Skip to main content

Effect of Oxidative Stress on ART Outcome

  • Chapter
  • First Online:
Studies on Men's Health and Fertility

Abstract

Oxidative stress is a condition that causes cellular damage including destruction of all cellular components including lipids, proteins, nucleic acids, and sugars. It affects negatively the quality of oocytes, sperm oocyte interaction, implantation, and early embryo development which influence the success of pregnancy. Many events related to infertility may occur due to OS in the female reproductive tract, such as endometriosis, hydrosalpinx, polycystic ovarian disease, unexplained infertility, and recurrent pregnancy loss. Oxidative stress may cause retardation in embryo development and growth due to cell-membrane damage, DNA damage, and apoptosis. Poor quality of spermatozoa due to oxidative stress has been correlated with poor fertilization rates, impaired embryo development, and increased rates of pregnancy loss. There are many strategies that overcome OS in assisted reproductive techniques like ensuring in vitro culture under low oxygen tension, antioxidant culture media supplementation, control of sperm reactive oxygen species production, and reducing sperm-oocyte coincubation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sikka SC. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl. 2003;25(1):5–18.

    Google Scholar 

  2. Kenkel S, Rolf C, Nieschlag E. Occupational risks for male fertility: an analysis of patients attending a tertiary referral centre. Int J Androl. 2001;24(6):318–26.

    PubMed  CAS  Google Scholar 

  3. Sharlip ID, Jarow JP, Belker AM, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82.

    PubMed  Google Scholar 

  4. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59(1):2–11.

    PubMed  CAS  Google Scholar 

  5. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    PubMed  Google Scholar 

  6. Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–208.

    PubMed  CAS  Google Scholar 

  7. Attaran M, Pasqualotto E, Falcone T, et al. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med. 2000;45(5):314–20.

    PubMed  CAS  Google Scholar 

  8. Sakkas D, Urner F, Bizzaro D, et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod. 1998;13 Suppl 4:11–9.

    PubMed  Google Scholar 

  9. Desai NR, Mahfouz R, Sharma R, Gupta S, Agarwal A. Reactive oxygen species levels are independent of sperm concentration, motility, and abstinence in a normal, healthy, proven fertile man: a longitudinal study. Fertil Steril. 2010;94(4):1541–3.

    PubMed  CAS  Google Scholar 

  10. Bucak MN, Sariozkan S, Tuncer PB, et al. The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) sperm parameters, lipid peroxidation and antioxidant activities. Small Rumin Res. 2010;89(1):24–30.

    Google Scholar 

  11. Kefer JC, Agarwal A, Sabanegh E. Role of antioxidants in the treatment of male infertility. Int J Urol. 2009;16(5):449–57.

    PubMed  CAS  Google Scholar 

  12. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12–26.

    PubMed  Google Scholar 

  13. Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.

    PubMed  CAS  Google Scholar 

  14. Agarwal A, Nallella KP, Allamaneni S, Said T. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online. 2004;8(6):616–27.

    PubMed  CAS  Google Scholar 

  15. Rhee SG. H2O2, a necessary evil for cell signaling. Science. 2006;312(5782):1882–3.

    PubMed  Google Scholar 

  16. Du Plessis SS, Makker K, Desai NR, Agarwal A. Impact of oxidative stress on IVF. Expert Rev Obstet Gynecol. 2008;3(4):539–54.

    Google Scholar 

  17. Palmieri B, Sblendorio V. Oxidative stress detection: what for? Part I. Eur Rev Med Pharmacol Sci. 2006;10:291–317.

    PubMed  CAS  Google Scholar 

  18. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

    PubMed  Google Scholar 

  19. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7:175–89.

    PubMed  CAS  Google Scholar 

  20. Pardon OF, Brackett NL, Sharma RK, et al. Seminal reactive oxygen species, sperm motility and morphology in men with spinal cord injury. Fertil Steril. 1997;67:1115–20.

    Google Scholar 

  21. Dong M, Shi Y, Cheng Q, Hao M. Increased nitric oxide in peritoneal fluid from women with idiopathic infertility and endometriosis. J Reprod Med. 2001;46:887–91.

