Skip to main content

Oxidative Stress and the Use of Antioxidants for Idiopathic OATs

  • Chapter
  • First Online:
Studies on Men's Health and Fertility

Abstract

Aim: To examine the effects of ROS and OS on male fertility and to evaluate the use of antioxidants as a means of treatment to improve fertilization rates in subfertile males suffering from idiopathic oligoasthenoteratozoospermia (iOAT). Methods: Review of PubMed database. Results: Current research notes ROS-associated male factor infertility to be the most common potential etiology of impaired sperm quality. The various effects of these oxidants may be neutralized by antioxidants. Although antioxidant therapy has shown to potentially treat iOAT by improving semen parameters, its success remains limited. Our review calls for a deeper look and understanding of the type(s), dosage, and duration of antioxidant treatment used in order to apply its use in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tournaye H. Evidence-based management of male subfertility. Curr Opin Obstet Gynecol. 2006;18(3):253–9.

    PubMed  Google Scholar 

  2. Attia AM, Al-Inany HG, Farquar C, Proctor M. Gonadotrophins for idiopathic male factor male subfertility. Cochrane Database Syst Rev. 2007;(4):CD005071.

    Google Scholar 

  3. Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, Schlegel PN, Howards SS, Nehra A, Damewood MD, Overstreet JW, Sadovsky R. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82.

    PubMed  Google Scholar 

  4. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    PubMed  CAS  Google Scholar 

  5. Aitken RJ. Molecular mechanisms regulating human sperm function. Mol Hum Reprod. 1997;3(3):169–73.

    PubMed  CAS  Google Scholar 

  6. Aitken RJ. The Amoroso lecture. The human spermatozoon—a cell in crisis? J Reprod Fertil. 1999;115(1):1–7.

    PubMed  CAS  Google Scholar 

  7. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727–33.

    PubMed  CAS  Google Scholar 

  8. Alvarez JG. Nurture vs nature: how can we optimize sperm quality? J Androl. 2003;24(5):640–8.

    PubMed  Google Scholar 

  9. Bykova M, Athayde K, Sharma R, Jha R, Sabanegh E, Agarwal A. Defining the reference value of seminal reactive oxygen species in a population of infertile men and normal healthy volunteers. Fertil Steril. 2007;88 Suppl 1(P-597):305.

    Google Scholar 

  10. Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod. 2004;20(4):1006–12.

    Google Scholar 

  11. Reddy SV, Suchitra MM, Reddy YM, Reddy PE. Beneficial and detrimental actions of free radicals: a review. J Global Pharma Technol. 2010;2(5):3–11.

    CAS  Google Scholar 

  12. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.

    PubMed  CAS  Google Scholar 

  13. Aitken RJ. Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev. 1995;7(4):659–68.

    PubMed  CAS  Google Scholar 

  14. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57(2):409–16.

    PubMed  CAS  Google Scholar 

  15. Zini A, de Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl. 1993;16(3):183–8.

    PubMed  CAS  Google Scholar 

  16. Cavallini G. Male idiopathic oligoasthenoteratozoospermia. Asian J Androl. 2006;8(2):143–57.

    PubMed  CAS  Google Scholar 

  17. Hirsch A. ABC of subfertility: male subfertility. BMJ. 2003;327(7416):669–72.

    Google Scholar 

  18. Bonanomi N, Lucente G, Silvestrini B. Male fertility: core chemical structure in pharmacological research. Contraception. 2002;65(4):317–20.

    PubMed  CAS  Google Scholar 

  19. Eskenazi B, Wyrobeck AJ, Sloter E, Kidd SA, Moore L, Young S, Moore D. The association of age and semen quality in healthy men. Hum Reprod. 2003;18(2):447–54.

    PubMed  CAS  Google Scholar 

  20. Kefer JC, Agarwal A, Sabanegh E. Role of antioxidants in the treatment of male infertility. Int J Urol. 2009;16(5):449–57.

    PubMed  CAS  Google Scholar 

  21. Fraczek M, Sanoka D, Kamieniczna M, Kurpisz M. Proinflammatory cytokines as an intermediate factor enhancing lipid sperm membrane peroxidation in in vitro conditions. J Androl. 2008;29(1):85–92.

    PubMed  CAS  Google Scholar 

  22. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23(6):737–52.

