Skip to main content

Leukocytospermia and Oxidative Stress

  • Chapter
  • First Online:
Studies on Men's Health and Fertility

Abstract

The invasion of microorganisms and infective bacteria in the genito-­urinary tract leads to the rapid increase in white blood cells, a condition referred to as leukocytospermia. This inflammatory response, aimed at killing the microorganisms via the production and release of reactive oxygen species (ROS), can result in pathologically high concentrations of ROS. When these concentrations greatly exceed the level required for normal physiological function, the natural defense system of scavenging antioxidants can be overwhelmed, resulting in oxidative stress (OS) thereby compromising the integrity of spermatozoa and functional parameters vital for successful fertilization. The complexity of OS is furthered when additional factors (e.g., smoking, varicocele) increase ROS levels in the male genito-urinary system. At present, the association between semen parameters and leukocyte concentrations is a focal point in the field of male reproductive science. This chapter aims at exploring the relationship between leukocytospermia, OS, the harmful effects on male reproductive potential, as well as possible treatment regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.

    Article  PubMed  CAS  Google Scholar 

  2. Sikka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. J Androl. 1995;16(6):464–8.

    PubMed  CAS  Google Scholar 

  3. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.

    PubMed  CAS  Google Scholar 

  4. Aydemir B, et al. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl. 2008;29(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  5. Desai N, et al. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril. 2009;92(5):1626–31.

    Article  PubMed  Google Scholar 

  6. Alvarez JG, et al. Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril. 2002;78(2):319–29.

    Article  PubMed  Google Scholar 

  7. Sharma RK, et al. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.

    PubMed  CAS  Google Scholar 

  8. Keck C, et al. Seminal tract infections: impact on male fertility and treatment options. Hum Reprod Update. 1998;4(6):891–903.

    Article  PubMed  CAS  Google Scholar 

  9. Lewis SE. Is sperm evaluation useful in predicting human fertility? Reproduction. 2007;134(1):31–40.

    Article  PubMed  CAS  Google Scholar 

  10. Pasqualotto FF, et al. Seminal oxidative stress in patients with chronic prostatitis. Urology. 2000;55(6):881–5.

    Article  PubMed  CAS  Google Scholar 

  11. Zorn B, et al. Semen polymorphonuclear neutrophil leukocyte elastase as a diagnostic and prognostic marker of genital tract inflammation—a review. Clin Chem Lab Med. 2003;41(1):2–12.

    Article  PubMed  CAS  Google Scholar 

  12. Gdoura R, et al. Screening for bacterial pathogens in semen samples from infertile men with and without leukocytospermia. Andrologia. 2008;40(4):209–18.

    Article  PubMed  CAS  Google Scholar 

  13. Lackner J, et al. Value of counting white blood cells (WBC) in semen samples to predict the presence of bacteria. Eur Urol. 2006;49(1):148–52; discussion 152–3.

    Google Scholar 

  14. Trum JW, et al. Value of detecting leukocytospermia in the diagnosis of genital tract infection in subfertile men. Fertil Steril. 1998;70(2):315–9.

    Article  PubMed  CAS  Google Scholar 

  15. Sanocka D, et al. Male genital tract inflammation: the role of selected interleukins in regulation of pro-oxidant and antioxidant enzymatic substances in seminal plasma. J Androl. 2003;24(3):448–55.

    PubMed  Google Scholar 

  16. Politch JA, et al. Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum Reprod. 2007;22(11):2928–35.

    Article  PubMed  CAS  Google Scholar 

  17. el-Demiry MI, et al. Immunocompetent cells in human testis in health and disease. Fertil Steril. 1987;48(3):470–9.

    PubMed  CAS  Google Scholar 

  18. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO Press; 2010. p. 271.

    Google Scholar 

  19. Kokab A, et al. Raised inflammatory markers in semen from men with asymptomatic chlamydial infection. J Androl. 2010;31(2):114–20.

