Skip to main content

The Actin Cytoskeleton and Membrane Organisation in T Lymphocytes

  • Chapter
  • First Online:

Abstract

The dynamics of the actin cytoskeleton are under the strong influence of signalling events at the membrane and membrane domains. In T cells, the importance of actin-membrane-interactions is critical in the processes of T cell activation and migration. If the coordination of actin and the T lymphocyte membrane are out of order, it can compromise the human immune system and lead to immunodeficiencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huppa JB, Davis MM (2003) T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3(12):973–983

    Article  PubMed  CAS  Google Scholar 

  2. Samelson LE (2002) Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol 20:371–394

    Article  PubMed  CAS  Google Scholar 

  3. Billadeau DD, Nolz JC, Gomez TS (2007) Regulation of T-cell activation by the cytoskeleton. Nat Rev Immunol 7(2):131–143

    Article  PubMed  CAS  Google Scholar 

  4. Bunnell SC et al (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158(7):1263–1275

    Article  PubMed  CAS  Google Scholar 

  5. Bunnell SC et al (2006) Persistence of cooperatively stabilized signaling clusters drives T-cell activation. Mol Cell Biol. 26(19):7155–7166

    Article  PubMed  CAS  Google Scholar 

  6. Grakoui A et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227

    Article  PubMed  CAS  Google Scholar 

  7. Monks CR et al (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86

    Article  PubMed  CAS  Google Scholar 

  8. Freiberg BA et al (2002) Staging and resetting T cell activation in SMACs. Nature Immunol 3(10):911–917

    Article  CAS  Google Scholar 

  9. Kupfer A, Swain SL, Singer SJ (1987) The specific direct interaction of helper T cells and antigen-presenting B cells. II. Reorientation of the microtubule organizing center and reorganization of the membrane-associated cytoskeleton inside the bound helper T cells. J Exp Med 165(6):1565–1580

    Article  PubMed  CAS  Google Scholar 

  10. Kaizuka Y et al (2007) Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc Natl Acad Sci U S A 104(51):20296–20301

    Article  PubMed  CAS  Google Scholar 

  11. Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202(8):1031–1036

    Article  PubMed  CAS  Google Scholar 

  12. Varma R et al (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25(1):117–127

    Article  PubMed  CAS  Google Scholar 

  13. Yokosuka T et al (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6(12):1253–1262

    Article  PubMed  CAS  Google Scholar 

  14. Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3(8):586–599

    Article  PubMed  CAS  Google Scholar 

  15. Sperling AI et al (1998) TCR signaling induces selective exclusion of CD43 from the T cell-antigen-presenting cell contact site. J Immunol 161(12):6459–6462

    PubMed  CAS  Google Scholar 

  16. Allenspach EJ et al (2001) ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15(5):739–750

    Article  PubMed  CAS  Google Scholar 

  17. Shaw AS (2001) FERMing Up the Synapse. Immunity 15(5):683–686

    Article  PubMed  CAS  Google Scholar 

  18. Patrussi L et al (2007) p52Shc is required for CXCR4-dependent signaling and chemotaxis in T cells. Blood 110(6):1730–1738

    Article  PubMed  CAS  Google Scholar 

  19. Krummel MF, Macara I (2006) Maintenance and modulation of T cell polarity. Nat Immunol 7(11):1143–1149

    Article  PubMed  CAS  Google Scholar 

  20. Molon B et al (2005) T cell costimulation by chemokine receptors. Nat Immunol 6(5):465–471

    Article  PubMed  CAS  Google Scholar 

  21. Ziegler E et al (2007) CCR7 signaling inhibits T cell proliferation. J Immunol 179(10):6485–6493

    PubMed  CAS  Google Scholar 

  22. Kumar A et al (2006) CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25(2):213–224

    Article  PubMed  CAS  Google Scholar 

  23. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47(7):1597–1598

    Article  PubMed  CAS  Google Scholar 

  24. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  PubMed  CAS  Google Scholar 

  25. Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda) 21:430–439

    Article  CAS  Google Scholar 

  26. del Pozo MA et al (2004) Integrins regulate Rac targeting by internalization of membrane domains. Science 303(5659):839–842

