Skip to main content

Posttranslational Modifications of Tubulin

  • Chapter
  • First Online:

Abstract

Recent studies have highlighted the potential importance of posttranslational modifications of tubulin in dictating response to antitumor drugs and disease progression. These modifications include glutamylation, glycylation, phosphorylation, acetylation, and tyrosination. Some of the tubulin-modifying enzymes have been identified but the functional consequences of the posttranslational modifications remain largely unknown. In this chapter, we review the posttranslational modifications of tubulin and current knowledge of the role these alterations may play in human disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Verdier-Pinard P et al (2009) Tubulin proteomics: towards breaking the code. Anal Biochem 384(2):197–206

    Article  PubMed  CAS  Google Scholar 

  2. Khodiyar VK et al (2007) A revised nomenclature for the human and rodent alpha-tubulin gene family. Genomics 90(2):285–289

    Article  PubMed  CAS  Google Scholar 

  3. Panda D et al (1994) Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA 91(24):11358–11362

    Article  PubMed  CAS  Google Scholar 

  4. Derry WB et al (1997) Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry 36(12):3554–3562

    Article  PubMed  CAS  Google Scholar 

  5. Joe PA, Banerjee A, Luduena RF (2008) The roles of cys124 and ser239 in the functional properties of human betaIII tubulin. Cell Motil Cytoskeleton 65(6):476–486

    Article  PubMed  CAS  Google Scholar 

  6. Sullivan KF, Cleveland DW (1986) Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci USA 83(12):4327–4331

    Article  PubMed  CAS  Google Scholar 

  7. Wloga D, Gaertig J (2010) Post-translational modifications of microtubules. J Cell Sci 123(Pt 20):3447–3455

    Article  PubMed  CAS  Google Scholar 

  8. Banerjee A (2002) Coordination of posttranslational modifications of bovine brain alpha-tubulin. Polyglycylation of delta2 tubulin. J Biol Chem 277(48):46140–46144

    Article  PubMed  CAS  Google Scholar 

  9. Fukushima N et al (2009) Post-translational modifications of tubulin in the nervous system. J Neurochem 109(3):683–693

    Article  PubMed  CAS  Google Scholar 

  10. Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33(8):362–372

    Article  PubMed  CAS  Google Scholar 

  11. Luduena RF, Banerjee A (2008) The post-translational modifications of tubulin. In: Fojo T (ed) Cancer drug discovery and development: the role of microtubles in cell biology, neurobiology, and oncology. Humana Press, New Jersey, pp 105–121

    Google Scholar 

  12. Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  PubMed  CAS  Google Scholar 

  13. Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6(17):2152–2160

    Article  PubMed  CAS  Google Scholar 

  14. Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4(12):938–947

    Article  PubMed  CAS  Google Scholar 

  15. Kalinina E et al (2007) A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J 21(3):836–850

    Article  PubMed  CAS  Google Scholar 

  16. Argarana CE, Barra HS, Caputto R (1978) Release of [14C] tyrosine from tubulinyl-[14C] tyrosine by brain extract. Separation of a carboxypeptidase from tubulin-tyrosine ligase. Mol Cell Biochem 19(1):17–21

    Article  PubMed  CAS  Google Scholar 

  17. Bulinski JC, Gundersen GG (1991) Stabilization of post-translational modification of microtubules during cellular morphogenesis. Bioessays 13(6):285–293

    Article  PubMed  CAS  Google Scholar 

  18. Barra HS, Arce CA, Argarana CE (1988) Posttranslational tyrosination/detyrosination of tubulin. Mol Neurobiol 2(2):133–153

    Article  PubMed  CAS  Google Scholar 

  19. Ersfeld K et al (1993) Characterization of the tubulin-tyrosine ligase. J Cell Biol 120(3):725–732

    Article  PubMed  CAS  Google Scholar 

  20. Gundersen GG, Kalnoski MH, Bulinski JC (1984) Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell 38(3):779–789

    Article  PubMed  CAS  Google Scholar 

  21. Webster DR et al (1987) Differential turnover of tyrosinated and detyrosinated microtubules. Proc Natl Acad Sci USA 84(24):9040–9044

