Skip to main content

Filamins and Disease

  • Chapter
  • First Online:
Cytoskeleton and Human Disease

Abstract

The filamins are a family of three homologous proteins, named for their filamentous structure, that were first identified for their actin cross-linking properties. All three isoforms adopt dimeric configurations within the cellular cytoskeleton and it is this structure, together with their N-terminal actin-binding domains, that facilitate their ability to cross-link actin fibrils into orthogonally oriented branched meshworks. Although first studied in the context of cancer, several Mendelian syndromes have now been characterized that are caused by mutations in all three genes encoding these proteins. The manifestations of some of these conditions are surprisingly restricted considering the widespread expression of these genes during development. Genetic data, cell biological approaches and biochemical studies indicate that mutations in all three genes confer gain or loss of function properties to filamins explaining some of the phenotypic diversity. Study of the phenotypic consequences of these mutations have revealed tissue-specific properties to filamins and contribute to the understanding of these proteins, not only in their role in cross-linking actin meshworks but also in scaffolding signal transduction cascades, maintaining focal adhesion integrity, mediating mechanosensation, regulating extracellular matrix composition and maintaining sarcomeric superstructure in muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartwig JH, Tyler J, Stossel TP (1980) Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments. J Cell Biol 87:841–848

    Article  PubMed  CAS  Google Scholar 

  2. Wang K (1977) Filamin, a new high-molecular-weight protein found in smooth muscle and nonmuscle cells. Purification and properties of chicken gizzard filamin. Biochemistry 16:1857–1865

    Article  PubMed  CAS  Google Scholar 

  3. Gorlin JB, Yamin R, Egan S et al (1990) Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol 111:1089–1105

    Article  PubMed  CAS  Google Scholar 

  4. McCoy AJ, Fucini P, Noegel AA, Stewart M (1999) Structural basis for dimerization of the Dictyostelium gelation factor (ABP120) rod. Nat Struct Biol 6:836–841

    Article  PubMed  CAS  Google Scholar 

  5. Takafuta T, Wu G, Murphy GF, Shapiro SS (1998) Human beta-filamin is a new protein that interacts with the cytoplasmic tail of glycoprotein Ibalpha. J Biol Chem 273:17531–17538

    Article  PubMed  CAS  Google Scholar 

  6. Maestrini E, Patrosso C, Mancini M et al (1993) Mapping of two genes encoding isoforms of the actin binding protein ABP-280, a dystrophin like protein, to Xq28 and to chromosome 7. Hum Mol Genet 2:761–766

    Article  PubMed  CAS  Google Scholar 

  7. Fucini P, Renner C, Herberhold C, Noegel AA, Holak TA (1997) The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold. Nat Struct Biol 4:223–230

    Article  PubMed  CAS  Google Scholar 

  8. Ithychanda SS, Hsu D, Li H et al (2009) Identification and characterization of multiple similar ligand-binding repeats in filamin: implication on filamin-mediated receptor clustering and cross-talk. J Biol Chem 284:35113–35121

    Article  PubMed  CAS  Google Scholar 

  9. Pudas R, Kiema TR, Butler PJ, Stewart M, Ylanne J (2005) Structural basis for vertebrate filamin dimerization. Structure (Camb) 13:111–119

    Article  CAS  Google Scholar 

  10. Sjekloca L, Pudas R, Sjoblom B et al (2007) Crystal structure of human filamin C domain 23 and small angle scattering model for filamin C 23-24 dimer. J Mol Biol 368:1011–1023

    Article  PubMed  CAS  Google Scholar 

  11. Seo MD, Seok SH, Im H et al (2009) Crystal structure of the dimerization domain of human filamin A. Proteins 75:258–263

    Article  PubMed  CAS  Google Scholar 

  12. Ferland RJ, Batiz LF, Neal J et al (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516

    Article  PubMed  CAS  Google Scholar 

  13. Krakow D, Robertson SP, King LM et al (2004) Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet 36:405–410

    Article  PubMed  CAS  Google Scholar 

  14. Norris RA, Moreno-Rodriguez R, Wessels A et al (2010) Expression of the familial cardiac valvular dystrophy gene, filamin-A, during heart morphogenesis. Dev Dyn 239:2118–2127

    Article  PubMed  CAS  Google Scholar 

  15. Zhou X, Tian F, Sandzen J et al (2007) Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development. Proc Natl Acad Sci U S A 104:3919–3924