    Article  PubMed  CAS  Google Scholar 

  27. Gaus K et al (2005) Condensation of the plasma membrane at the site of T lymphocyte activation. J Cell Biol 171(1):121–131

    Article  PubMed  CAS  Google Scholar 

  28. Zech T et al (2009) Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J 28(5):466–476

    Article  PubMed  CAS  Google Scholar 

  29. Gaus K et al (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100(26):15554–15559

    Article  PubMed  CAS  Google Scholar 

  30. Gaus K, Zech T, Harder T (2006) Visualizing membrane microdomains by Laurdan 2-photon microscopy. Mol Membr Biol 23(1):41–48

    Article  PubMed  CAS  Google Scholar 

  31. Harder T et al (2007) Plasma membrane segregation during T cell activation: probing the order of domains. Curr Opin Immunol 19(4):470–475

    Article  PubMed  CAS  Google Scholar 

  32. Douglass AD, Vale R.D (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121(6):937–950

    Article  PubMed  CAS  Google Scholar 

  33. Villalba M et al (2001) Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J Cell Biol 155(3):331–338

    Article  PubMed  CAS  Google Scholar 

  34. Tavano R et al (2006) CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 8(11):1270–1276

    Article  PubMed  CAS  Google Scholar 

  35. Viola A, Gupta N (2007) Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nat Rev Immunol 7(11):889–896

    Article  PubMed  CAS  Google Scholar 

  36. Ochs HD, Thrasher AJ (2006) The Wiskott-Aldrich syndrome. J Allergy Clin Immunol 117(4):725–738 (quiz 739)

    Article  PubMed  CAS  Google Scholar 

  37. Kabouridis PS et al (2000) Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol 30(3):954–963

    Article  PubMed  CAS  Google Scholar 

  38. Manes S, Martinez AC (2004) Cholesterol domains regulate the actin cytoskeleton at the leading edge of moving cells. Trends Cell Biol 14(6):275–278

    Article  PubMed  CAS  Google Scholar 

  39. Pizzo P et al (2002) Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur J Immunol 32(11):3082–3091

    Article  PubMed  CAS  Google Scholar 

  40. Rentero C et al (2008) Functional implications of plasma membrane condensation for T cell activation. PLoS One 3(5):e2262

    Article  PubMed  CAS  Google Scholar 

  41. Gomez-Mouton C et al (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98(17):9642–9647

    Article  PubMed  CAS  Google Scholar 

  42. Posevitz-Fejfar A et al (2008) A displaced PAG enhances proximal signaling and SDF-1-induced T cell migration. Eur J Immunol 38(1):250–259

    Article  PubMed  CAS  Google Scholar 

  43. Zaman SN, Resek ME, Robbins SM (2008) Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line. J Leukoc Biol 84(4):1082–1091

    Article  PubMed  CAS  Google Scholar 

  44. Giri B et al (2007) CXCL12-induced partitioning of flotillin-1 with lipid rafts plays a role in CXCR4 function. Eur J Immunol 37(8):2104–2116

    Article  PubMed  CAS  Google Scholar 

  45. Manes S et al (2003) From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol 24(6):320–326

    Article  PubMed  CAS  Google Scholar 

  46. Nguyen DH et al (2005) Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement. Exp Cell Res 304(2):559–569

    Article  PubMed  CAS  Google Scholar 

  47. Gomez-Mouton C et al (2004) Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 164(5):759–768

    Article  PubMed  CAS  Google Scholar 

  48. Gri G et al (2004) The inner side of T cell lipid rafts. Immunol Lett 94(3):247–252

    Article  PubMed  CAS  Google Scholar 

  49. Gomez TS, Billadeau DD (2008) T cell activation and the cytoskeleton: you can’t have one without the other. Adv Immunol 97:1–64

    Article  PubMed  CAS  Google Scholar 

  50. Tskvitaria-Fuller I et al (2006) Specific patterns of Cdc42 activity are related to distinct elements of T cell polarization. J Immunol 177(3):1708–1720