    Article  PubMed  CAS  Google Scholar 

  22. Gundersen GG, Khawaja S, Bulinski JC (1989) Generation of a stable, posttranslationally modified microtubule array is an early event in myogenic differentiation. J Cell Biol 109(5):2275–2288

    Article  PubMed  CAS  Google Scholar 

  23. Schulze E, Kirschner M (1987) Dynamic and stable populations of microtubules in cells. J Cell Biol 104(2):277–288

    Article  PubMed  CAS  Google Scholar 

  24. Lafanechere L et al (1998) Suppression of tubulin tyrosine ligase during tumor growth. J Cell Sci 111(Pt 2):171–181

    PubMed  CAS  Google Scholar 

  25. Mialhe A et al (2001) Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 61(13):5024–5027

    PubMed  CAS  Google Scholar 

  26. Soucek K et al (2006) Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. Prostate 66(9):954–965

    Article  PubMed  CAS  Google Scholar 

  27. Kato C et al (2004) Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int J Cancer 112(3):365–375

    Article  PubMed  CAS  Google Scholar 

  28. Lafanechere L, Job D (2000) The third tubulin pool. Neurochem Res 25(1):11–18

    Article  PubMed  CAS  Google Scholar 

  29. Paturle-Lafanechere L et al (1991) Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 30(43):10523–10528

    Article  PubMed  CAS  Google Scholar 

  30. Paturle-Lafanechere L et al (1994) Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 107(Pt 6):1529–1543

    PubMed  CAS  Google Scholar 

  31. Geuens G et al (1986) Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells. J Cell Biol 103(5):1883–1893

    Article  PubMed  CAS  Google Scholar 

  32. Bre MH et al (1991) Cellular interactions and tubulin detyrosination in fibroblastic and epithelial cells. Biol Cell 71(1–2):149–160

    Article  PubMed  CAS  Google Scholar 

  33. Orr GA et al (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22(47):7280–7295

    Article  PubMed  CAS  Google Scholar 

  34. Rogowski K et al (2009) Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137(6):1076–1087

    Article  PubMed  CAS  Google Scholar 

  35. Redeker V et al (1994) Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science 266(5191):1688–1691

    Article  PubMed  CAS  Google Scholar 

  36. Bre MH et al (1996) Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J Cell Sci 109(Pt 4):727–738

    PubMed  CAS  Google Scholar 

  37. Bobinnec Y et al (1998) Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil Cytoskeleton 39(3):223–232

    Article  PubMed  CAS  Google Scholar 

  38. Wolff A et al (1992) Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335. Eur J Cell Biol 59(2):425–432

    PubMed  CAS  Google Scholar 

  39. Regnard C et al (1999) Tubulin polyglutamylase: isozymic variants and regulation during the cell cycle in HeLa cells. J Cell Sci 112(Pt 23):4281–4289

    PubMed  CAS  Google Scholar 

  40. Edde B et al (1990) Posttranslational glutamylation of alpha-tubulin. Science 247(4938):83–85

    Article  PubMed  CAS  Google Scholar 

  41. Redeker V, Rossier J, Frankfurter A (1998) Posttranslational modifications of the C-terminus of alpha-tubulin in adult rat brain: alpha 4 is glutamylated at two residues. Biochemistry 37(42):14838–14844

    Article  PubMed  CAS  Google Scholar 

  42. Ikegami K et al (2006) TTLL7 is a mammalian beta-tubulin polyglutamylase required for growth of MAP2-positive neurites. J Biol Chem 281(41):30707–30716

    Article  PubMed  CAS  Google Scholar 

  43. Ikegami K, Setou M (2009) TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett 583(12):1957–1963

    Article  PubMed  CAS  Google Scholar 

  44. Janke C et al (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308(5729):1758–1762

    Article  PubMed  CAS  Google Scholar 

  45. Kimura Y et al (2010) Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J Biol Chem 285(30):22936–22941

    Article  PubMed  CAS  Google Scholar 

  46. Rogowski K et al (2010) A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143(4):564–578

    Article  PubMed  CAS  Google Scholar 

  47. Abal M, Keryer G, Bornens M (2005) Centrioles resist forces applied on centrosomes during G2/M transition. Biol Cell 97(6):425–434

