Skip to main content

Sperm Capacitation as an Oxidative Event

  • Chapter
  • First Online:
Book cover Studies on Men's Health and Fertility

Abstract

Capacitation is associated with a mild oxidative stress. Spermatozoa are the only cell type in which a reciprocal reactive oxygen species (ROS)-induced ROS formation is demonstrated, the superoxide anion (O •−2 ) promoting nitric oxide (NO) synthesis and vice versa. Both O •−2 and NO are essential and are synthesized by sperm enzymes, an oxidase, and nitric oxide synthase (NOS), and they have specific targets. Semenogelin, zinc ions, and the sulfhydryl/disulfide couple are natural ­regulator for both the oxidase and NOS and are also expected to directly regulate some of the enzymes involved in transduction cascades triggered by O •−2 and NO. ROS promote all the signal transduction pathways involved during capacitation leading to the late protein Tyr phosphorylation. Sperm hyperactivation and acrosome reaction are also modulated by ROS. Therefore, ROS play major role in sperm ­activation and related stimulation of several processes, multiplicity of enzymatic pathways and types of regulation, cross talks, apparent redundancy of mechanisms, etc. This is expected to insure that spermatozoa acquire their fertility potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill J, editors. The physiology of reproduction. New York: Raven Press Ltd; 1994. p. 189–317.

    Google Scholar 

  2. de Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3(3):175–94.

    PubMed  Google Scholar 

  3. de Lamirande E, O’Flaherty C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta. 2008;1784(1):106–15.

    PubMed  Google Scholar 

  4. DeJonge C. Biological basis for human capacitation. Hum Reprod Update. 2005;11(3):205–14.

    Google Scholar 

  5. O’Flaherty C, de Lamirande E, Gagnon C. Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic Biol Med. 2006;40(6):1045–55.

    PubMed  Google Scholar 

  6. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14(6):647–57.

    PubMed  CAS  Google Scholar 

  7. Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci. 2000;5:E110–23.

    PubMed  CAS  Google Scholar 

  8. Herrero MB, Gagnon C. Nitric oxide: a novel mediator of sperm function. J Androl. 2001;22(3):349–56.

    PubMed  CAS  Google Scholar 

  9. Olds-Clarke P. Unresolved issues in mammalian fertilization. Int Rev Cytol. 2003;232:129–84.

    PubMed  CAS  Google Scholar 

  10. Saez F, Ouvrier A, Drevet JR. Epididymis cholesterol homeostasis and sperm fertilizing ability. Asian J Androl. 2011;13(1):11–7.

    PubMed  CAS  Google Scholar 

  11. Baker HW, Liu DY, Garrett C, Martic M. The human acrosome reaction. Asian J Androl. 2000;2(3):172–8.

    PubMed  CAS  Google Scholar 

  12. Kirkman-Brown JC, Punt EL, Barratt CL, Publicover SJ. Zona pellucida and progesterone-induced Ca2+ signaling and acrosome reaction in human spermatozoa. J Androl. 2002;23(3):306–15.

    PubMed  CAS  Google Scholar 

  13. Aitken RJ, Baker MA, De Iuliis GN, Nixon B. New insights into sperm physiology and pathology. Handb Exp Pharmacol. 2010;198:99–115.

    PubMed  CAS  Google Scholar 

  14. de Lamirande E, Tsai C, Harakat A, Gagnon C. Involvement of reactive oxygen species in human sperm arcosome reaction induced by A23187, lysophosphatidylcholine, and biological fluid ultrafiltrates. J Androl. 1998;19(5):585–94.

    PubMed  Google Scholar 

  15. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    PubMed  CAS  Google Scholar 

  16. Filomeni G, Rotilio G, Ciriolo MR. Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways. Cell Death Differ. 2005;12(12):1555–63.

    PubMed  CAS  Google Scholar 

  17. O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med. 2006;41(4):528–40.

    PubMed  Google Scholar 

  18. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22(1–2):269–85.

    PubMed  CAS  Google Scholar 

  19. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 2007.

    Google Scholar 

  20. O’Flaherty C, Rico de Souza A. Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod. 2011;84(1):238–47.

    PubMed  Google Scholar 

  21. Peshenko IV, Shichi H. Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic Biol Med. 2001;31(3):292–303.

    PubMed  CAS  Google Scholar 

  22. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 2005;17(2):183–9.