    PubMed  CAS  Google Scholar 

  51. Krawczyk C, Penninger JM (2001) Molecular controls of antigen receptor clustering and autoimmunity. Trends Cell Biol 11(5):212–220

    Article  PubMed  CAS  Google Scholar 

  52. Villalba M et al (2002) Translocation of PKC [theta] in T cells is mediated by a nonconventional, PI3-K- and Vav-dependent pathway, but does not absolutely require phospholipase C. J Cell Biol 157(2):253–263

    Article  PubMed  CAS  Google Scholar 

  53. Bunnell SC et al (2001) Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14(3):315–329

    Article  PubMed  CAS  Google Scholar 

  54. Barda-Saad M et al (2005) Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat Immunol 6(1):80–89

    Article  PubMed  CAS  Google Scholar 

  55. Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. Embo J 18(3):501–511

    Article  PubMed  CAS  Google Scholar 

  56. Vicente-Manzanares M et al (2002) A role for the Rho-p160 Rho coiled-coil kinase axis in the chemokine stromal cell-derived factor-1alpha-induced lymphocyte actomyosin and microtubular organization and chemotaxis. J Immunol 168(1):400–410

    PubMed  CAS  Google Scholar 

  57. Vicente-Manzanares M et al (2005) Control of lymphocyte shape and the chemotactic response by the GTP exchange factor Vav. Blood 105(8):3026–3034

    Article  PubMed  CAS  Google Scholar 

  58. Ludford-Menting MJ et al (2005) A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22(6):737–748

    Article  PubMed  CAS  Google Scholar 

  59. Gerard A et al (2007) The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J Cell Biol 176(6):863–875

    Article  PubMed  CAS  Google Scholar 

  60. Lee JH et al (2004) Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J Cell Biol 167(2):327–337

    Article  PubMed  CAS  Google Scholar 

  61. Badour K, Zhang J, Siminovitch KA (2003) The Wiskott-Aldrich syndrome protein: forging the link between actin and cell activation. Immunol Rev 192:98–112

    Article  PubMed  CAS  Google Scholar 

  62. Paccani SR et al (2005) Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects. Blood 106(2):626–634

    Article  PubMed  CAS  Google Scholar 

  63. Holsinger LJ et al (1998) Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Current Biology 8(10):563–573

    Article  PubMed  CAS  Google Scholar 

  64. Tybulewicz VL (2005) Vav-family proteins in T-cell signalling. Curr Opin Immunol 17(3):267–274

    Article  PubMed  CAS  Google Scholar 

  65. Anton IM et al (2002) WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity 16(2):193–204

    Article  PubMed  CAS  Google Scholar 

  66. Dombroski D et al (2005) Kinase-independent functions for Itk in TCR-induced regulation of Vav and the actin cytoskeleton. J Immunol 174(3):1385–1392

    PubMed  CAS  Google Scholar 

  67. Woods ML et al (2001) A novel function for the Tec family tyrosine kinase Itk in activation of beta 1 integrins by the T-cell receptor. EMBO J 20(6):1232–1244

    Article  PubMed  CAS  Google Scholar 

  68. Fischer KD et al (1998) Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Current Biology 8(10):554–562 (S1-S3)

    Article  PubMed  CAS  Google Scholar 

  69. Gomez TS et al (2006) HS1 functions as an essential actin-regulatory adaptor protein at the immune synapse. Immunity 24(6):741–752

    Article  PubMed  CAS  Google Scholar 

  70. Wang H et al (2003) SKAP-55 regulates integrin adhesion and formation of T cell-APC conjugates. Nat Immunol 4(4):366–374

    Article  PubMed  CAS  Google Scholar 

  71. Griffiths EK et al (2001) Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 293(5538):2260–2263

    Article  PubMed  CAS  Google Scholar 

  72. Zipfel PA et al (2006) Role for the Abi/wave protein complex in T cell receptor-mediated proliferation and cytoskeletal remodeling. Curr Biol 16(1):35–46