    Article  PubMed  CAS  Google Scholar 

  48. Ikegami K et al (2007) Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci USA 104(9):3213–3218

    Article  PubMed  CAS  Google Scholar 

  49. Lacroix B et al (2010) Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol 189(6):945–954

    Article  PubMed  CAS  Google Scholar 

  50. Boucher D et al (1994) Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. Biochemistry 33(41):12471–12477

    Article  PubMed  CAS  Google Scholar 

  51. Pusztai L et al (2009) Evaluation of microtubule-associated protein-Tau expression as a prognostic and predictive marker in the NSABP-B 28 randomized clinical trial. J Clin Oncol 27(26):4287–4292

    Article  PubMed  CAS  Google Scholar 

  52. Spicakova T et al (2010) Expression and silencing of the microtubule-associated protein Tau in breast cancer cells. Mol Cancer Ther 9(11):2970–2981

    Article  PubMed  CAS  Google Scholar 

  53. Andre F et al (2007) Microtubule-associated protein-tau is a bifunctional predictor of endocrine sensitivity and chemotherapy resistance in estrogen receptor-positive breast cancer. Clin Cancer Res 13(7):2061–2067

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka S et al (2009) Tau expression and efficacy of paclitaxel treatment in metastatic breast cancer. Cancer Chemother Pharmacol 64(2):341–346

    Article  PubMed  CAS  Google Scholar 

  55. Bonnet C et al (2001) Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem 276(16):12839–12848

    Article  PubMed  CAS  Google Scholar 

  56. Larcher JC et al (1996) Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J Biol Chem 271(36):22117–22124

    Article  PubMed  CAS  Google Scholar 

  57. Piperno G, Fuller MT (1985) Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol 101(6):2085–2094

    Article  PubMed  CAS  Google Scholar 

  58. Hubbert C et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458

    Article  PubMed  CAS  Google Scholar 

  59. Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104(2):289–302

    Article  PubMed  CAS  Google Scholar 

  60. Shahabi S et al (2010) Epothilone B enhances surface EpCAM expression in ovarian cancer Hey cells. Gynecol Oncol 119(2):345–350

    Article  PubMed  CAS  Google Scholar 

  61. Akella JS et al (2010) MEC17 is an alpha-tubulin acetyltransferase. Nature 467(7312):218–222

    Article  PubMed  CAS  Google Scholar 

  62. Haggarty SJ et al (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 100(8):4389–4394

    Article  PubMed  CAS  Google Scholar 

  63. Matsuyama A et al (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21(24):6820–6831

    Article  PubMed  CAS  Google Scholar 

  64. Zhang Y et al (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22(5):1168–1179

    Article  PubMed  CAS  Google Scholar 

  65. North BJ et al (2003) The human Sir2 ortholog, SirT2, is an NAD + -dependent tubulin deacetylase. Mol Cell 11(2):437–444

    Article  PubMed  CAS  Google Scholar 

  66. Pandithage R et al (2008) The regulation of SirT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol 180(5):915–929

    Article  PubMed  CAS  Google Scholar 

  67. Nahhas F et al (2007) Mutations in SirT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin. Mol Cell Biochem 303(1–2):221–230

    Article  PubMed  CAS  Google Scholar 

  68. Zhang Z et al (2004) HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 10(20):6962–6968

    Article  PubMed  CAS  Google Scholar 

  69. Saji S et al (2005) Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 24(28):4531–4539

    Article  PubMed  CAS  Google Scholar 

  70. Drummond DC et al (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    Article  PubMed  CAS  Google Scholar 

  71. Suzuki J et al (2009) Protein acetylation and histone deacetylase expression associated with malignant breast cancer progression. Clin Cancer Res 15(9):3163–3171

    Article  PubMed  CAS  Google Scholar 

  72. Caron JM (1997) Posttranslational modification of tubulin by palmitoylation: I. In vivo and cell-free studies. Mol Biol Cell 8(4):621–636

    PubMed  CAS  Google Scholar 

  73. Zambito AM, Wolff J (1997) Palmitoylation of tubulin. Biochem Biophys Res Commun 239(3):650–654

    Article  PubMed  CAS  Google Scholar 

  74. Ozols J, Caron JM (1997) Posttranslational modification of tubulin by palmitoylation: II. Identification of sites of palmitoylation. Mol Biol Cell 8(4):637–645