    PubMed  CAS  Google Scholar 

  23. Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005;38(12):1543–52.

    PubMed  CAS  Google Scholar 

  24. Forman HJ, Fukuto J, Torres M. Signal transduction by reactive oxygen and nitrogen species: pathways and chemical principles. Dordrecht: Kluwer Academic Publishers; 2003.

    Google Scholar 

  25. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    PubMed  CAS  Google Scholar 

  26. Sabeur K, Ball BA. Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction. 2007;134(2):263–70.

    PubMed  CAS  Google Scholar 

  27. Shukla S, Jha RK, Laloraya M, Kumar PG. Identification of non-mitochondrial NADPH oxidase and the spatio-temporal organization of its components in mouse spermatozoa. Biochem Biophys Res Commun. 2005;331(2):476–83.

    PubMed  CAS  Google Scholar 

  28. Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005;338(1):677–86.

    PubMed  CAS  Google Scholar 

  29. Donnelly ET, Lewis SE, Thompson W, Chakravarthy U. Sperm nitric oxide and motility: the effects of nitric oxide synthase stimulation and inhibition. Mol Hum Reprod. 1997;3(9):755–62.

    PubMed  CAS  Google Scholar 

  30. Herrero MB, Perez MS, Viggiano JM, Polak JM, de Gimeno MF. Localization by indirect immunofluorescence of nitric oxide synthase in mouse and human spermatozoa. Reprod Fertil Dev. 1996;8(5):931–4.

    PubMed  CAS  Google Scholar 

  31. Herrero MB, de Lamirande E, Gagnon C. Nitric oxide is a signaling molecule in spermatozoa. Curr Pharm Des. 2003;9(5):419–25.

    PubMed  CAS  Google Scholar 

  32. Kawashima S. The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis. Endothelium. 2004;11(2):99–107.

    PubMed  CAS  Google Scholar 

  33. Vasquez-Vivar J, Kalyanaraman B. Generation of superoxide from nitric oxide synthase. FEBS Lett. 2000;481(3):305–6.

    PubMed  CAS  Google Scholar 

  34. Weaver J, Porasuphatana S, Tsai P, Pou S, Roman LJ, Rosen GM. A comparative study of neuronal and inducible nitric oxide synthases: generation of nitric oxide, superoxide, and hydrogen peroxide. Biochim Biophys Acta. 2005;1726(3):302–8.

    PubMed  CAS  Google Scholar 

  35. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J Androl. 1992;13(5):379–86.

    PubMed  Google Scholar 

  36. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl. 1992;13(5):368–78.

    PubMed  Google Scholar 

  37. de Lamirande E, Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl. 1993;16(1):21–5.

    PubMed  Google Scholar 

  38. de Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14(2):157–66.

    PubMed  Google Scholar 

  39. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998;111(5):645–56.

    PubMed  CAS  Google Scholar 

  40. de Lamirande E, Harakat A, Gagnon C. Human sperm capacitation induced by biological ­fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl. 1998;19(2):215–25.

    PubMed  Google Scholar 

  41. Griveau JF, Renard P, Le Lannou D. An in vitro promoting role for hydrogen peroxide in human sperm capacitation. Int J Androl. 1994;17(6):300–7.

    PubMed  CAS  Google Scholar 

  42. Herrero MB, de Lamirande E, Gagnon C. Nitric oxide regulates human sperm capacitation and protein-tyrosine phosphorylation in vitro. Biol Reprod. 1999;61(3):575–81.

    PubMed  CAS  Google Scholar 

  43. Herrero MB, Chatterjee S, Lefièvre L, de Lamirande E, Gagnon C. Nitric oxide interacts with the cAMP pathway to modulate capacitation of human spermatozoa. Free Radic Biol Med. 2000;29(6):522–36.

    Google Scholar 

  44. Leclerc P, de Lamirande E, Gagnon C. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med. 1997;22(4):643–56.

    PubMed  CAS  Google Scholar 

  45. Zini A, de Lamirande E, Gagnon C. Low levels of nitric oxide promote human sperm capacitation in vitro. J Androl. 1995;16(5):424–31.

    PubMed  CAS  Google Scholar 

  46. de Lamirande E, Lamothe G. Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic Biol Med. 2009;46(4):502–10.