    PubMed  CAS  Google Scholar 

  23. Pasqualotto FF, Sharma RK, Nelson DK, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73(3):459–64.

    PubMed  CAS  Google Scholar 

  24. Fisher H, Aitken RJ. Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites. J Exp Zool. 1997;277(5):390–400.

    PubMed  CAS  Google Scholar 

  25. Younglai E, Collins JA, Foster WG. Canadian semen quality: an analysis of sperm density among eleven academic fertility centers. Fertil Steril. 1998;70(1):76–80.

    PubMed  CAS  Google Scholar 

  26. Bujan L, Mansat A, Pontonnier F, Mieusset R. Time series analysis of sperm concentration in fertile men in Toulouse (France) between 1977 and 1992. BMJ. 1996;312(7029):471–2.

    PubMed  CAS  Google Scholar 

  27. St. John JC, Cooke ID, Barratt CLR. Detection of multiple deletions in the mitochondrial DNA of human testicular tissue from azoospermic and severe oligozoospermic patients. In: Barratt CLR, De Jonge C, Mortimer D, Parinaud J, editors. Genetics of male fertility. Paris: Inserm EDK; 1997. p. 333–47.

    Google Scholar 

  28. Nakada K, Sato A, Yoshida K, Morita T, Tanaka H, Inoue S, Yonekawa H, Hayashi J. Mitochondria-related male infertility. Proc Natl Acad Sci USA. 2006;103(41):15148–53.

    PubMed  CAS  Google Scholar 

  29. Suzuki H, Kumagai T, Goto A, Sugiura T. Increase in intracellular hydrogen peroxide and upregulation of nuclear respiratory gene evoked by impairment of mitochondrial electron transfer in human cells. Biochem Biophys Res Commun. 1998;249(2):542–5.

    PubMed  CAS  Google Scholar 

  30. Wang X, Sharma RK, Gupta A, George V, Thomas AJ, Falcone T, Agarwal A. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril. 2003;80 Suppl 2:844–50.

    PubMed  Google Scholar 

  31. Liu CY, Lee CF, Hong CH, Wei YH. Mitochondrial DNA mutation and depletion increase the susceptibility of human cells to apoptosis. Ann NY Acad Sci. 2004;1011:133–45.

    PubMed  CAS  Google Scholar 

  32. Selvi Rani D, Vanniarajan A, Gupta N, Chakravarty B, Singh L, Thangaraj K. A novel missense mutation C11994T in the mitochondrial ND4 gene as a cause of low sperm motility in the Indian subcontinent. Fertil Steril. 2006;86(6):1783–5.

    PubMed  Google Scholar 

  33. Armstrong JS, Rajasekaran M, Chamulitrat W, Gatti P, Hellstrom WJ, Sikka SC. Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radic Biol Med. 1999;26(7–8):869–80.

    PubMed  CAS  Google Scholar 

  34. de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10 Suppl 1:15–21.

    PubMed  CAS  Google Scholar 

  35. Aitken RJ, Fisher H, Fulton N, Gomez E, Knox W, Lewis B, Irvine S. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by flavoprotein inhibitors diphenylene iodinium and quinacrine. Mol Reprod Dev. 1997;47(4):468–82.

    PubMed  CAS  Google Scholar 

  36. Griveau JF, Dumont E, Renard B, Callegari JP, Lannou DL. Reactive oxygen species, lipid peroxidation and enzymatic defense systems in human spermatozoa. J Reprod Fertil. 1995;103(1):17–26.

    PubMed  CAS  Google Scholar 

  37. Aitken RJ, West KM. Analysis of the relationship between reactive oxygen species production and leukocyte infiltration in fractions of human semen separated on Percoll gradients. Int J Androl. 1990;13(6):433–51.

    PubMed  CAS  Google Scholar 

  38. Huszar G, Sbracia M, Vigue L, Miller DJ, Shur BD. Sperm plasma membrane remodeling during spermiogenic maturation in men: relationship among plasma membrane beta 1,4-galactosyltransferase, cytoplasmic creatine phosphokinase and creatine phosphokinase isoform ratios. Biol Reprod. 1997;56(4):1020–4.

    PubMed  CAS  Google Scholar 

  39. Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, Evenson D, Thomas Jr AJ, Alvarez JG. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16(9):1912–21.