    Article  PubMed  CAS  Google Scholar 

  20. Weidner W, Krause W, Ludwig M. Relevance of male accessory gland infection for subsequent fertility with special focus on prostatitis. Hum Reprod Update. 1999;5(5):421–32.

    Article  PubMed  CAS  Google Scholar 

  21. Vicari E. Seminal leukocyte concentration and related specific reactive oxygen species production in patients with male accessory gland infections. Hum Reprod. 1999;14(8):2025–30.

    Article  PubMed  CAS  Google Scholar 

  22. Eggert-Kruse W, et al. Clinical relevance of polymorphonuclear (PMN-) elastase determination in semen and serum during infertility investigation. Int J Androl. 2009;32(4):317–29.

    Article  PubMed  CAS  Google Scholar 

  23. Micic S, et al. Elastase as an indicator of silent genital tract infection in infertile men. Int J Androl. 1989;12(6):423–9.

    Article  PubMed  CAS  Google Scholar 

  24. Jochum M, Pabst W, Schill WB. Granulocyte elastase as a sensitive diagnostic parameter of silent male genital tract inflammation. Andrologia. 1986;18(4):413–9.

    Article  PubMed  CAS  Google Scholar 

  25. Aziz N, et al. Novel associations between specific sperm morphological defects and leukocytospermia. Fertil Steril. 2004;82(3):621–7.

    Article  PubMed  Google Scholar 

  26. Gambera L, et al. Sperm quality and pregnancy rate after COX-2 inhibitor therapy of infertile males with abacterial leukocytospermia. Hum Reprod. 2007;22(4):1047–51.

    Article  PubMed  CAS  Google Scholar 

  27. Kaleli S, et al. Does leukocytospermia associate with poor semen parameters and sperm functions in male infertility? The role of different seminal leukocyte concentrations. Eur J Obstet Gynecol Reprod Biol. 2000;89(2):185–91.

    Article  PubMed  CAS  Google Scholar 

  28. Arata de Bellabarba G, et al. Nonsperm cells in human semen and their relationship with semen parameters. Arch Androl. 2000;45(3):131–6.

    Article  PubMed  CAS  Google Scholar 

  29. Aitken RJ, et al. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil. 1992;94(2):451–62.

    Article  PubMed  CAS  Google Scholar 

  30. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med. 1995;18(3):487–95.

    Article  PubMed  Google Scholar 

  31. Cocuzza M, et al. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007;33(5):603–21.

    Article  PubMed  Google Scholar 

  32. Saleh RA, et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril. 2002;78(6):1215–24.

    Article  PubMed  Google Scholar 

  33. Aitken RJ, Buckingham D, Harkiss D. Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil. 1993;97(2):441–50.

    Article  PubMed  CAS  Google Scholar 

  34. Aitken RJ, Baker HW. Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod. 1995;10(7):1736–9.

    PubMed  CAS  Google Scholar 

  35. Aitken RJ, et al. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev. 1997;47(4):468–82.

    Article  PubMed  CAS  Google Scholar 

  36. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12.

    Article  PubMed  Google Scholar 

  37. Fariello RM, et al. Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity. J Assist Reprod Genet. 2009;26(2–3):151–7.

    Article  PubMed  Google Scholar 

  38. Athayde KS, et al. Development of normal reference values for seminal reactive oxygen ­species and their correlation with leukocytes and semen parameters in a fertile population. J Androl. 2007;28(4):613–20.

    Article  PubMed  CAS  Google Scholar 

  39. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48(6):835–50.

    Article  PubMed  CAS  Google Scholar 

  40. Aitken RJ, West K, Buckingham D. Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J Androl. 1994;15(4):343–52.

    PubMed  CAS  Google Scholar 

  41. Shekarriz M, et al. Positive myeloperoxidase staining (Endtz test) as an indicator of excessive reactive oxygen species formation in semen. J Assist Reprod Genet. 1995;12(2):70–4.