    PubMed  Google Scholar 

  47. World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  48. de Lamirande E, Gagnon C. Human sperm hyperactivation in whole semen and its association with low superoxide scavenging capacity in seminal plasma. Fertil Steril. 1993;59(6):1291–5.

    PubMed  Google Scholar 

  49. de Lamirande E, Gagnon C. Human sperm hyperactivation in whole semen and its association with low superoxide scavenging capacity in seminal plasma and spermatozoa. Fertil Steril. 1993;59(Suppl):1291–5.

    PubMed  Google Scholar 

  50. Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13(1):43–52.

    PubMed  CAS  Google Scholar 

  51. Kaufman DL, Mitchell JA. Intrauterine oxygen tension during the oestrous cycle in the hamster: patterns of change. Comp Biochem Physiol Comp Physiol. 1994;107(4):673–8.

    PubMed  CAS  Google Scholar 

  52. Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol. 1992;151(3):466–77.

    PubMed  CAS  Google Scholar 

  53. de Lamirande E, Leduc BE, Iwasaki A, Hassouna M, Gagnon C. Increased reactive oxygen species formation in semen of patients with spinal cord injury. Fertil Steril. 1995;63(3):637–42.

    PubMed  Google Scholar 

  54. Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62(2):387–93.

    PubMed  CAS  Google Scholar 

  55. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med. 1995;18(3):487–95.

    PubMed  Google Scholar 

  56. de Lamirande E, Lamothe G, Villemure M. Control of superoxide and nitric oxide formation during human sperm capacitation. Free Radic Biol Med. 2009;46(10):1420–7.

    PubMed  Google Scholar 

  57. Thomas S, Kotamraju S, Zielonka J, Harder DR, Kalyanaraman B. Hydrogen peroxide induces nitric oxide and proteosome activity in endothelial cells: a bell-shaped signaling response. Free Radic Biol Med. 2007;42(7):1049–61.

    PubMed  CAS  Google Scholar 

  58. Lundin A, Richardsson A, Thore A. Continuous monitoring of ATP-converting reactions by purified firefly luciferase. Anal Biochem. 1976;75(2):611–20.

    PubMed  CAS  Google Scholar 

  59. Radi R, Rubbo H, Thomson L, Prodanov E. Luminol chemiluminescence using xanthine and hypoxanthine as xanthine oxidase substrates. Free Radic Biol Med. 1990;8(2):121–6.

    PubMed  CAS  Google Scholar 

  60. de Lamirande E, Gagnon C. Increased production of intra- and extracellular superoxide anion by capacitating human spermatozoa. J Androl. 1995;16(Suppl):P54.

    Google Scholar 

  61. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2(1):48–54.

    PubMed  Google Scholar 

  62. De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J Clin Endocrinol Metab. 2006;91(5):1968–75.

    PubMed  Google Scholar 

  63. Mahfouz R, Sharma R, Lackner J, Aziz N, Agarwal A. Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertil Steril. 2009;92(2):819–27.

    PubMed  CAS  Google Scholar 

  64. O’Flaherty C, Beorlegui N, Beconi MT. Participation of superoxide anion in the capacitation of cryopreserved bovine sperm. Int J Androl. 2003;26(2):109–14.

    PubMed  Google Scholar 

  65. Lewis B, Aitken RJ. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. J Androl. 2001;22(4):611–22.

    PubMed  CAS  Google Scholar 

  66. Revelli A, Soldati G, Costamagna C, et al. Follicular fluid proteins stimulate nitric oxide (NO) synthesis in human sperm: a possible role for NO in acrosomal reaction. J Cell Physiol. 1999;178(1):85–92.

    PubMed  CAS  Google Scholar 

  67. Funahashi H. Induction of capacitation and the acrosome reaction of boar spermatozoa by L-arginine and nitric oxide synthesis associated with the anion transport system. Reproduction. 2002;124(6):857–64.

    PubMed  CAS  Google Scholar 

  68. Lampiao F, Strijdom H, du Plessis SS. Direct nitric oxide measurement in human spermatozoa: flow cytometric analysis using the fluorescent probe, diaminofluorescein. Int J Androl. 2006;29(5):564–7.