    PubMed  CAS  Google Scholar 

  40. Gil-Guzman E, Ollero M, Lopez MC, Sharma RK, Alvarez JG, Thomas Jr AJ, Agarwal A. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16(9):1922–30.

    PubMed  CAS  Google Scholar 

  41. Buettner GR. The pecking order of free radicals and antioxidants, lipid peroxidation, alpha-tocopherol and ascorbate. Arch Biochem Biophys. 1993;300(2):535–43.

    PubMed  CAS  Google Scholar 

  42. Garrido N, Meseguer M, Simon C, Pellicer A, Remohi J. Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl. 2004;6(1):59–65.

    PubMed  CAS  Google Scholar 

  43. Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol. 2001;54(3):176–86.

    PubMed  CAS  Google Scholar 

  44. Mahfouz R, Sharma R, Sharma D, Sabanegh E, Agarwal A. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril. 2009;91(3):805–11.

    PubMed  Google Scholar 

  45. Safarinejad MR, Safarinejad S. Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol. 2009;181(2):741–51.

    PubMed  CAS  Google Scholar 

  46. Altman DG, Schultz KF, Moher D, Egger M, Davidoff F, Elbourne D, Gotzsche PC, Land T, CONSOT GROUP (Consolidated Standards of Reporting Trials). The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med. 2001;134(8):663–94.

    PubMed  CAS  Google Scholar 

  47. Agarwal A, Said TM. Carnitines and male infertility. Reprod Biomed Online. 2004;8(4):376–84.

    PubMed  CAS  Google Scholar 

  48. Ross C, Morriss A, Khairy M, Khalaf Y, Braude P, Coomarasamy A, El-Toukhy T. A systematic review of the effect of oral antioxidants on male infertility. Reprod Biomed Online. 2010;20(6):711–23.

    PubMed  CAS  Google Scholar 

  49. Golan R, Weissenberg R, Lewin LM. Carnitine and acetylcarnitine in motile and immotile human spermatozoa. Int J Androl. 1984;7(6):484–94.

    PubMed  CAS  Google Scholar 

  50. Jeulin C, Lewin LM. Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa. Hum Reprod Update. 1996;2(2):87–102.

    PubMed  CAS  Google Scholar 

  51. Costa M, Canale D, Filicori M, D’Iddio S, Lenzi A. L-carnitine in idiopathic asthenozoospermia: a multicenter study. Italian Study Group on Carnitine and Male Infertility. Andrologia. 1994;26(3):155–9.

    PubMed  CAS  Google Scholar 

  52. Vitali G, Parente R, Melotti C. Carnitine supplementation in human idiopathic asthenospermia: clinical results. Drugs Exp Clin Res. 1995;21(4):157–9.

    PubMed  CAS  Google Scholar 

  53. Lenzi A, Lombardo F, Sgro P, Salacone P, Caponecchia L, Dondero F, Gandini L. Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial. Fertil Steril. 2003;79(2):292–300.

    PubMed  Google Scholar 

  54. Cavallini G, Ferraretti AP, Gianaroli L, Biagiotti G, Vitali G. Cinnoxicam and L-carnitine/acetyl-L-carnitine treatment for idiopathic and varicocele-associated oligoasthenospermia. J Androl. 2004;25(5):761–70.

    PubMed  CAS  Google Scholar 

  55. Lenzi A, Sgrò P, Salacone P, Paoli D, Gilio B, Lombardo F, Santulli M, Agarwal A, Gandini L. A placebo-controlled double-blind randomized trial of the use of combined L-carnitine and L-acetyl-carnitine treatment in men with asthenozoospermia. Fertil Steril. 2004;81(6):1578–84.

    PubMed  CAS  Google Scholar 

  56. Balercia G, Regoli F, Armeni T, Koverech A, Manero F, Boscaro M. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil Steril. 2005;84(3):662–71.

    PubMed  CAS  Google Scholar 

  57. Sigman M, Glass S, Campagnone J, Pyor JL. Carnitine for the treatment of idiopathic asthenospermia: a randomized, double-blind, placebo-controlled trial. Fertil Steril. 2006;85(5):1409–14.