    Article  PubMed  CAS  Google Scholar 

  16. Sheen VL, Feng Y, Graham D et al (2002) Filamin A and Filamin B are co-expressed within neurons during periods of neuronal migration and can physically interact. Hum Mol Genet 11:2845–2854

    Article  PubMed  CAS  Google Scholar 

  17. Goetsch SC, Martin CM, Embree LJ, Garry DJ (2005) Myogenic progenitor cells express filamin C in developing and regenerating skeletal muscle. Stem Cells Dev 14:181–187

    Article  PubMed  CAS  Google Scholar 

  18. Chiang W, Greaser ML (2000) Binding of filamin isoforms to myofibrils. J Muscle Res Cell Motil 21:321–333

    Article  PubMed  CAS  Google Scholar 

  19. van der Ven PF, Obermann WM, Lemke B et al (2000) Characterization of muscle filamin isoforms suggests a possible role of gamma-filamin/ABP-L in sarcomeric Z-disc formation. Cell Motil Cytoskeleton 45:149–162

    Article  PubMed  CAS  Google Scholar 

  20. Cunningham CC, Gorlin JB, Kwiatkowski DJ et al (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255:325–327

    Article  PubMed  CAS  Google Scholar 

  21. Hart AW, Morgan JE, Schneider J et al (2006) Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet 15:2457–2467

    Article  PubMed  CAS  Google Scholar 

  22. Baldassarre M, Razinia Z, Burande CF et al (2009) Filamins regulate cell spreading and initiation of cell migration. PloS One 4:e7830

    Google Scholar 

  23. Nakamura F, Stossel TP, Hartwig JH (2011) The filamins: Organizers of cell structure and function. Cell Adh Migr 5(2):160–169

    Article  PubMed  Google Scholar 

  24. Marti A, Luo Z, Cunningham C et al (1997) Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells. J Biol Chem 272:2620–2628

    Article  PubMed  CAS  Google Scholar 

  25. Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K (2001) Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem 276:17871–17877

    Article  PubMed  CAS  Google Scholar 

  26. Glogauer M, Arora P, Chou D et al (1998) The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J Biol Chem 273:1689–1698

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura F, Osborn TM, Hartemink CA, Hartwig JH, Stossel TP (2007) Structural basis of filamin A functions. J Cell Biol 179:1011–1025

    Article  PubMed  CAS  Google Scholar 

  28. Yoshida N, Ogata T, Tanabe K et al (2005) Filamin A-bound PEBP2beta/CBFbeta is retained in the cytoplasm and prevented from functioning as a partner of the Runx1 transcription factor. Mol Cell Biol 25:1003–1012

    Article  PubMed  CAS  Google Scholar 

  29. Liu G, Thomas L, Warren RA et al (1997) Cytoskeletal protein ABP-280 directs the intracellular trafficking of furin and modulates proprotein processing in the endocytic pathway. J Cell Biol 139:1719–1733

    Article  PubMed  CAS  Google Scholar 

  30. Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8:803–814

    Article  PubMed  CAS  Google Scholar 

  31. Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP (1999) The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci U S A 96:2122–2128

    Article  PubMed  CAS  Google Scholar 

  32. Bellanger JM, Astier C, Sardet C et al (2000) The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nat Cell Biol 2:888–892

    Article  PubMed  CAS  Google Scholar 

  33. Ohta Y, Hartwig JH (1995) Actin filament cross-linking by chicken gizzard filamin is regulated by phosphorylation in vitro. Biochemistry 34:6745–6754

    Article  PubMed  CAS  Google Scholar 

  34. Jay D, Garcia EJ, de la Luz Ibarra M (2004) In situ determination of a PKA phosphorylation site in the C-terminal region of filamin. Mol Cell Biochem 260:49–53

    Article  PubMed  CAS  Google Scholar 

  35. Vadlamudi RK, Li F, Adam L et al (2002) Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4:681–690

    Article  PubMed  CAS  Google Scholar 

  36. Woo MS, Ohta Y, Rabinovitz I, Stossel TP, Blenis J (2004) Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol Cell Biol 24:3025–3035

    Article  PubMed  CAS  Google Scholar 

  37. Heuze ML, Lamsoul I, Baldassarre M et al (2008) ASB2 targets filamins A and B to proteasomal degradation. Blood 112:5130–5140