    PubMed  CAS  Google Scholar 

  69. Herrero MB, de Lamirande E, Gagnon C. Tyrosine nitration in human spermatozoa: a physiological function of peroxynitrite, the reaction product of nitric oxide and superoxide. Mol Hum Reprod. 2001;7(10):913–21.

    PubMed  CAS  Google Scholar 

  70. Cristol JP, Guerin MC, Torreilles J. Measurement of nitric oxide and biological systems. C R Acad Sci III. 1994;317(6):549–60.

    PubMed  CAS  Google Scholar 

  71. Hughes MN. Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta. 1999;1411(2–3):263–72.

    PubMed  CAS  Google Scholar 

  72. Manning P, Cookson MR, McNeil CJ, Figlewicz D, Shaw PJ. Superoxide-induced nitric oxide release from cultured glial cells. Brain Res. 2001;911(2):203–10.

    PubMed  CAS  Google Scholar 

  73. Baker MA, Krutskikh A, Aitken RJ. Biochemical entities involved in reactive oxygen species generation by human spermatozoa. Protoplasma. 2003;221(1–2):145–51.

    PubMed  CAS  Google Scholar 

  74. de Lamirande E, Gagnon C. The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol Hum Reprod. 2002;8(2):124–35.

    PubMed  Google Scholar 

  75. Serrander L, Jaquet V, Bedard K, et al. NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie. 2007;89(9):1159–67.

    PubMed  CAS  Google Scholar 

  76. de Lamirande E. The capacitation inducers progesterone and biological fluid ultrafiltrates, and the capacitation inhibitors zinc and semenogelin, modulate differently the extracellular superoxide production in human spermatozoa and in neutrophils. J Androl. 2011;32(65).

    Google Scholar 

  77. Forstermann U. Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem. 2006;387(12):1521–33.

    PubMed  Google Scholar 

  78. Xia Y. Superoxide generation from nitric oxide synthases. Antioxid Redox Signal. 2007;9(10):1773–8.

    PubMed  CAS  Google Scholar 

  79. Thundathil J, de Lamirande E, Gagnon C. Different signal transduction pathways are involved during human sperm capacitation induced by biological and pharmacological agents. Mol Hum Reprod. 2002;8(9):811–6.

    PubMed  CAS  Google Scholar 

  80. Thundathil J, de Lamirande E, Gagnon C. Nitric oxide regulates the phosphorylation of the threonine-glutamine-tyrosine motif in proteins of human spermatozoa during capacitation. Biol Reprod. 2003;68(4):1291–8.

    PubMed  CAS  Google Scholar 

  81. O’Flaherty C, Beorlegui N, Beconi MT. Heparin- and superoxide anion-dependent capacitation of cryopreserved bovine spermatozoa: requirement of dehydrogenases and protein kinases. Free Radic Res. 2006;40(4):427–32.

    PubMed  Google Scholar 

  82. O’Flaherty CM, Beorlegui NB, Beconi MT. Lactate dehydrogenase-C4 is involved in heparin- and NADH-dependent bovine sperm capacitation. Andrologia. 2002;34(2):91–7.

    PubMed  Google Scholar 

  83. Aitken RJ, Fisher HM, Fulton N, et al. Reactive oxygen species generation by human ­spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev. 1997;47(4):468–82.

    PubMed  CAS  Google Scholar 

  84. Manjunath P, Bergeron A, Lefebvre J, Fan J. Seminal plasma proteins: functions and interaction with protective agents during semen preservation. Soc Reprod Fertil Suppl. 2007;65:217–28.

    PubMed  CAS  Google Scholar 

  85. Chiu PC, Chung MK, Tsang HY, et al. Glycodelin-S in human seminal plasma reduces ­cholesterol efflux and inhibits capacitation of spermatozoa. J Biol Chem. 2005;280(27):25580–9.

    PubMed  CAS  Google Scholar 

  86. de Lamirande E. Semenogelin, the main protein of the human semen coagulum, regulates sperm function. Semin Thromb Hemost. 2007;33(1):60–8.

    PubMed  Google Scholar 

  87. Jonsson M, Linse S, Frohm B, Lundwall A, Malm J. Semenogelins I and II bind zinc and regulate the activity of prostate-specific antigen. Biochem J. 2005;387(Pt 2):447–53.