    PubMed  CAS  Google Scholar 

  22. Pierce JD, Cackler AB, Arnett MG. Why should you care about free radicals? RN. 2004;67:38–42.

    PubMed  Google Scholar 

  23. Van Langendonckt A, Casanas-Roux F, Donnez J. Oxidative stress and peritoneal endometriosis. Fertil Steril. 2002;77:861–70.

    PubMed  Google Scholar 

  24. Ohl J, Lefebvre-Maunoury G, Wittemer C, Nisand G, Laurent MC, Hoffmann P. Nitric oxide donors for patients undergoing IVF. A prospective, double-blind, randomized, placebo-controlled trial. Hum Reprod. 2002;17:2615–20.

    PubMed  CAS  Google Scholar 

  25. Rosselli M, Keller PJ, Dubey RK. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update. 1998;4:3–24.

    PubMed  CAS  Google Scholar 

  26. Lane M, Gardner DK. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev. 2005;17:371–8.

    PubMed  CAS  Google Scholar 

  27. Ottosen LDM, Hindkjar J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J Assist Reprod Genet. 2007;24:99–103.

    PubMed  Google Scholar 

  28. Girotti AW. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B. 2001;63:103–13.

    PubMed  CAS  Google Scholar 

  29. Godley BF, Shamsi FA, Liang F-Q, et al. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem. 2005;280:21061–6.

    PubMed  CAS  Google Scholar 

  30. Korhonen K, Sjoevall S, Viitanen J, Ketoja E, Makarevich A, Peippo J. Viability of bovine embryos following exposure to the green filtered or wider bandwidth light during in vitro embryo production. Hum Reprod. 2009;24:308–14.

    PubMed  Google Scholar 

  31. Beehler BC, Przybyszewski J, Box HB. Formation of 8-hydoxydeoxyguanosine within DNA of mouse keratinocytes exposed in culture to UVB and H2O2. Carcinogenesis. 1992;13:2003–7.

    PubMed  CAS  Google Scholar 

  32. Takenaka M, Horiuchi T, Zanagimachi R. Effect of light on development of mammalian zygotes. Proc Natl Acad Sci USA. 2007;104(36):4289–93.

    Google Scholar 

  33. Nakayama T, Noda Y, Goto Y, Mori T. Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology. 1994;41:499–510.

    PubMed  CAS  Google Scholar 

  34. Finkelstein JN, Johnston CJ. Enhanced sensitivity of the postnatal lung to environmental insults and oxidant stress. Pediatrics. 2004;113(4):1092–6.

    PubMed  Google Scholar 

  35. Senft AP, Dalton TP, Nebert DW, Genter MB, Puga A, Hutchinson RJ, et al. Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor. Free Radic Biol Med. 2002;33:1268–78.

    PubMed  CAS  Google Scholar 

  36. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1(6):529–39.

    PubMed  CAS  Google Scholar 

  37. Naughton DP, Knappit J, Fairburn K, Gaffney K, Blake D, Grootveld M. Detection and investigation of the molecular nature of low-molecular-mass copper(II) ions in isolated rheumatoid knee joint synovial fluid. FEBS Lett. 1995;361:167–72.

    PubMed  CAS  Google Scholar 

  38. Liochey SI, Fridovich I. Superoxide and iron: partners in crime. IUBMB Life. 1999;48:157–61.

    Google Scholar 

  39. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.

    PubMed  CAS  Google Scholar 

  40. Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal. 2006;8:243–70.

    PubMed  CAS  Google Scholar 

  41. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007;5:e110.

    PubMed  Google Scholar 

  42. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005;70(2):200–14.

