search for DFNA20: a gene causing late-onset, progressive, sensorineural hearing loss. Ear Hear 22:279–288

    Article  PubMed  CAS  Google Scholar 

  8. Fabbrizio E, Bonet-Kerrache A, Leger JJ, Mornet D (1993) Actin-dystrophin interface. Biochemistry 32:10457–10463

    Article  PubMed  CAS  Google Scholar 

  9. Feinberg JM, Lebart Y, Benyamin Y, Roustin C (1997) Localization of a calcium sensitive binding site for gelsolin on actin subdomain I: implication for severing process. Biochem Biophys Res Commun 233:61–65

    Article  PubMed  CAS  Google Scholar 

  10. Furness DN, Katori Y, Mahendrasingam S, Hackney CM (2005) Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells. Hear Res 207:22–34

    Article  PubMed  CAS  Google Scholar 

  11. Goodyear RJ, Legan PK, Wright MB, Marcotti W, Oganesian A, Coats SA, Booth CJ, Kros CJ, Seifert RA, Bowen-Pope DF, Richardson GP (2003) A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. J Neurosci 23:9208–9219

    PubMed  CAS  Google Scholar 

  12. de Heer AM, Huygen PL, Collin RW, Oostrik J, Kremer H, Cremers CW (2009) Audiometric and vestibular features in a second Dutch DFNA20/26 family with a novel mutation in ACTG1. Ann Otol Rhinol Laryngol 118(5):382–390

    PubMed  Google Scholar 

  13. Hirokawa N, Tilney LG (1982) Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol 95:249–261

    Article  PubMed  CAS  Google Scholar 

  14. Höfer D, Ness W, Drenckhahn D (1997) Sorting of actin isoforms in chicken auditory hair cells. J Cell Sci 110:765–770

    PubMed  Google Scholar 

  15. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404

    Article  PubMed  CAS  Google Scholar 

  16. Kemperman MH, De Leenheer EMR, Huygen PLM et al (2004) A Dutch familia with hearing loss linked to the DFNA20/26 locus. Longitudinal analysis of hearing impairment. Arch Otolaryngol Head Neck Surg 130:281–288

    Article  PubMed  Google Scholar 

  17. Kitajiri S, Fukumoto K, Hata M, Sasaki H, Katsuno T, Nakagawa T, Ito J, Tsukita S, Tsukita S (2004) Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J Cell Biol 16:559–570

    Article  Google Scholar 

  18. Kitajiri S, Sakamoto T, Belyantseva IA, Goodyear RJ, Stepanyan R, Fujiwara I, Bird JE, Riazuddin S, Riazuddin S, Ahmed ZM, Hinshaw JE, Sellers J, Bartles JR, Hammer JA 3rd, Richardson GP, Griffith AJ, Frolenkov GI, Friedman TB (2010) Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell 141:786–798

    Article  PubMed  CAS  Google Scholar 

  19. Kremer H, van Wijk E, Märker T, Wolfrum U, Roepman R (2006) Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 2:R262–R270

    Article  Google Scholar 

  20. Liu P, Li H, Ren X, Mao H, Zhu Q, Zhu Z, Yang R, Yuan W, Liu J, Wang Q, Liu M (2008) Novel ACTG1 mutation causing autosomal dominant non-syndromic hearing impairment in a Chinese family. J Genet Genomics 35:553–558

    Article  PubMed  CAS  Google Scholar 

  21. Mallavarapu A, Mitchison T (1999) Regulated actin cytoskeleton assambly at filopodium tips controls their extension and retraction. J Cell Biol 146:1097–1106

    Article  PubMed  CAS  Google Scholar 

  22. Manor U, Kachar B (2008) Dynamic length regulation of sensory stereocilia. Semin Cell Dev Biol 19:502–510

    Article  PubMed  Google Scholar 

  23. Manor U, Disanza A, Grati M, Andrade L, Lin H, Di Fiore PP, Scita G, Kachar B (2011) Regulation of stereocilia length by myosin XVa and whirlin depends on the actin-regulatory protein Eps8. Curr Biol 21(2):167–172

    Article  PubMed  CAS  Google Scholar 

  24. Mburu P, Mustapha M, Varela A, Weil D, El-Amraoui A, Holme RH, Rump A, Hardisty RE, Blanchard S, Coimbra RS, Perfettini I, Parkinson N, Mallon AM, Glenister P, Rogers MJ, Paige AJ, Moir L, Clay J, Rosenthal A, Liu XZ, Blanco G, Steel KP, Petit C, Brown SD (2003) Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34:421–428

    Article  PubMed  CAS  Google Scholar 

  25. Mburu P, Kikkawa Y, Townsend S, Romero R, Yonekawa H, Brown SD (2006) Whirlin complexes with p55 at the stereocilia tip during hair cell development. Proc Natl Acad Sci USA 103:10973–10978

    Article  PubMed  CAS  Google Scholar 

  26. Mburu P, Romero MR, Hilton H, Parker A, Townsend S, Kikkawa Y, Brown SD (2010) Gelsolin plays a role in the actin polymerization complex of hair cell stereocilia. PLoS One 5:e11627

    Article  PubMed  Google Scholar 

  27. McGough A, Way M, DeRosier D (1994) Determination of the a-actinin-binding site on actin filaments by cryoelectron microscopy and image analysis. J Cell Biol 126:433–443

    Article  PubMed  CAS  Google Scholar 

  28. Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 23:527–533

    Article  Google Scholar 

  29. Morell RJ, Friderici KH, Wei S, Elfenbein JL, Friedman TB, Fisher RA (2000) A new locus for late-onset, progressive, hereditary hearing loss DFNA20 maps to 17q25. Genomics 63:1–6