    PubMed  Google Scholar 

  58. Gupta NP, Kumar R. Lycopene therapy in idiopathic male infertility- a preliminary report. Int Urol Nephrol. 2002;34(3):369–72.

    PubMed  CAS  Google Scholar 

  59. Mohanty NK, Sujit K, Jha AK, Arora RP. Management of idiopathic oligoasthenospermia with lycopene. Indian J Urol. 2001;18(1):57–61.

    Google Scholar 

  60. Mendiola J, Torres-Cantero AM, Vioque J, Moreno-Grau JM, Ten J, Roca M, Moreno-Grau S, Bernabeu R. A low intake of antioxidant nutrients is associated with poor semen quality in patients attending fertility clinics. Fertil Steril. 2010;93(4):1128–33.

    PubMed  CAS  Google Scholar 

  61. Oborna I, Malickova K, Fingerova H, Brezinova J, Horka P, Novotny J, Bryndova H, Filipcikova R, Svobodova M. A randomized controlled trial of lycopene treatment on soluble receptor for advanced glycation end products in seminal and blood plasma of normospermic men. Am J Reprod Immunol. 2011;66(3):179–84. doi:10.1111/j.1600-0897.2011.00984.x.

    PubMed  CAS  Google Scholar 

  62. Wertz K, Siler U, Goralczyk R. Lycopene: modes of action to promote prostate health. Arch Biochem Biophys. 2004;430:127–34.

    PubMed  CAS  Google Scholar 

  63. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–605.

    PubMed  CAS  Google Scholar 

  64. Aziz N, Novotny J, Oborna I, Fingerova H, Brezinova J, Svobodova M. Comparison of chemiluminescence and flow cytometry in the estimation of reactive oxygen and nitrogen species in human semen. Fertil Steril. 2010;94(7):2604–8.

    PubMed  CAS  Google Scholar 

  65. Paradiso Galatioto G, Gravina GL, Angelozzi G, Sacchetti A, Innominato PF, Pace G, Ranieri G, Vicentini C. May antioxidant therapy improve sperm parameters of men with persistent oligospermia after retrograde embolization for varicocele? World J Urol. 2008;26(1):97–102.

    PubMed  CAS  Google Scholar 

  66. Ciftci H, Verit A, Savas M, Yeni E, Erel O. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status. Urology. 2009;74(1):73–6.

    PubMed  Google Scholar 

  67. Aitken RJ, Buckingham D, Harkiss D. Use of a xanthine oxidase oxidant generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil. 1993;97(2):441–50.

    PubMed  CAS  Google Scholar 

  68. Elzanaty S, Malm J, Giwercman A. Visco-elasticity of seminal fluid in relation to the epididymal and accessory sex gland function and its impact on sperm motility. Int J Androl. 2004;27(2):94–100.

    PubMed  CAS  Google Scholar 

  69. Oeda T, Henkel R, Ohmori H, Schill WB. Scavenging effect of N-acetyl-L-cysteine against reactive oxygen species in human semen: a possible therapeutic modality for male factor infertility? Andrologia. 1997;29(3):125–31.

    PubMed  CAS  Google Scholar 

  70. Akiyama M. In vivo scavenging effect of ethylcysteine on reactive oxygen species in human semen. Nihon Hinyokika Gakkai Zasshi. 1999;90(3):421–8.

    PubMed  CAS  Google Scholar 

  71. Dawson EB, Harris WA, Rankin WE, Charpentier LA, McGanity WJ. Effect of ascorbic acid on male fertility. Ann N Y Acad Sci. 1987;498:312–23.

    PubMed  CAS  Google Scholar 

  72. Thiele JJ, Friesleben HJ, Fuchs J, Ochsendorf FR. Ascorbic acid and urate in human seminal plasma: determination and interrelationships with chemiluminescence in washed semen. Hum Reprod. 1995;10(1):110–5.

    PubMed  CAS  Google Scholar 

  73. Lewis SE, Sterling ES, Young IS, Thompson W. Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril. 1997;67(1):142–7.

    PubMed  CAS  Google Scholar 

  74. Ehrenkranz RA. Vitamin E and the neonate. Am J Dis Child. 1980;134(12):1157–68.

    PubMed  CAS  Google Scholar 

  75. Palamanda JR, Kehrer JP. Involvement of vitamin E and protein thiols in the inhibition of microsomal lipid peroxidation by glutathione. Lipids. 1993;28(5):427–31.