    PubMed  CAS  Google Scholar 

  88. Robert M, Gagnon C. Semenogelin I: a coagulum forming, multifunctional seminal vesicle protein. Cell Mol Life Sci. 1999;55(6–7):944–60.

    PubMed  CAS  Google Scholar 

  89. de Lamirande E, Yoshida K, Yoshiike TM, Iwamoto T, Gagnon C. Semenogelin, the main protein of semen coagulum, inhibits human sperm capacitation by interfering with the superoxide anion generated during this process. J Androl. 2001;22(4):672–9.

    PubMed  Google Scholar 

  90. de Lamirande E, Lamothe G. Levels of semenogelin in human spermatozoa decrease during capacitation: involvement of reactive oxygen species and zinc. Hum Reprod. 2010;25(7):1619–30.

    PubMed  Google Scholar 

  91. Cormier N, Sirard MA, Bailey JL. Premature capacitation of bovine spermatozoa is initiated by cryopreservation. J Androl. 1997;18(4):461–8.

    PubMed  CAS  Google Scholar 

  92. Stoltenberg M, Sorensen MB, Danscher G. Histochemical demonstration of zinc ions in ejaculated human semen. Int J Androl. 1997;20(4):229–36.

    PubMed  CAS  Google Scholar 

  93. Gavella M, Lipovac V, Vucic M, Sverko V. In vitro inhibition of superoxide anion production and superoxide dismutase activity by zinc in human spermatozoa. Int J Androl. 1999;22(4):266–74.

    PubMed  CAS  Google Scholar 

  94. Yoshida K, Kawano N, Yoshiike M, Yoshida M, Iwamoto T, Morisawa M. Physiological roles of semenogelin I and zinc in sperm motility and semen coagulation on ejaculation in humans. Mol Hum Reprod. 2008;14(3):151–6.

    PubMed  CAS  Google Scholar 

  95. Yoshida K, Krasznai ZT, Krasznai Z, et al. Functional implications of membrane modification with semenogelins for inhibition of sperm motility in humans. Cell Motil Cytoskeleton. 2009;66(2):99–108.

    PubMed  CAS  Google Scholar 

  96. Oshio S, Kaneko S, Iizuka R, Mohri H. Sialic acid in purified human sperm. Arch Androl. 1987;18(3):225–30.

    PubMed  CAS  Google Scholar 

  97. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55.

    PubMed  CAS  Google Scholar 

  98. Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C. Metal and redox modulation of cysteine protein function. Chem Biol. 2003;10(8):677–93.

    PubMed  CAS  Google Scholar 

  99. Knapp LT, Klann E. Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem. 2000;275(31):24136–45.

    PubMed  CAS  Google Scholar 

  100. Maret W. Zinc coordination environments in proteins determine zinc functions. J Trace Elem Med Biol. 2005;19(1):7–12.

    PubMed  Google Scholar 

  101. de Lamirande E, Gagnon C. Paradoxical effect of reagents for sulfhydryl and disulfide groups on human sperm capacitation and superoxide production. Free Radic Biol Med. 1998;25(7):803–17.

    PubMed  Google Scholar 

  102. Nauc V, de Lamirande E, Leclerc P, Gagnon C. Inhibitors of phosphoinositide 3-kinase, LY294002 and wortmannin, affect sperm capacitation and associated phosphorylation of proteins differently: Ca2+-dependent divergences. J Androl. 2004;25(4):573–85.

    PubMed  CAS  Google Scholar 

  103. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108(5):2017–25.

    PubMed  CAS  Google Scholar 

  104. Carrera A, Moos J, Ning XP, et al. Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol. 1996;180(1):284–96.

    PubMed  CAS  Google Scholar 

  105. Lefievre L, Jha KN, de Lamirande E, Visconti PE, Gagnon C. Activation of protein kinase A during human sperm capacitation and acrosome reaction. J Androl. 2002;23(5):709–16.

    PubMed  CAS  Google Scholar 

  106. O’Flaherty C, de Lamirande E, Gagnon C. Phosphorylation of the arginine-X-X-(serine/threonine) motif in human sperm proteins during capacitation: modulation and protein kinase A dependency. Mol Hum Reprod. 2004;10(5):355–63.