    CAS  Google Scholar 

  43. Lam M, Oleinick NL, Nieminen AL. Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem. 2001;276(50):47379–86.

    PubMed  CAS  Google Scholar 

  44. Orsi NM, Leese HJ. Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev. 2001;59:44–53.

    PubMed  CAS  Google Scholar 

  45. Catt JW, Henman M. Toxic effects of oxygen on human embryo development. Hum Reprod. 2000;15 Suppl 2:199–206.

    PubMed  Google Scholar 

  46. Burton GJ, Hempstock J, Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online. 2003;6:84–96.

    PubMed  Google Scholar 

  47. Maas DH, Storey BT, Mastroianni Jr L. Oxygen tension in the oviduct of the rhesus monkey (Macaca mulatta). Fertil Steril. 1976;27:1312–7.

    PubMed  CAS  Google Scholar 

  48. Booth PJ, Holm P, Callesen H. The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology. 2005;63:2040–52.

    PubMed  Google Scholar 

  49. Bavister B. Oxygen concentration and preimplantation development. Reprod Biomed Online. 2004;9:484–6.

    PubMed  Google Scholar 

  50. García JI, Sepúlveda S, Noriega-Hoces L. Beneficial effect of reduced oxygen concentration with transfer of blastocysts in IVF patients older than 40 years old. Health. 2010;2:1010–7.

    Google Scholar 

  51. Waldenstrom U, Engstrom AB, Hellberg D, Nilsson S. Low oxygen compared with high oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;9:2461–5.

    Google Scholar 

  52. Kovačič B, Sajko M, Vlaisavljević V. A prospective randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome on intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(2):511–9.

    PubMed  Google Scholar 

  53. Favetta LA, St John EJ, King WA, Betts DH. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med. 2007;42:1201–10.

    PubMed  CAS  Google Scholar 

  54. Harvey AJ, Kind KL, Thompson JG. Regulation of gene expression in bovine blastocysts in response to oxygen and the iron chelator desferrioxamine. Biol Reprod. 2007;77:93–101.

    PubMed  CAS  Google Scholar 

  55. Islam KN, Mendelson CR. Permissive effects of oxygen on cyclic AMP and interleukin-1 stimulation of surfactant protein A gene expression are mediated by epigenetic mechanisms. Mol Cell Biol. 2006;26:2901–12.

    PubMed  CAS  Google Scholar 

  56. Wang X, Sharma RK, Sikka SC, Thomas Jr AJ, Falcone T, Agarwal A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80:531–5.

    PubMed  Google Scholar 

  57. Bian Q, Xu LC, Wang SL, Xia YK, Tan LF, Chen JF, Song L, Chang HC, Wang XR. Study on the relation between occupational fenvalerate exposure and spermatozoa DNA damage of pesticide factory workers. Occup Environ Med. 2004;61:999–1005.

    PubMed  CAS  Google Scholar 

  58. Hammadeh ME, Hamad MF, Montenarh M, Fischer-Hammadeh C. P2 ratio in human spermatozoa from smokers and non-smokers. Hum Reprod. 2010;25(11):2708–20.

    PubMed  CAS  Google Scholar 

  59. Kim JG, Parthasarathy S. Oxidation and the spermatozoa. Semin Reprod Endocrinol. 1998;16:235–9.

    PubMed  CAS  Google Scholar 

  60. Watson PF. The causes of the reduced fertility with cryopreserved semen. Anim Reprod Sci. 2000;60–61:481–92.

    PubMed  Google Scholar 

  61. Agarwal A, Ikemoto I, Loughlin KR. Effect of sperm washing on levels of reactive oxygen species in semen. Arch Androl. 1994;33:157–62.

    PubMed  CAS  Google Scholar 

  62. Shekarriz M, DeWire DM, Thomas Jr AJ, Agarwal A. A method of human semen centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species. Eur Urol. 1995;28:31–5.

    PubMed  CAS  Google Scholar 

  63. Chi HJ, Kim JH, Ryu CS, Lee JY, Park JS, Chung DY, et al. Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum Reprod. 2008;23:1023–8.

    PubMed  CAS  Google Scholar 

  64. Kattera S, Chen C. Short coincubation of gametes in in vitro fertilization improves implantation and pregnancy rates: a prospective, randomized, controlled study. Fertil Steril. 2003;80(4):1017–21.