    PubMed  CAS  Google Scholar 

  76. Suleiman SA, Ali ME, Zaki ZM, el-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17(5):530–7.

    PubMed  CAS  Google Scholar 

  77. Kessopoulou E, Powers HJ, Sharma KK, Pearson MJ, Russell JM, Cooke ID, Barratt CL. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen species associated male infertility. Fertil Steril. 1995;64(4):825–31.

    PubMed  CAS  Google Scholar 

  78. Rolf C, Cooper TG, Yeung CH, Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: a randomized, placebo-controlled, double-blind study. Hum Reprod. 1999;14(4):1028–33.

    PubMed  CAS  Google Scholar 

  79. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9(6):367–76.

    PubMed  CAS  Google Scholar 

  80. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl. 1992;13(5):368–78.

    PubMed  Google Scholar 

  81. Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohe L. Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999;285(5432):1393–6.

    PubMed  CAS  Google Scholar 

  82. Comhaire FH, Christophe AB, Zalata AA, Dhooge WS, Mahmoud AM, Depuydt CE. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids. 2000;63(3):159–65.

    PubMed  CAS  Google Scholar 

  83. Iwanier K, Zachara BA. Selenium supplementation enhances the element concentration in blood and seminal fluid but does not change the spermatozoal quality characteristics in subfertile men. J Androl. 1995;16(5):441–7.

    PubMed  CAS  Google Scholar 

  84. Scott R, Macpherson A, Yates RW, Hussain B, Dixon J. The effect of oral selenium supplementation on human sperm motility. Br J Urol. 1998;82(1):76–80.

    PubMed  CAS  Google Scholar 

  85. Hawkes WC, Turek PJ. Effects of dietary selenium on sperm motility in healthy men. J Androl. 2001;22(5):764–72.

    PubMed  CAS  Google Scholar 

  86. Surai PF, Blesbois E, Grasseau I, Chalah T, Brillard JP, Wishart GJ, Cerolini S, Sparks NH. Fatty acid composition, glutathione peroxidase and superoxide dismutase activity and total antioxidant activity of avian semen. Comp Biochem Physiol B Biochem Mol Biol. 1998;120(3):527–33.

    PubMed  CAS  Google Scholar 

  87. Kleene KC. The mitochondrial capsule selenoprotein—a structural protein in the mitochondrial capsule of mammalian sperm. In: Burk RF, editor. Selenium in biology and human health. New York: Springer; 1994. p. 134–49.

    Google Scholar 

  88. Maddipati KR, Marnett LJ. Characterization of the major hydroperoxide-reducing activity of human plasma: purification and properties of a selenium-dependent glutathione peroxidase. J Biol Chem. 1987;262(36):17398–403.

    PubMed  CAS  Google Scholar 

  89. Brown DG, Burk RF. Selenium retention in tissue and sperm of rats fed a Torula yeast diet. J Nutr. 1973;103(1):102–8.

    PubMed  CAS  Google Scholar 

  90. Bleau G, Lemabre J, Faucher G, Roberts KD, Chapdelaine A. Semen selenium and human fertility. Fertil Steril. 1984;42(6):890–4.

    PubMed  CAS  Google Scholar 

  91. Saaranen M, Suistomaa U, Vanha-Perttula T. Semen selenium content and sperm mitochondrial volume in human and some animal species. Hum Reprod. 1989;4(3):304–8.

    PubMed  CAS  Google Scholar 

  92. Roy AC, Karunanithy R, Ratman SS. Lack of correlation of selenium level in human semen with sperm count/motility. Arch Androl. 1990;25(1):59–62.

    PubMed  CAS  Google Scholar 

  93. Behne D, Gessner H, Wolters G, Brotherton J. Selenium, rubidium and zinc in human semen and semen fractions. Int J Androl. 1988;11(5):415–23.

    PubMed  CAS  Google Scholar 

  94. Bendvold E, Gottlieb C, Svanborg K, Bygdeman M, Eneroth P. Concentration of prostaglandins in seminal fluid of fertile men. Int J Androl. 1987;10(2):463–9.