    Article  PubMed  CAS  Google Scholar 

  38. Kesner BA, Ding F, Temple BR, Dokholyan NV (2010) N-terminal strands of filamin Ig domains act as a conformational switch under biological forces. Proteins 78:12–24

    Article  PubMed  CAS  Google Scholar 

  39. Lad Y, Kiema T, Jiang P et al (2007) Structure of three tandem filamin domains reveals auto-inhibition of ligand binding. EMBO J 26:3993–4004

    Article  PubMed  CAS  Google Scholar 

  40. Pentikainen U, Ylanne J (2009) The regulation mechanism for the auto-inhibition of binding of human filamin A to integrin. J Mol Biol 393:644–657

    Article  PubMed  Google Scholar 

  41. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  PubMed  CAS  Google Scholar 

  42. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  PubMed  CAS  Google Scholar 

  43. Kainulainen T, Pender A, D’Addario M et al (2002) Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. J Biol Chem 277:21998–22009

    Article  PubMed  CAS  Google Scholar 

  44. Gardel ML, Nakamura F, Hartwig JH et al (2006) Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci U S A 103:1762–1767

    Article  PubMed  CAS  Google Scholar 

  45. D’Addario M, Arora PD, Fan J et al (2001) Cytoprotection against mechanical forces delivered through beta 1 integrins requires induction of filamin A. J Biol Chem 276:31969–31977

    Article  PubMed  Google Scholar 

  46. Schwaiger I, Kardinal A, Schleicher M, Noegel AA, Rief M (2004) A mechanical unfolding intermediate in an actin-crosslinking protein. Nat Struct Mol Biol 11:81–85

    Article  PubMed  CAS  Google Scholar 

  47. Furuike S, Ito T, Yamazaki M (2001) Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett 498:72–75

    Article  PubMed  CAS  Google Scholar 

  48. Loo DT, Kanner SB, Aruffo A (1998) Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J Biol Chem 273:23304–23312

    CAS  Google Scholar 

  49. Lad Y, Jiang P, Ruskamo S et al (2008) Structural basis of the migfilin-filamin interaction and competition with integrin beta tails. J Biol Chem 283:35154–35163

    Article  PubMed  CAS  Google Scholar 

  50. Ithychanda SS, Das M, Ma YQ et al (2009) Migfilin, a molecular switch in regulation of integrin activation. J Biol Chem 284:4713–4722

    Article  PubMed  CAS  Google Scholar 

  51. Chen HS, Kolahi KS, Mofrad MR (2009) Phosphorylation facilitates the integrin binding of filamin under force. Biophys J 97:3095–3104

    Article  PubMed  CAS  Google Scholar 

  52. Kiema T, Lad Y, Jiang P et al (2006) The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 21:337–347

    Article  PubMed  CAS  Google Scholar 

  53. Calderwood DA, Huttenlocher A, Kiosses WB et al (2001) Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration. Nat Cell Biol 3:1060–1068

    Article  PubMed  CAS  Google Scholar 

  54. Robertson SP (2005) Filamin A: phenotypic diversity. Curr Opin Genet Dev 15:301–307

    Article  PubMed  CAS  Google Scholar 

  55. Fox JW, Lamperti ED, Eksioglu YZ et al (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21:1315–1325

    Article  PubMed  CAS  Google Scholar 

  56. Robertson SP, Twigg SR, Sutherland-Smith AJ et al (2003) Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet 33:487–491

    Article  PubMed  CAS  Google Scholar 

  57. Lu J, Sheen V (2005) Periventricular heterotopia. Epilepsy Behav 7:143–149

    Article  PubMed  Google Scholar 

  58. Chang BS, Ly J, Appignani B et al (2005) Reading impairment in the neuronal migration disorder of periventricular nodular heterotopia. Neurology 64:799–803

    Article  PubMed  CAS  Google Scholar 

  59. Parrini E, Ramazzotti A, Dobyns WB et al (2006) Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 129(7):1892–1906

    Article  PubMed  CAS  Google Scholar 

  60. Kakita A, Hayashi S, Moro F et al (2002) Bilateral periventricular nodular heterotopia due to filamin 1 gene mutation: widespread glomeruloid microvascular anomaly and dysplastic cytoarchitecture in the cerebral cortex. Acta Neuropathol (Berl) 104:649–657

    CAS  Google Scholar 

  61. Moro F, Carrozzo R, Veggiotti P et al (2002) Familial periventricular heterotopia: missense and distal truncating mutations of the FLN1 gene. Neurology 58:916–921