    Article  PubMed  CAS  Google Scholar 

  42. Gavella M, Lipovac V. NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl. 1992;28(2):135–41.

    Article  PubMed  CAS  Google Scholar 

  43. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.

    PubMed  CAS  Google Scholar 

  44. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23(6):737–52.

    PubMed  CAS  Google Scholar 

  45. Alkan I, et al. Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: relationship to seminal plasma antioxidants. J Urol. 1997;157(1):140–3.

    Article  PubMed  CAS  Google Scholar 

  46. de Lamirande E, Gagnon C. Human sperm hyperactivation in whole semen and its association with low superoxide scavenging capacity in seminal plasma. Fertil Steril. 1993;59(6):1291–5.

    PubMed  Google Scholar 

  47. Bansal AK, Biaspuri GS. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. 2011;1(1):1–7.

    Article  Google Scholar 

  48. Sanocka D, et al. Oxidative stress and male infertility. J Androl. 1996;17(4):449–54.

    PubMed  CAS  Google Scholar 

  49. Krause W, et al. Cellular and biochemical markers in semen indicating male accessory gland inflammation. Andrologia. 2003;35(5):279–82.

    PubMed  CAS  Google Scholar 

  50. Ford WC, Whittington K, Williams AC. Reactive oxygen species in human sperm suspensions: production by leukocytes and the generation of NADPH to protect sperm against their effects. Int J Androl. 1997;20 Suppl 3:44–9.

    PubMed  CAS  Google Scholar 

  51. Whittington K, Ford WC. Relative contribution of leukocytes and of spermatozoa to reactive oxygen species production in human sperm suspensions. Int J Androl. 1999;22(4):229–35.

    Article  PubMed  CAS  Google Scholar 

  52. de Lamirande E, et al. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2(1):48–54.

    Article  PubMed  Google Scholar 

  53. Acosta AA, Kruger TF, editors. Human spermatozoa in assisted reproduction. 2nd ed. Bath: Parthenon Publishing Group; 1996. p. 518.

    Google Scholar 

  54. Pasqualotto FF, et al. Oxidative stress in normospermic men undergoing infertility evaluation. J Androl. 2001;22(2):316–22.

    PubMed  CAS  Google Scholar 

  55. Kokab A, et al. Raised inflammatory markers in semen from men with asymptomatic chlamydial infection. J Androl. 2010;31(2):114–20.

    Article  PubMed  CAS  Google Scholar 

  56. Bezold G, et al. Prevalence of sexually transmissible pathogens in semen from asymptomatic male infertility patients with and without leukocytospermia. Fertil Steril. 2007;87(5):1087–97.

    Article  PubMed  Google Scholar 

  57. Esfandiari N, et al. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl. 2003;24(6):862–70.

    PubMed  CAS  Google Scholar 

  58. Blake DR, Allen RE, Lunec J. Free radicals in biological systems—a review orientated to inflammatory processes. Br Med Bull. 1987;43(2):371–85.

    PubMed  CAS  Google Scholar 

  59. Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62(2):387–93.

    PubMed  CAS  Google Scholar 

  60. Wolff H, et al. Impact of clinically silent inflammation on male genital tract organs as reflected by biochemical markers in semen. J Androl. 1991;12(5):331–4.

    PubMed  CAS  Google Scholar 

  61. Lu JC, et al. Standardization and quality control for determination of fructose in seminal plasma. J Androl. 2007;28(2):207–13.

    Article  PubMed  CAS  Google Scholar 

  62. Gonzales GF. Function of seminal vesicles and their role on male fertility. Asian J Androl. 2001;3(4):251–8.

    PubMed  CAS  Google Scholar 

  63. Andrade-Rocha FT. Semen analysis in laboratory practice: an overview of routine tests. J Clin Lab Anal. 2003;17(6):247–58.

    Article  PubMed  CAS  Google Scholar 

  64. Comhaire FH, et al. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential: the andrologist’s viewpoint. Hum Reprod Update. 1999;5(5):393–8.