    PubMed  Google Scholar 

  107. Zhang H, Zheng RL. Promotion of human sperm capacitation by superoxide anion. Free Radic Res. 1996;24(4):261–8.

    PubMed  CAS  Google Scholar 

  108. Tan CM, Xenoyannis S, Feldman RD. Oxidant stress enhances adenylyl cyclase activation. Circ Res. 1995;77(4):710–7.

    PubMed  CAS  Google Scholar 

  109. Harrison RAP. Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate. Mol Reprod Dev. 2004;67(3):337–52.

    PubMed  CAS  Google Scholar 

  110. Jha KN, Salicioni AM, Arcelay E, et al. Evidence for the involvement of proline-directed serine/threonine phosphorylation in sperm capacitation. Mol Hum Reprod. 2006;12(12):781–9.

    PubMed  CAS  Google Scholar 

  111. Luconi M, Krausz C, Barni T, Vannelli GB, Forti G, Baldi E. Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa. Mol Hum Reprod. 1998;4(3):251–8.

    PubMed  CAS  Google Scholar 

  112. O’Flaherty C, de Lamirande E, Gagnon C. Reactive oxygen species and protein kinases modulate the level of phospho-MEK-like proteins during human sperm capacitation. Biol Reprod. 2005;73(1):94–105.

    PubMed  Google Scholar 

  113. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351(Pt 2):289–305.

    PubMed  CAS  Google Scholar 

  114. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79(1):143–80.

    PubMed  CAS  Google Scholar 

  115. Morte C, Iborra A, Martinez P. Phosphorylation of Shc proteins in human sperm in response to capacitation and progesterone treatment. Mol Reprod Dev. 1998;50(1):113–20.

    PubMed  CAS  Google Scholar 

  116. Naz RK, Ahmad K, Kaplan P. Expression and function of ras proto-oncogene proteins in human sperm cells. J Cell Sci. 1992;102(Pt 3):487–94.

    PubMed  CAS  Google Scholar 

  117. Miyata Y, Nishida E. Distantly related cousins of MAP kinase: biochemical properties and possible physiological functions. Biochem Biophys Res Commun. 1999;266(2):291–5.

    PubMed  CAS  Google Scholar 

  118. Yan C, Luo H, Lee JD, Abe J, Berk BC. Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J Biol Chem. 2001;276(14):10870–8.

    PubMed  CAS  Google Scholar 

  119. Westendorf JM, Rao PN, Gerace L. Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc Natl Acad Sci USA. 1994;91(2):714–8.

    PubMed  CAS  Google Scholar 

  120. Kumar A, Carrera AC. New functions for PI3K in the control of cell division. Cell Cycle. 2007;6(14):1696–8.

    PubMed  CAS  Google Scholar 

  121. Marone R, Cmiljanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta. 2008;1784(1):159–85.

    PubMed  CAS  Google Scholar 

  122. Luconi M, Carloni V, Marra F, Ferruzzi P, Forti G, Baldi E. Increased phosphorylation of AKAP by inhibition of phosphatidylinositol 3-kinase enhances human sperm motility through tail recruitment of protein kinase A. J Cell Sci. 2004;117(Pt 7):1235–46.

    PubMed  CAS  Google Scholar 

  123. Wymann MP, Marone R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol. 2005;17(2):141–9.

    PubMed  CAS  Google Scholar 

  124. Lander HM, Milbank AJ, Tauras JM, et al. Redox regulation of cell signalling. Nature. 1996;381(6581):380–1.

    PubMed  CAS  Google Scholar 

  125. Lander HM, Hajjar DP, Hempstead BL, et al. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem. 1997;272(7):4323–6.

    PubMed  CAS  Google Scholar 

  126. Galantino-Homer HL, Visconti PE, Kopf GS. Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3′5′-monophosphate-dependent pathway. Biol Reprod. 1997;56(3):707–19.

    PubMed  CAS  Google Scholar 

  127. Petrunkina AM, Simon K, Gunzel-Apel AR, Topfer-Petersen E. Specific order in the appearance of protein tyrosine phosphorylation patterns is functionally coordinated with dog sperm hyperactivation and capacitation. J Androl. 2003;24(3):423–37.

    PubMed  Google Scholar 

  128. Pommer AC, Rutllant J, Meyers SA. Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating conditions. Biol Reprod. 2003;68(4):1208–14.