    Article  PubMed  CAS  Google Scholar 

  30. Morín M, Bryan KE, Mayo-Merino F, Goodyear R, Mencía A, Modamio-Høybjør S, del Castillo I, Cabalka JM, Richardson G, Moreno F, Rubenstein PA, Moreno-Pelayo MA (2009) In vivo and in vitro effects of two novel gamma-actin (ACTG1) mutations that cause DFNA20/26 hearing impairment. Hum Mol Genet 18(16):3075–3089

    Article  PubMed  Google Scholar 

  31. Nevalainen EM, Skwarek-Maruszewska A, Braun A, Moser M, Lappalainen P (2009) Two biochemically distinct and tissue-specific twinfilin isoforms are generated from the mouse Twf2 gene by alternative promoter usage. Biochem J 417:593–600

    Article  PubMed  CAS  Google Scholar 

  32. Pataky F, Pironkova R, Hudspeth AJ (2004) Radixin is a constituent of stereocilia in hair cells. Proc Natl Acad Sci U S A 101:2601–2606

    Article  PubMed  CAS  Google Scholar 

  33. Peng AW, Belyantseva IA, Hsu PD, Friedman TB, Heller S (2009) Twinfilin 2 regulates actin filament lengths in cochlear stereocilia. J Neurosci 29:15083–15088

    Article  PubMed  CAS  Google Scholar 

  34. Perrin BJ, Sonnemann KJ, Ervasti JM (2010) β-actin and γ-actin are each dispensable for auditory hair cell development but required for Stereocilia maintenance. PLoS Genet 6(10):e1001158

    Article  PubMed  Google Scholar 

  35. Procaccio V, Salazar G, Ono S, Styers ML, Gearing M, Davila A, Jimenez R, Juncos J, Gutekunst C-A, Meroni G, Fontanella B, Sontag E, Sontag JM, Faundez V, Wainer BH (2006) A mutation of beta-actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia. Am J Hum Genet 78:947–960

    Article  PubMed  CAS  Google Scholar 

  36. Rendtorff ND, Zhu M, Fagerheim T, Antal TL, Jones M, Teslovich TM, Gillanders EM, Barmada M, Teig E, Trent JM et al (2006) A novel missense mutation in ACTG1 causes dominant deafness in a Norwegian DFNA20/26 family, but ACTG1 mutations are not frequent among families with hereditary hearing impairment. Eur J Hum Genet 14:1097–1105

    Article  PubMed  CAS  Google Scholar 

  37. Rzadzinska AK, Schneider ME, Davies C, Riordan GP, Kachar B (2004) An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J Cell Biol 2004 Mar 15 164(6):887–897

    Article  CAS  Google Scholar 

  38. Rzadzinska AK, Nevalainen EM, Prosser HM, Lappalainen P, Steel KP (2009) MyosinVIIa interacts with Twinfilin-2 at the tips of mechanosensory stereocilia in the inner ear. PLoS One 4(9):e7097

    Article  PubMed  Google Scholar 

  39. Schneider ME, Belayantseva IA, Azevedo RB, Kachar B (2002) Rapid renewal of auditory hair bundles. Nature 418:837–838

    Article  PubMed  CAS  Google Scholar 

  40. Schneider ME, Dosé AC, Salles FT, Chang W, Erickson FL, Burnside B, Kachar B (2006) A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J Neurosci 2640:10243–10252

    Article  Google Scholar 

  41. Sekerková G, Zheng L, Loomis PA, Mugnaini E, Bartles JR (2006) Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli. Cell Mol Life Sci 63:2329–2341

    Article  PubMed  Google Scholar 

  42. Van Camp G, Smith RJ. (2011). Hereditary hearing loss homepage. http://hereditaryhearingloss.org/. Accessed 3 December 2011

    Google Scholar 

  43. Vartiainen MK, Sarkkinen EM, Matilainen T, Salminen M, Lappalainen P (2003) Mammals have two twinfilin isoforms whose subcellular localizations and tissue distributions are differentially regulated. J Biol Chem 278:34347–34355

    Article  PubMed  CAS  Google Scholar 

  44. Vorobiev S, Strokopytov B, Drubin DG, Frieden C, Ono S, Condeelis J, Rubenstein PA, Almo SC (2003) Structure of nonvertebrate actin. Implications for the ATP hydrolytic mechamism. Proc Natl Sci U S A 100:5760–5765

    Article  CAS  Google Scholar 

  45. van Wijk E, Krieger E, Kemperman MH, De Leenheer EM, Huygen PL, Cremers CW, Cremers FP, Kremer H (2003) A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). J Med Genet 40:879–884

    Article  PubMed  CAS  Google Scholar 

  46. Yang T, Smith R (2000) A novel locus DFNA26 maps to chromosome 17q25 in two unrelated families with progressive autosomal dominant hearing loss. Am J Hum Genet 67(suppl 2):300

    Google Scholar 

  47. Zhu M, Yang T, Wei S, DeWan AT, Morell RJ, Elfenbein JL, Fisher RA, Leal SM, Smith RJ, Friderici KH (2003) Mutations in the gamma-actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26). Am J Hum Genet 73:1082–1091

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Moreno-Pelayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morín, M., Mayo, F., Moreno, F., Moreno-Pelayo, M.A. (2012). Actin Mutations and Deafness. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_9

Download citation

Publish with us

Policies and ethics