    PubMed  CAS  Google Scholar 

  95. Mangano NG, Sabella P, Mangano A. In vitro effects of L-carnitine on the inhibition of sperm motility induced by nonsteroidal anti-inflammatory drug. Clin Ther. 2000;151(3):353–64.

    Google Scholar 

  96. Cavallini G, Biagiotti G, Ferraretti AP, Gianaroli L, Vitali G. Medical therapy of oligoasthenospermia associated to left varicocele: an option. BJU Int. 2003;91(6):513–8.

    PubMed  CAS  Google Scholar 

  97. Ito H, Fuse H, Minagawa H, Kawamura K, Marukami M, Shimazaky J. Internal spermatic vein prostaglandins in varicocele patients. Fertil Steril. 1982;37(2):218–22.

    PubMed  CAS  Google Scholar 

  98. Fuse H, Minagawa H, Ito H, Shimazaki J. The effects of prostaglandin synthetase inhibitor on male infertility. Hinyokika Kiyo. 1984;30(10):1439–45.

    PubMed  CAS  Google Scholar 

  99. Loescher W, Littgenau H, Schlegel W, Kruger S. Pharmacokinetics of non-steroidal anti-inflammatory drugs in male rabbits after acute and chronic administration and effect of chronic treatment on seminal prostaglandins, sperm quality and fertility. J Reprod Fertil. 1988;82(1):353–64.

    CAS  Google Scholar 

  100. Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.

    PubMed  CAS  Google Scholar 

  101. Gavella M, Lipovac V, Marotti T. Effect of pentoxifylline on superoxide anion production by sperm. Int J Androl. 1991;14(5):320–7.

    PubMed  CAS  Google Scholar 

  102. Gavella M, Lipovac V. Pentoxifylline-mediated reduction of superoxide anion production by human spermatozoa. Andrologia. 1992;24(1):37–9.

    PubMed  CAS  Google Scholar 

  103. Pang SC, Chan PJ, Lu A. Effects of pentoxifylline on sperm motility and hyperactivation in normozoospermic and normokinetic semen. Fertil Steril. 1993;60(2):336–43.

    PubMed  CAS  Google Scholar 

  104. Okada H, Tatsumi N, Kanzaki M, Fujisawa M, Arakawa S, Kamidono S. Formation of reactive oxygen species by spermatozoa from asthenozoospermic patients: response to treatment with pentoxifylline. J Urol. 1997;157(6):2140–6.

    PubMed  CAS  Google Scholar 

  105. Yovich JM, Edirisinghe WR, Cummins JM, Yovich JL. Influence of pentoxifylline in severe male factor infertility. Fertil Steril. 1990;53(4):715–22.

    PubMed  CAS  Google Scholar 

  106. Tesarik J, Thebault A, Testart J. Effect of pentoxifylline on sperm movement characteristics in normozoospermic and asthenozoospermic specimens. Hum Reprod. 1992;7(9):1257–63.

    PubMed  CAS  Google Scholar 

  107. Omu AE, Al-Azemi MK, Kehinde EO, Anim JT, Oriowo MA, Mathew TC. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract. 2008;17(2):108–16.

    PubMed  CAS  Google Scholar 

  108. Omu AE, Dahti H, Al-Othman S. Treatment of asthenozoospermia with zinc sulphate: andrological, immunological and obstetric outcome. Eur J Obstet Gynecol Reprod Biol. 1998;79(2):179–84.

    PubMed  CAS  Google Scholar 

  109. Landau B, Singer R, Klein T, Segenreich E. Folic acid levels in blood and seminal plasma of normo- and oligospermic patients prior and following folic acid treatment. Experientia. 1978;34(10):1301–2.

    PubMed  CAS  Google Scholar 

  110. Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielhuis GA, Steegers-Theunissen RP. Effects of folic acid and zinc sulphate on male factor subfertility: a double-blinded, randomized, placebo-controlled trial. Fertil Steril. 2002;77(3):491–8.

    PubMed  Google Scholar 

  111. Chia SE, Ong CN, Chua LH, Ho LM, Tay SK. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J Androl. 2000;21(1):53–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Agarwal, A., Kashou, A.H., Sekhon, L.H. (2012). Oxidative Stress and the Use of Antioxidants for Idiopathic OATs. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_22

Download citation

Publish with us

Policies and ethics