    Article  PubMed  CAS  Google Scholar 

  62. Sheen VL, Dixon PH, Fox JW et al (2001) Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet 10:1775–1783

    Article  PubMed  CAS  Google Scholar 

  63. Guerrini R, Mei D, Sisodiya S et al (2004) Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 63:51–56

    Article  PubMed  CAS  Google Scholar 

  64. Masurel-Paulet A, Haan E, Thompson EM et al (2010) Lung disease associated with periventricular nodular heterotopia and an FLNA mutation. Eur J Med Genet 54(1):25–28

    Article  PubMed  Google Scholar 

  65. Feng Y, Chen MH, Moskowitz IP et al (2006) Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci U S A 103:19836–19841

    Article  PubMed  CAS  Google Scholar 

  66. Sheen VL, Jansen A, Chen MH et al (2005) Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology 64:254–262

    Article  PubMed  CAS  Google Scholar 

  67. Guerrini R (2005) Genetic malformations of the cerebral cortex and epilepsy. Epilepsia 46 (Suppl 1):32–37

    Google Scholar 

  68. Shifrin Y, Arora PD, Ohta Y, Calderwood DA, McCulloch CA (2009) The role of FilGAP-filamin A interactions in mechanoprotection. Mol Biol Cell 20:1269–1279

    Article  PubMed  CAS  Google Scholar 

  69. Nakamura F, Heikkinen O, Pentikainen OT et al (2009) Molecular basis of filamin A-FilGAP interaction and its impairment in congenital disorders associated with filamin A mutations. PloS One 4:e4928

    Google Scholar 

  70. Williamson D, Pikovski I, Cranmer SL et al (2002) Interaction between platelet glycoprotein Ibalpha and filamin-1 is essential for glycoprotein Ib/IX receptor anchorage at high shear. J Biol Chem 277:2151–2159

    Article  PubMed  CAS  Google Scholar 

  71. Feng S, Christodoulides N, Kroll MH (1999) The glycoprotein Ib/IX complex regulates cell proliferation. Blood 93:4256–4263

    PubMed  CAS  Google Scholar 

  72. Nakamura F, Pudas R, Heikkinen O et al (2006) The structure of the GPIb-filamin A complex. Blood 107:1925–1932

    Article  PubMed  CAS  Google Scholar 

  73. Falet H, Pollitt AY, Begonja AJ et al (2010) A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function. J Exp Med 207:1967–1979

    Article  PubMed  CAS  Google Scholar 

  74. Auricchio A, Brancolini V, Casari G et al (1996) The locus for a novel syndromic form of neuronal intestinal pseudoobstruction maps to Xq28. Am J Hum Genet 58:743–748

    PubMed  CAS  Google Scholar 

  75. Gargiulo A, Auricchio R, Barone MV et al (2007) Filamin A is mutated in X-linked chronic idiopathic intestinal pseudo-obstruction with central nervous system involvement. Am J Hum Genet 80:751–758

    Article  PubMed  CAS  Google Scholar 

  76. Kapur RP, Robertson SP, Hannibal MC et al (2010) Diffuse abnormal layering of small intestinal smooth muscle is present in patients with FLNA mutations and x-linked intestinal pseudo-obstruction. Am J Surg Pathol 34:1528–1543

    Article  PubMed  Google Scholar 

  77. Robertson SP (2007) Otopalatodigital syndrome spectrum disorders: otopalatodigital syndrome types 1 and 2, frontometaphyseal dysplasia and Melnick-Needles syndrome. Eur J Hum Genet 15:3–9

    Article  PubMed  CAS  Google Scholar 

  78. Robertson SP (2004) Molecular pathology of filamin A: diverse phenotypes, many functions. Clin Dysmorphol 13:123–131

    Article  PubMed  CAS  Google Scholar 

  79. Kyndt F, Gueffet JP, Probst V et al (2007) Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation 115:40–49

    Article  PubMed  CAS  Google Scholar 

  80. Clark AR, Sawyer GM, Robertson SP, Sutherland-Smith AJ (2009) Skeletal dysplasias due to filamin A mutations result from a gain-of-function mechanism distinct from allelic neurological disorders. Hum Mol Genet 18:4791–4800

    Article  PubMed  CAS  Google Scholar 

  81. Nakamura F, Hartwig JH, Stossel TP, Szymanski PT (2005) Ca2 + and calmodulin regulate the binding of filamin A to actin filaments. J Biol Chem 280:32426–32433