    PubMed  CAS  Google Scholar 

  129. Tardif S, Dubé C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod. 2001;65(3):784–92.

    PubMed  CAS  Google Scholar 

  130. Visconti PE, Stewart-Savage J, Blasco A, et al. Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol Reprod. 1999;61(1):76–84.

    PubMed  CAS  Google Scholar 

  131. Aitken RJ, Buckingham DW, Harkiss D, Paterson M, Fisher H, Irvine DS. The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Mol Cell Endocrinol. 1996;117(1):83–93.

    PubMed  CAS  Google Scholar 

  132. Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3′,5′ monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod. 1996;55(3):684–92.

    PubMed  CAS  Google Scholar 

  133. Baker MA, Hetherington L, Aitken RJ. Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci. 2006;119(15):3182–92.

    PubMed  CAS  Google Scholar 

  134. Leclerc P, Goupil S. Regulation of the human sperm tyrosine kinase c-yes. Activation by cyclic adenosine 3′,5′-monophosphate and inhibition by Ca(2+). Biol Reprod. 2002;67(1):301–7.

    PubMed  CAS  Google Scholar 

  135. Ficarro S, Chertihin O, Westbrook VA, et al. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem. 2003;278(13):11579–89.

    PubMed  CAS  Google Scholar 

  136. Naz RK, Rajesh PB. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod Biol Endocrinol. 2004;2:75.

    PubMed  Google Scholar 

  137. Bailey JL. Factors regulating sperm capacitation. Syst Biol Reprod Med. 2010;56(5):334–48.

    PubMed  CAS  Google Scholar 

  138. Baker MA, Hetherington L, Curry B, Aitken RJ. Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Dev Biol. 2009;333(1):57–66.

    PubMed  CAS  Google Scholar 

  139. Lawson C, Goupil S, Leclerc P. Increased activity of the human sperm tyrosine kinase SRC by the cAMP-dependent pathway in the presence of calcium. Biol Reprod. 2008;79(4):657–66.

    PubMed  CAS  Google Scholar 

  140. Gopalakrishna R, Anderson WB. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci USA. 1989;86(17):6758–62.

    PubMed  CAS  Google Scholar 

  141. Abe MK, Kartha S, Karpova AY, et al. Hydrogen peroxide activates extracellular signal-­regulated kinase via protein kinase C, Raf-1, and MEK1. Am J Respir Cell Mol Biol. 1998;18(4):562–9.

    PubMed  CAS  Google Scholar 

  142. Chiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci. 2003;28(9):509–14.

    PubMed  CAS  Google Scholar 

  143. Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32(1):46–56.

    PubMed  CAS  Google Scholar 

  144. Kodama H, Kuribayashi Y, Gagnon C. Effect of sperm lipid peroxidation on fertilization. J Androl. 1996;17(2):151–7.

    PubMed  CAS  Google Scholar 

  145. de Lamirande E, Gagnon C. Redox control of changes in protein sulfhydryl levels during human sperm capacitation. Free Radic Biol Med. 2003;35(10):1271–85.

    PubMed  Google Scholar 

  146. Barford D. The role of cysteine residues as redox-sensitive regulatory switches. Curr Opin Struct Biol. 2004;14(6):679–86.

    PubMed  CAS  Google Scholar 

  147. Kim JR, Yoon HW, Kwon KS, Lee SR, Rhee SG. Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH. Anal Biochem. 2000;283(2):214–21.

    PubMed  CAS  Google Scholar 

  148. Salmeen A, Barford D. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal. 2005;7(5–6):560–77.

    PubMed  CAS  Google Scholar 

  149. Sen CK. Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul. 2000;36:1–30.

    PubMed  CAS  Google Scholar 

  150. Wu Y, Kwon KS, Rhee SG. Probing cellular protein targets of H2O2 with fluorescein-­conjugated iodoacetamide and antibodies to fluorescein. FEBS Lett. 1998;440(1–2):111–5.

    PubMed  CAS  Google Scholar 

  151. Chatterjee S, de Lamirande E, Gagnon C. Cryopreservation alters membrane sulfhydryl ­status of bull spermatozoa: protection by oxidized glutathione. Mol Reprod Dev. 2001;60(4):498–506.

    PubMed  CAS  Google Scholar 

  152. Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal. 2008;10(3):445–73.