    CAS  Google Scholar 

  75. Zhao Z et al (2010) Acyl-biotinyl exchange chemistry and mass spectrometry-based analysis of palmitoylation sites of in vitro palmitoylated rat brain tubulin. Protein J 29(8):531–537

    Article  PubMed  CAS  Google Scholar 

  76. Wolff J et al (2000) Autopalmitoylation of tubulin. Protein Sci 9(7):1357–1364

    Article  PubMed  CAS  Google Scholar 

  77. Wolff J (2009) Plasma membrane tubulin. Biochem Biophys Acta 1788(7):1415–1433

    Article  PubMed  CAS  Google Scholar 

  78. Caron JM et al (2001) Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin. Mol Biol Cell 12(9):2672–2687

    PubMed  CAS  Google Scholar 

  79. Caron JM, Herwood M (2007) Vinblastine, a chemotherapeutic drug, inhibits palmitoylation of tubulin in human leukemic lymphocytes. Chemotherapy 53(1):51–58

    Article  PubMed  CAS  Google Scholar 

  80. Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23(8):3316–3324

    PubMed  CAS  Google Scholar 

  81. Yang F et al (2005) Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem 280(17):17154–17162

    Article  PubMed  CAS  Google Scholar 

  82. Liu Y et al (2002) The UCHL1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111(2):209–218

    Article  PubMed  CAS  Google Scholar 

  83. Bheda A et al (2010) Ubiquitin editing enzyme UCHL1 and microtubule dynamics: implication in mitosis. Cell Cycle 9(5):980–994

    Article  PubMed  CAS  Google Scholar 

  84. Tezel E et al (2000) PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res 6(12):4764–4767

    PubMed  CAS  Google Scholar 

  85. Hibi K et al (1999) PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. Am J Pathol 155(3):711–715

    Article  PubMed  CAS  Google Scholar 

  86. Miyoshi Y et al (2006) High expression of ubiquitin carboxy-terminal hydrolase-L1 and -L3 mRNA predicts early recurrence in patients with invasive breast cancer. Cancer Sci 97(6):523–529

    Article  PubMed  CAS  Google Scholar 

  87. Betarbet R, Sherer TB, Greenamyre JT (2005) Ubiquitin-proteasome system and Parkinson’s diseases. Exp Neurol 191(Suppl 1):17–27

    Article  CAS  Google Scholar 

  88. Leroy E et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395(6701):451–452

    Article  PubMed  CAS  Google Scholar 

  89. Kabuta T et al (2008) Aberrant molecular properties shared by familial Parkinson’s disease-associated mutant UCH-L1 and carbonyl-modified UchL1. Hum Mol Genet 17(10):1482–1496

    Article  PubMed  CAS  Google Scholar 

  90. Miki Y et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182):66–71

    Article  PubMed  CAS  Google Scholar 

  91. Starita LM et al (2004) BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 24(19):8457–8466

    Article  PubMed  CAS  Google Scholar 

  92. Starita LM, Parvin JD (2006) Substrates of the BRCA1-dependent ubiquitin ligase. Cancer Biol Ther 5(2):137–141

    Article  PubMed  CAS  Google Scholar 

  93. Parvin JD (2009) The BRCA1-dependent ubiquitin ligase, gamma-tubulin, and centrosomes. Environ Mol Mutagen 50(8):649–653

    Article  PubMed  CAS  Google Scholar 

  94. Sankaran S et al (2005) Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol Cell Biol 25(19):8656–8668

    Article  PubMed  CAS  Google Scholar 

  95. Sankaran S et al (2007) BRCA1 regulates gamma-tubulin binding to centrosomes. Cancer Biol Ther 6(12):1853–1857

    Article  PubMed  CAS  Google Scholar 

  96. Fanarraga ML, Avila J, Zabala JC (1999) Expression of unphosphorylated class III beta-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation. Eur J Neurosci 11(2):517–527

    Article  PubMed  CAS  Google Scholar 

  97. Goodman DB et al (1970) Cyclic adenosine 3’:5’-monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc Natl Acad Sci USA 67(2):652–659

