Skip to main content

Pain and Temperature

  • Chapter
  • First Online:
Noback's Human Nervous System, Seventh Edition

Abstract

Our perception of the external world, state of attentiveness, assessment of body image, and regulation of movements are all dependent upon input from sensory systems. The sensory receptors that respond to a particular physical property or modality (e.g., temperature), together with tracts and nuclei that transmit this information to higher levels of the central nervous system (CNS), are referred to as a somatosensory system. There are four major general somatic modalities—the sensations of pain (signaling tissue damage or chemical irritation), temperature (warmth or cold), touch, (for recognition of size, shape, and texture), and proprioception (sense of static position and movements of the limbs, body, and head) (see also Chap. 10). Somatosensory receptors are located in the skin, muscles, joints, and viscera, a distribution that makes this system the largest and most varied of the sensory systems. Although primarily sensory, this system is also of importance in the control of coordinated movements by providing appropriate feedback to the somatic motor system about joint position, muscle tension, velocity of muscular contractions, and contact of the body with external surfaces (Chaps. 8 and 11). Sensations occur when stimuli interact with receptors (sensors). Sensory information then is transmitted cephalically as patterns of action potentials by individual neurons and by assemblies of neurons acting in consort. All sensory systems, regardless of modality, transmit information pertaining to the intensity, duration, and location of the stimuli that activate them. Every general sensory system processes input sequentially through: (1) primary afferent fibers, (2) relay nuclei located in the spinal cord, brainstem, and thalamus, (3) cerebral cortex. Each processing nucleus not only consolidates inputs from adjacent receptors but also integrates signals from inhibitory neurons and descending projections to transform and enhance the sensory information (Fig. 3.13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Readings

  • Andrew D, Craig AD. 2001. Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nature Neurosci. 4:72–77.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI. 1999. Distinct neurochemical features of acute and persistent pain. Proc Natl Acad Sci USA. 96:7739–7743.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D. 2009. Cellular and molecular mechanisms of pain. Cell. 139:267–284.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Woolf CJ. 1999. Pain. Curr Biol. 9: R429–R431.

    Article  PubMed  CAS  Google Scholar 

  • Beecher H. 1944. Pain in man wounded in battle. Ann Surg. 23:96–105.

    Google Scholar 

  • Beggs J, Jordan S, Ericson AC, Blomqvist A, Craig AD. 2003. Synaptology of trigemino- and spinothalamic lamina I terminations in the posterior ventral medial nucleus of the macaque. J Comp Neurol. 459:334–354.

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist A, Zhang ET, Craig AD. 2000. Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain. 123(Pt. 3):601–619.

    Article  PubMed  Google Scholar 

  • Craig AD. 2003. Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci. 26:1–30.

    Google Scholar 

  • Craig AD, Dostrovsky JO. 1999. Medulla to thalamus. In Wall PD, Melzack R, editors. Textbook of pain. New York: Churchill Livingston: 183–214.

    Google Scholar 

  • Craig AD, Bushnell MC, Zhang ET, Blomqvist A. 1994. A thalamic nucleus specific for pain and temperature sensation. Nature. 372:770–773.

    Article  PubMed  CAS  Google Scholar 

  • Dubner R, Gold M. 1999. The neurobiology of pain. Proc Natl Acad Sci USA. 96:7627–7630.

    Article  PubMed  CAS  Google Scholar 

  • Fields HL. 2000. Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res. 122:245–253.

    Article  PubMed  CAS  Google Scholar 

  • Iggo A. 1985. Sensory receptors in the skin of mammals and their sensory functions. Rev Neurol (Paris). 141:599–613.

    CAS  Google Scholar 

  • Ito S, Craig AD. 2003. Vagal input to lateral area 3a in cat cortex. J Neurophysiol. 90:143–154.

    Article  PubMed  Google Scholar 

  • Julius D, Basbaum AI. 2001. Molecular mechanisms of nociception. Nature.413:203–210.

    Google Scholar 

  • Light AR, Perl ER. 2003. Unmyelinated afferent fibers are not only for pain anymore. J Comp Neurol.461:137–139.

    Google Scholar 

  • Loeser JD, Bonica, JJ, eds. 2001. Bonica’s Management of Pain. 3 rd ed. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • McMahon S, Koltzenburg M. 2005. Wall and Melzack’s Textbook of Pain. 5th ed. New York: Churchill Livingstone.

    Google Scholar 

  • Melzack R. 1992. Phantom limbs. Sci Am 266:120–126.

    Article  PubMed  CAS  Google Scholar 

  • Melzack R. 2001. Pain and the neuromatrix in the brain. J Dent Educ. 65:1378–1382.

    PubMed  CAS  Google Scholar 

  • Mitchell JM, Basbaum AI, Fields HL. 2000. A locus and mechanism of action for associative morphine tolerance. Nature Neurosci. 3:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Potrebic S, Ahn AH, Skinner K, Fields HL, Basbaum AI. 2003. Peptidergic nociceptors of both trigeminal and dorsal root ganglia express serotonin 1D receptors: implications for the selective antimigraine action of triptans. J Neurosci. 23:10988–10997.

    Google Scholar 

  • Price DD, Greenspan JD, Dubner R. 2003. Neurons involved in the exteroceptive function of pain. Pain. 106:215–219.

    Article  PubMed  Google Scholar 

  • Saab CY, Willis WD. 2001. Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp. Brain Res. 140:122126.

    Google Scholar 

  • Saab CY, Willis WD. 2003. The cerebellum: organization, functions and its role in nociception. Brain Res Rev. 42:85–95.

    Article  PubMed  Google Scholar 

  • Wall PD, Melzack R. 1999. Textbook of Pain. 4th ed. New York: Churchill Livingstone.

    Article  PubMed  Google Scholar 

  • Wall PD, Melzack R. 2003. Handbook of Pain Management. New York: Churchill Livingstone.

    Google Scholar 

  • Willis WD, Westlund KN. 1997. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol. 14:2–31.

    Article  PubMed  CAS  Google Scholar 

  • Willis WD, Al Chaer ED, Quast MJ, Westlund KN. 1999. A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci USA. 96:7675–7679.

    Article  PubMed  CAS  Google Scholar 

  • Willis WD, Jr., Zhang X, Honda CN, Giesler GJ, Jr. 2001. Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain. 92:267–276.

    Article  PubMed  Google Scholar 

  • Willis WD, Jr., Zhang X, Honda CN, Giesler GJ, Jr. 2002 A critical review of the role of the proposed VMpo nucleus in pain. J Pain. 3:79–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strominger, N.L., Demarest, R.J., Laemle, L.B. (2012). Pain and Temperature. In: Noback's Human Nervous System, Seventh Edition. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-779-8_9

Download citation

Publish with us

Policies and ethics