    PubMed  CAS  Google Scholar 

  153. Ghezzi P. Regulation of protein function by glutathionylation. Free Radic Res. 2005;39(6):573–80.

    PubMed  CAS  Google Scholar 

  154. Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 1999;18(45):6104–11.

    PubMed  CAS  Google Scholar 

  155. Dimon-Gadal S, Gerbaud P, Keryer G, Anderson W, Evain-Brion D, Raynaud F. In vitro effects of oxygen-derived free radicals on type I and type II cAMP-dependent protein kinases. J Biol Chem. 1998;273(35):22833–40.

    PubMed  CAS  Google Scholar 

  156. Hecht D, Zick Y. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun. 1992;188(2):773–9.

    PubMed  CAS  Google Scholar 

  157. Sommer D, Coleman S, Swanson SA, Stemmer PM. Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Arch Biochem Biophys. 2002;404(2):271–8.

    PubMed  CAS  Google Scholar 

  158. Brondello JM, Pouyssegur J, McKenzie FR. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science. 1999;286(5449):2514–7.

    PubMed  CAS  Google Scholar 

  159. Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000;14(1):6–16.

    PubMed  CAS  Google Scholar 

  160. Levinthal DJ, Defranco DB. Reversible oxidation of ERK-directed protein phosphatases drives oxidative toxicity in neurons. J Biol Chem. 2005;280(7):5875–83.

    PubMed  CAS  Google Scholar 

  161. Muda M, Boschert U, Dickinson R, et al. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J Biol Chem. 1996;271(8):4319–26.

    PubMed  CAS  Google Scholar 

  162. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol. 2001;3(2):193–7.

    PubMed  CAS  Google Scholar 

  163. Miersch S, Mutus B. Protein S-nitrosation: biochemistry and characterization of protein thiol-NO interactions as cellular signals. Clin Biochem. 2005;38(9):777–91.

    PubMed  CAS  Google Scholar 

  164. Moon KH, Kim BJ, Song BJ. Inhibition of mitochondrial aldehyde dehydrogenase by nitric oxide-mediated S-nitrosylation. FEBS Lett. 2005;579(27):6115–20.

    PubMed  CAS  Google Scholar 

  165. Yang Y, Loscalzo J. S-nitrosoprotein formation and localization in endothelial cells. Proc Natl Acad Sci USA. 2005;102(1):117–22.

    PubMed  CAS  Google Scholar 

  166. Lefièvre L, Chen Y, Conner SJ, et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7(17):3066–84.

    PubMed  Google Scholar 

  167. Oliveira CJ, Schindler F, Ventura AM, et al. Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells. Free Radic Biol Med. 2003;35(4):381–96.

    PubMed  CAS  Google Scholar 

  168. Gagnon C, de Lamirande E. Controls of sperm motility. In: De Jonge C, Barratt CL, editors. The sperm cell: production, maturation, fertilization and regeneration. Cambridge: Cambridge University Press; 2006. p. 108–33.

    Google Scholar 

  169. Griveau JF, Renard P, Le Lannou D. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl. 1995;18(2):67–74.

    PubMed  CAS  Google Scholar 

  170. O’Flaherty C, Rodriguez P, Srivastava S. l-arginine promotes capacitation and acrosome reaction in cryopreserved bovine spermatozoa. Biochim Biophys Acta. 2004;1674(2):215–21.

    PubMed  Google Scholar 

  171. O’Flaherty CM, Beorlegui NB, Beconi MT. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology. 1999;52(2):289–301.

    PubMed  Google Scholar 

  172. Aitken RJ, Buckingham DW, Carreras A, Irvine DS. Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med. 1996;21(4):495–504.

    PubMed  CAS  Google Scholar 

  173. Revelli A, Costamagna C, Moffa F, et al. Signaling pathway of nitric oxide-induced acrosome reaction in human spermatozoa. Biol Reprod. 2001;64(6):1708–12.

    PubMed  CAS  Google Scholar 

  174. Revelli A, Ghigo D, Moffa F, Massobrio M, Tur-Kaspa I. Guanylate cyclase activity and sperm function. Endocr Rev. 2002;23(4):484–94.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eve de Lamirande PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Lamirande, E., O’Flaherty, C. (2012). Sperm Capacitation as an Oxidative Event. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_4

Download citation

Publish with us

Policies and ethics