    Article  PubMed  CAS  Google Scholar 

  98. Eipper BA (1972) Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate. Proc Natl Acad Sci USA 69(8):2283–2287

    Article  PubMed  CAS  Google Scholar 

  99. Gard DL, Kirschner MW (1985) A polymer-dependent increase in phosphorylation of beta-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J Cell Biol 100(3):764–774

    Article  PubMed  CAS  Google Scholar 

  100. Luduena RF, Zimmermann HP, Little M (1988) Identification of the phosphorylated beta-tubulin isotype in differentiated neuroblastoma cells. FEBS Lett 230(1–2):142–146

    Article  PubMed  CAS  Google Scholar 

  101. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204

    Article  PubMed  CAS  Google Scholar 

  102. Kavallaris M et al (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100(5):1282–1293

    Article  PubMed  CAS  Google Scholar 

  103. Sloboda RD et al (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci USA 72(1):177–181

    Article  PubMed  CAS  Google Scholar 

  104. Serrano L et al (1987) Tubulin phosphorylation by casein kinase II is similar to that found in vivo. J Cell Biol 105(4):1731–1739

    Article  PubMed  CAS  Google Scholar 

  105. Fourest-Lieuvin A et al (2006) Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol Biol Cell 17(3):1041–1050

    Article  PubMed  CAS  Google Scholar 

  106. Abeyweera TP, Chen X, Rotenberg SA (2009) Phosphorylation of alpha6-tubulin by protein kinase Calpha activates motility of human breast cells. J Biol Chem 284(26):17648–17656

    Article  PubMed  CAS  Google Scholar 

  107. Faruki S, Geahlen RL, Asai DJ (2000) Syk-dependent phosphorylation of microtubules in activated B-lymphocytes. J Cell Sci 113(Pt 14):2557–2565

    PubMed  CAS  Google Scholar 

  108. Fernandez JA et al (1999) Phosphorylation- and activation-independent association of the tyrosine kinase Syk and the tyrosine kinase substrates Cbl and Vav with tubulin in B-cells. J Biol Chem 274(3):1401–1406

    Article  PubMed  CAS  Google Scholar 

  109. Peters JD et al (1996) Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates alpha-tubulin on tyrosine. J Biol Chem 271(9):4755–4762

    Article  PubMed  CAS  Google Scholar 

  110. Mollinedo F, Gajate C (2003) Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8(5):413–450

    Article  PubMed  CAS  Google Scholar 

  111. Koivunen J, Aaltonen V, Peltonen J (2006) Protein kinase C (PKC) family in cancer progression. Cancer Lett 235(1):1–10

    Article  PubMed  CAS  Google Scholar 

  112. Abeyweera TP, Rotenberg SA (2007) Design and characterization of a traceable protein kinase Calpha. Biochemistry 46(9):2364–2370

    Article  PubMed  CAS  Google Scholar 

  113. Miller LM et al (2008) Increased levels of a unique post-translationally modified betalVb-tubulin isotype in liver cancer. Biochemistry 47(28):7572–7582

    Article  PubMed  CAS  Google Scholar 

  114. Morrissette NS, Sibley LD (2002) Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 66(1):21–38 (table of contents)

    Article  PubMed  Google Scholar 

  115. Cicchillitti L et al (2008) Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol Cancer Ther 7(7):2070–2079

    Article  PubMed  CAS  Google Scholar 

  116. Rosas-Acosta G et al (2005) Proteins of the PIAS family enhance the sumoylation of the papillomavirus E1 protein. Virology 331(1):190–203

    Article  PubMed  CAS  Google Scholar 

  117. Wong CC et al (2007) Global analysis of posttranslational protein arginylation. PLoS Biol 5(10):e258

    Article  PubMed  Google Scholar 

  118. Ji S et al (2011) O-GlcNAcylation of tubulin inhibits its polymerization. Amino acids 40(3):809–818

    Article  PubMed  CAS  Google Scholar 

  119. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643

    Article  PubMed  CAS  Google Scholar 

  120. Schulze E, Kirschner M (1986) Microtubule dynamics in interphase cells. J Cell Biol 102(3):1020–1031

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Band Horwitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chao, S.K., Yang, CP.H., Horwitz, S. (2012). Posttranslational Modifications of Tubulin. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_13

Download citation

Publish with us

Policies and ethics