    Article  PubMed  CAS  Google Scholar 

  65. Comhaire FH, Vermeulen L, Pieters O. Study of the accuracy of physical and biochemical markers in semen to detect infectious dysfunction of the accessory sex glands. J Androl. 1989;10(1):50–3.

    PubMed  CAS  Google Scholar 

  66. Kessopoulou E, et al. Origin of reactive oxygen species in human semen: spermatozoa or ­leucocytes? J Reprod Fertil. 1992;94(2):463–70.

    Article  PubMed  CAS  Google Scholar 

  67. Ricci G, et al. Leukocyte detection in human semen using flow cytometry. Hum Reprod. 2000;15(6):1329–37.

    Article  PubMed  CAS  Google Scholar 

  68. Henkel R, et al. Urogenital inflammation: changes of leucocytes and ROS. Andrologia. 2003;35(5):309–13.

    PubMed  CAS  Google Scholar 

  69. Johanisson E, et al. Evaluation of ‘round cells’ in semen analysis: a comparative study. Hum Reprod Update. 2000;6(4):404–12.

    Article  PubMed  CAS  Google Scholar 

  70. Maegawa M, et al. A repertoire of cytokines in human seminal plasma. J Reprod Immunol. 2002;54(1–2):33–42.

    Article  PubMed  CAS  Google Scholar 

  71. Villegas J, et al. Indirect immunofluorescence using monoclonal antibodies for the detection of leukocytospermia: comparison with peroxidase staining. Andrologia. 2002;34(2):69–73.

    Article  PubMed  CAS  Google Scholar 

  72. Wang A, et al. Generation of reactive oxygen species by leukocytes and sperm following exposure to urogenital tract infection. Arch Androl. 1997;39(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  73. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41(1):183–97.

    Article  PubMed  CAS  Google Scholar 

  74. Tunc O, Thompson J, Tremellen K. Development of the NBT assay as a marker of sperm ­oxidative stress. Int J Androl. 2010;33(1):13–21.

    Article  PubMed  CAS  Google Scholar 

  75. Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:e78–86.

    PubMed  CAS  Google Scholar 

  76. Miesel R, et al. Severe antioxidase deficiency in human semen samples with pathological spermiogram parameters. Andrologia. 1997;29(2):77–83.

    Article  PubMed  CAS  Google Scholar 

  77. Lewis SE, et al. Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril. 1995;64(4):868–70.

    PubMed  CAS  Google Scholar 

  78. Agarwal A, et al. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online. 2004;8(6):616–27.

    Article  PubMed  CAS  Google Scholar 

  79. Storey BT, Alvarez JG, Thompson KA. Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH. Mol Reprod Dev. 1998;49(4):400–7.

    Article  PubMed  CAS  Google Scholar 

  80. Williams AC, Ford WC. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm. Biol Reprod. 2004;71(4):1309–16.

    Article  PubMed  CAS  Google Scholar 

  81. Erenpreiss J, et al. Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J Androl. 2002;23(5):717–23.

    PubMed  Google Scholar 

  82. Agarwal A, Prabakaran SA, Said TM. Prevention of oxidative stress injury to sperm. J Androl. 2005;26(6):654–60.

    Article  PubMed  CAS  Google Scholar 

  83. Siciliano L, et al. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J Androl. 2001;22(5):798–803.

    PubMed  CAS  Google Scholar 

  84. Showell MG, et al. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2011;(1):CD007411.

    Google Scholar 

  85. Irvine DS. Glutathione as a treatment for male infertility. Rev Reprod. 1996;1(1):6–12.

    Article  PubMed  CAS  Google Scholar 

  86. Bucak MN, et al. Effects of antioxidants on post-thawed bovine sperm and oxidative stress parameters: antioxidants protect DNA integrity against cryodamage. Cryobiology. 2010;61(3):248–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan S. du Plessis PhD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Flint, M., Agarwal, A., du Plessis, S.S. (2012). Leukocytospermia and Oxidative Stress. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_23

Download citation

Publish with us

Policies and ethics