    Article  PubMed  CAS  Google Scholar 

  82. Lorenzi M, Gimona M (2008) Synthetic actin-binding domains reveal compositional constraints for function. Int J Biochem Cell Biol 40:1806–1816

    Article  PubMed  CAS  Google Scholar 

  83. Kamioka H, Sugawara Y, Honjo T, Yamashiro T, Takano-Yamamoto T (2004) Terminal differentiation of osteoblasts to osteocytes is accompanied by dramatic changes in the distribution of actin-binding proteins. J Bone Miner Res 19:471–478

    Article  PubMed  CAS  Google Scholar 

  84. Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2008) Strain amplification and integrin based signaling in osteocytes. J Musculoskelet Neuronal Interact 8:332–334

    PubMed  CAS  Google Scholar 

  85. Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci U S A 104:15941–15946

    Article  PubMed  CAS  Google Scholar 

  86. Langer LO Jr., Gorlin RJ, Donnai D, Hamel BC, Clericuzio C (1994) Spondylocarpotarsal synostosis syndrome (with or without unilateral unsegmented bar). Am J Med Genet 51:1–8

    Article  PubMed  Google Scholar 

  87. Farrington-Rock C, Kirilova V, Dillard-Telm L et al (2008) Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome. Hum Mol Genet 17:631–641

    Article  PubMed  CAS  Google Scholar 

  88. Zheng L, Baek HJ, Karsenty G, Justice MJ (2007) Filamin B represses chondrocyte hypertrophy in a Runx2/Smad3-dependent manner. J Cell Biol 178:121–128

    Article  PubMed  CAS  Google Scholar 

  89. Lu J, Lian G, Lenkinski R et al (2007) Filamin B mutations cause chondrocyte defects in skeletal development. Hum Mol Genet 16:1661–1675

    Article  PubMed  CAS  Google Scholar 

  90. Sillence DO, Lachman RS, Jenkins T, Riccardi VM, Rimoin DL (1982) Spondylohumerofemoral hypoplasia (giant cell chondrodysplasia): a neonatally lethal short-limbed skeletal displasia. Am J Med Genet 13:7–14

    Article  PubMed  CAS  Google Scholar 

  91. Kley RA, Hellenbroich Y, van der Ven PF et al (2007) Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. Brain 130:3250–3264

    Article  PubMed  Google Scholar 

  92. Lowe T, Kley RA, van der Ven PF et al (2007) The pathomechanism of filaminopathy: altered biochemical properties explain the cellular phenotype of a protein aggregation myopathy. Hum Mol Genet 16:1351–1358

    Article  PubMed  Google Scholar 

  93. Kono S, Nishio T, Takahashi Y et al (2010) Dominant-negative effects of a novel mutation in the filamin myopathy. Neurology 75:547–554

    Article  PubMed  CAS  Google Scholar 

  94. Shatunov A, Olive M, Odgerel Z et al (2009) In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy. Eur J Hum Genet 17:656–663

    Article  PubMed  CAS  Google Scholar 

  95. Vorgerd M, van der Ven PF, Bruchertseifer V et al (2005) A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 77:297–304

    Article  PubMed  CAS  Google Scholar 

  96. Luan X, Hong D, Zhang W, Wang Z, Yuan Y (2010) A novel heterozygous deletion-insertion mutation (2695–2712 del/GTTTGT ins) in exon 18 of the filamin C gene causes filaminopathy in a large Chinese family. Neuromuscul Disord 20:390–396

    Article  PubMed  Google Scholar 

  97. Lin JF, Xu J, Tian HY et al (2007) Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer 121:2596–2605

    Article  PubMed  CAS  Google Scholar 

  98. Varambally S, Yu J, Laxman B et al (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8:393–406

    Article  PubMed  CAS  Google Scholar 

  99. Xu Y, Bismar TA, Su J et al (2010) Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 207:2421–2437

    Article  PubMed  CAS  Google Scholar 

  100. Sawyer GM, Clark AR, Robertson SP, Sutherland-Smith AJ (2009). Disease-associated substitutions in the filamin B actin binding domain confer enhanced actin binding affinity in the absence of major structural disturbance: Insights from the crystal structures of filamin B actin binding domains. J Mol Biol 390(5):1030–1047

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Robertson, S.P., Daniel, P.B. (2012). Filamins and Disease. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_7

Download citation

Publish with us

Policies and ethics