    Article  PubMed  CAS  Google Scholar 

  73. Su IH et al (2005) Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell 121(3):425–436

    Article  PubMed  CAS  Google Scholar 

  74. Foger N et al (2006) Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science 313(5788):839–842

    Article  PubMed  CAS  Google Scholar 

  75. Han J et al (2005) HIP-55 is important for T-cell proliferation, cytokine production, and immune responses. Mol Cell Biol 25(16):6869–6878

    Article  PubMed  CAS  Google Scholar 

  76. Nolz JC et al (2006) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol 16(1):24–34

    Article  PubMed  CAS  Google Scholar 

  77. Gomez TS et al (2005) Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat Immunol 6(3):261–270

    Article  PubMed  CAS  Google Scholar 

  78. Round JL et al (2005) Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells. J Exp Med 201(3):419–430

    Article  PubMed  CAS  Google Scholar 

  79. Ludford-Menting MJ et al (2005) A Network of PDZ-Containing Proteins Regulates T Cell Polarity and Morphology during Migration and Immunological Synapse Formation. Immunity 22(6):737–748

    Article  PubMed  CAS  Google Scholar 

  80. Cooper MD, Chae HP, Lowman JT, Krivir W, Good RA (1968) The Wiskott-Aldrich syndrome. An immunologic deficiency disease involving the afferent limb of immunity. Am J Med 44:499–513

    Article  PubMed  CAS  Google Scholar 

  81. Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 79(5):(following 922)

    Google Scholar 

  82. Westerberg LS et al (2010) Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes. J Exp Med 207(6):1145–1152

    Article  PubMed  CAS  Google Scholar 

  83. Ismail AM et al (2009) The WAVE regulatory complex is inhibited. Nat Struct Mol Biol 16(5):561–563

    Article  PubMed  CAS  Google Scholar 

  84. Derivery E et al (2009) The Wave complex is intrinsically inactive. Cell Motil Cytoskeleton 66(10):777–790

    Article  PubMed  CAS  Google Scholar 

  85. Yamazaki D et al (2003) WAVE2 is required for directed cell migration and cardiovascular development. Nature 424(6947):452–456

    Article  PubMed  CAS  Google Scholar 

  86. Yan C et al (2003) WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J 22(14):3602–3612

    Article  PubMed  CAS  Google Scholar 

  87. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  PubMed  CAS  Google Scholar 

  88. Reynolds LF et al (2004) Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J Biol Chem 279(18):18239–18246

    Article  PubMed  CAS  Google Scholar 

  89. Sneller MC (2001) Common variable immunodeficiency. Am J Med Sci 321(1):42–48

    Article  PubMed  CAS  Google Scholar 

  90. Majolini MB et al (1997) Uncoupling of T-cell antigen receptor and downstream protein tyrosine kinases in common variable immunodeficiency. Clin Immunol Immunopathol 84(1):98–102

    Article  PubMed  CAS  Google Scholar 

  91. Boncristiano M et al (2000) Defective recruitment and activation of ZAP-70 in common variable immunodeficiency patients with T cell defects. Eur J Immunol 30(9):2632–2638

    Article  PubMed  CAS  Google Scholar 

  92. Saveliev A et al (2009) Function of the Nucleotide Exchange Activity of Vav1 in T Cell Development and Activation. Sci Signal 2(101):ra83

    Article  PubMed  Google Scholar 

  93. Cao Y et al (2002) Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line. EMBO J 21(18):4809–4819

    Article  PubMed  CAS  Google Scholar 

  94. Wulfing C et al (2000) The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc Natl Acad Sci U S A 97(18):10150–10155

    Article  PubMed  CAS  Google Scholar 

  95. Lutskiy MI et al (2007) WASP localizes to the membrane skeleton of platelets. Br J Haematol 139(1):98–105

    Article  PubMed  CAS  Google Scholar 

  96. Shcherbina A et al (2010) WASP plays a novel role in regulating platelet responses dependent on alphaIIbbeta3 integrin outside-in signalling. Br J Haematol 148(3):416–427

    Article  PubMed  CAS  Google Scholar 

  97. Rosenberg PS et al (2008) Neutrophil elastase mutations and risk of leukaemia in severe congenital neutropenia. Br J Haematol 140(2):210–213

    PubMed  CAS  Google Scholar 

  98. Xia J et al (2009) Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol 147(4):535–542

    Article  PubMed  CAS  Google Scholar 

  99. Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6(11):827–837

    Article  PubMed  CAS  Google Scholar 

  100. Sacks DB (2006) The role of scaffold proteins in MEK/ERK signalling. Biochem Soc Trans 34(Pt 5):833–836

    Article  PubMed  CAS  Google Scholar 

  101. Gokhale NA et al (2005) Phosphoinositide specificity of and mechanism of lipid domain formation by annexin A2-p11 heterotetramer. J Biol Chem 280(52):42831–42840

    Article  PubMed  CAS  Google Scholar 

  102. Hayes MJ et al (2004a) Annexin-actin interactions. Traffic 5(8):571–576

    Article  CAS  Google Scholar 

  103. Rescher U, Gerke V (2004) Annexins–unique membrane binding proteins with diverse functions. J Cell Sci 117(Pt 13):2631–2639

    Article  PubMed  CAS  Google Scholar 

  104. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6(6):449–461

    Article  PubMed  CAS  Google Scholar 

  105. Futter CE, White IJ (2007) Annexins and endocytosis. Traffic 8(8):951–958

    Article  PubMed  CAS  Google Scholar 

  106. Grewal T, Enrich C (2009) Annexins–modulators of EGF receptor signalling and trafficking. Cell Signal 21(6):847–858

    Article  PubMed  CAS  Google Scholar 

  107. Hayes MJ et al (2004b) Annexin 2 binding to phosphatidylinositol 4,5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J Biol Chem 279(14):14157–14164

    Article  CAS  Google Scholar 

  108. Harder T et al (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell 8(3):533–545

    PubMed  CAS  Google Scholar 

  109. Oliferenko S et al (1999) Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146(4):843–854

    Article  PubMed  CAS  Google Scholar 

  110. Chasserot-Golaz S et al (2005) Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-core vesicles. Mol Biol Cell 16(3):1108–1119

    Article  PubMed  CAS  Google Scholar 

  111. Lecat S et al (2000) Different properties of two isoforms of annexin XIII in MDCK cells. J Cell Sci 113 (Pt 14):2607–2618

    PubMed  CAS  Google Scholar 

  112. D’Acquisto F et al (2007) Annexin-1 modulates T-cell activation and differentiation. Blood 109(3):1095–1102

    Article  PubMed  CAS  Google Scholar 

  113. Clark DM et al (1991) Expression of annexin VI (p68, 67 kDa-calelectrin) in normal human tissues: evidence for developmental regulation in B- and T-lymphocytes. Histochemistry 96(5):405–412

    Article  PubMed  CAS  Google Scholar 

  114. Davies AA et al (1984) Nonidet P-40 extraction of lymphocyte plasma membrane. Characterization of the insoluble residue. Biochem J 219(1):301–308

    PubMed  CAS  Google Scholar 

  115. Owens RJ, Crumpton MJ (1984) Isolation and characterization of a novel 68,000-Mr Ca2+-binding protein of lymphocyte plasma membrane. Biochem J 219(1):309–316

    PubMed  CAS  Google Scholar 

  116. Owens RJ, Gallagher CJ, Crumpton MJ (1984) Cellular distribution of p68, a new calcium-binding protein from lymphocytes. Embo J 3(5):945–952

    PubMed  CAS  Google Scholar 

  117. Hayashi H et al (1989) Characterizations of two distinct Ca2+-dependent phospholipid-binding proteins of 68-kDa isolated from human placenta. J Biol Chem 264(29):17222–17230

    PubMed  CAS  Google Scholar 

  118. Hayashi H et al (1987) Isolation and characterization of three forms of 36-kDa Ca2+-dependent actin- and phospholipid-binding proteins from human placenta membrane. Biochem Biophys Res Commun 146(2):912–919

    Article  PubMed  CAS  Google Scholar 

  119. Hosoya H et al (1992) Ca(2+)-regulated actin and phospholipid binding protein (68 kD-protein) from bovine liver: identification as a homologue for annexin VI and intracellular localization. Cell Motil Cytoskeleton 22(3):200–210

    Article  PubMed  CAS  Google Scholar 

  120. Kobayashi R, Tashima Y (1990) Purification, biological properties and partial sequence analysis of 67-kDa calcimedin and its 34-kDa fragment from chicken gizzard. Eur J Biochem 188(2):447–453

    Article  PubMed  CAS  Google Scholar 

  121. Goldberg M et al (1991) Co-distribution of annexin VI and actin in secretory ameloblasts and odontoblasts of rat incisor. Cell Tissue Res 263(1):81–89

    Article  PubMed  CAS  Google Scholar 

  122. Locate S et al (2008) Annexin A6 at the cardiac myocyte sarcolemma–evidence for self-association and binding to actin. Cell Biol Int 32(11):1388–1396

    Article  PubMed  CAS  Google Scholar 

  123. Babiychuk EB, Draeger A (2000) Annexins in cell membrane dynamics. Ca(2 +)-regulated association of lipid microdomains. J Cell Biol 150(5):1113–1124

    Article  PubMed  CAS  Google Scholar 

  124. Babiychuk EB, Draeger A (2006) Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem J 397(3):407–416

    Article  PubMed  CAS  Google Scholar 

  125. Orito A et al (2001) Calcium-dependent association of annexin VI, protein kinase C alpha, and neurocalcin alpha on the raft fraction derived from the synaptic plasma membrane of rat brain. J Neurosci Res 64(3):235–241

    Article  PubMed  CAS  Google Scholar 

  126. Pol A et al (1999) The “early-sorting” endocytic compartment of rat hepatocytes is involved in the intracellular pathway of caveolin-1 (VIP-21). Hepatology 29(6):1848–1857

    Article  PubMed  CAS  Google Scholar 

  127. de Diego I et al (2002) Cholesterol modulates the membrane binding and intracellular distribution of annexin 6. J Biol Chem 277(35):32187–32194

    Article  PubMed  CAS  Google Scholar 

  128. te Vruchte D et al (2004) Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport. J Biol Chem 279(25):26167–26175

    Article  CAS  Google Scholar 

  129. Grewal T et al (2010) Annexin A6-regulator of the EGFR/Ras signalling pathway and cholesterol homeostasis. Int J Biochem Cell Biol 42(5):580-584

    Article  PubMed  CAS  Google Scholar 

  130. Monastyrskaya K et al (2009) Plasma membrane-associated annexin A6 reduces Ca2+ entry by stabilizing the cortical actin cytoskeleton. J Biol Chem 284(25):17227–17242

    Article  PubMed  CAS  Google Scholar 

  131. Hall PA, Russell SE (2004) The pathobiology of the septin gene family. J Pathol 204(4):489–505

    Article  PubMed  CAS  Google Scholar 

  132. Kinoshita M et al (1997) Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev 11(12):1535–1547

    Article  PubMed  CAS  Google Scholar 

  133. Nagata K et al (2003) Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem 278(20):18538–18543

    Article  PubMed  CAS  Google Scholar 

  134. Surka MC, Tsang CW, Trimble WS (2002) The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 13(10):3532–3545

    Article  PubMed  CAS  Google Scholar 

  135. Zhang J et al (1999) Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol 9(24):1458–1467

    Article  PubMed  CAS  Google Scholar 

  136. Tooley AJ et al (2009) Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol 11(1):17–26

    Article  PubMed  CAS  Google Scholar 

  137. Hall PA et al (2005) Expression profiling the human septin gene family. J Pathol 206(3):269–278

    Article  PubMed  CAS  Google Scholar 

  138. Russell SEH, Hall PA (2005) Do septins have a role in cancer? Br J Cancer 93(5):499–503

    Article  PubMed  CAS  Google Scholar 

  139. Nottenburg C, Michael Gallatin W, St. John T (1990) Lymphocyte HEV adhesion variants differ in the expression of multiple gene sequences. Gene 95(2):279–284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Gaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cornely, R., Grewal, T., Gaus, K. (2012). The Actin Cytoskeleton and Membrane Organisation in T Lymphocytes. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_5

Download citation

Publish with us

Policies and ethics