    PubMed  Google Scholar 

  65. Dirnfeld M, Bider D, Koifman M, Calderon I, Abramovici H. Shortened exposure of oocytes to spermatozoa improves in vitro fertilization outcome: a prospective, randomized, controlled study. Hum Reprod. 1999;14:2562–4.

    PubMed  CAS  Google Scholar 

  66. Quinn P, Lydic ML, Ho M, Bastuba M, Hendee F, Brody SA. Confirmation of the beneficial effects of brief co-incubation of gametes in human in vitro fertilization. Fertil Steril. 1998;69:399–402.

    PubMed  CAS  Google Scholar 

  67. Agarwal A, Saleh RA. Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin North Am. 2002;29:817–27.

    PubMed  Google Scholar 

  68. Aitken RJ. The human spermatozoon—a cell in crisis? The Amoroso Lecture. J Reprod Fertil. 1999;115:1–7.

    PubMed  CAS  Google Scholar 

  69. Rivlin J, Mendel J, Rubinstein S, Etkovitz N, Breitbart H. Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod. 2004;70:518–22.

    PubMed  CAS  Google Scholar 

  70. Lewis B, Aitken RJ. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. J Androl. 2001;22:611–22.

    PubMed  CAS  Google Scholar 

  71. Gavella M, Lipovac V. NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl. 1992;28:135–41.

    PubMed  CAS  Google Scholar 

  72. Vernet P, Fulton N, Wallace C, Aitken RJ. Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa. Biol Reprod. 2001;65:1102–13.

    PubMed  CAS  Google Scholar 

  73. Evenson DP, Darzynkiewicz Z, Melamed MR. Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. J Histochem Cytochem. 1982;30:279–80.

    PubMed  CAS  Google Scholar 

  74. Gil-Guzman E, Ollero M, Lopez MC, Sharma RK, Alvarez JG, Thomas Jr AJ, et al. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16:1922–30.

    PubMed  CAS  Google Scholar 

  75. Aitken RJ, West KM, Buckingham D. Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J Androl. 1994;15:343–52.

    PubMed  CAS  Google Scholar 

  76. Huszar G, Vigue L. Correlation between the rate of lipid peroxidation and cellular maturity as measured by creatine kinase activity in human spermatozoa. J Androl. 1994;15:71–7.

    PubMed  CAS  Google Scholar 

  77. Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl. 1996;17:276–87.

    PubMed  CAS  Google Scholar 

  78. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    PubMed  CAS  Google Scholar 

  79. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8:338–48.

    PubMed  CAS  Google Scholar 

  80. Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B, et al. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev. 1997;47:468–82.

    PubMed  CAS  Google Scholar 

  81. Agnihotri S, Purohit SB, Laloraya M, Kumar GP. Regional heterogeneity in intracellular distribution of superoxide and hydrogen peroxide within the sperm and its relation to sperm development. Arch Androl. 1999;43:113–21.

    PubMed  CAS  Google Scholar 

  82. Sikka SC. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl. 2004;25:5–28.

    PubMed  CAS  Google Scholar 

  83. Garrido N, Meseguer M, Simon C, Pellicer A, Remohi J. Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl. 2004;6:59–65.

    PubMed  CAS  Google Scholar 

  84. Venkatesh S, Singh G, Gupta NP, Kumar R, Deecaraman M, Dada R. Correlation of sperm morphology and oxidative stress in infertile men. Iranian J Reprod Med. 2009;7(1):29–34.

    CAS  Google Scholar 

  85. El-Demiry MI, Young H, Elton RA, Hargreave TB, James K, Chisholm GD. Leucocytes in the ejaculate from fertile and infertile men. Br J Urol. 1986;58:715–20.

    PubMed  CAS  Google Scholar 

  86. Kiessling AA, Lamparelli N, Yin HZ, Seibel MM, Eyre RC. Semen leukocytes: friends or foes? Fertil Steril. 1995;64:196–8.

    PubMed  CAS  Google Scholar 

  87. Sharma RK, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22:575–83.

    PubMed  CAS  Google Scholar 

  88. Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62:387–93.

    PubMed  CAS  Google Scholar 

  89. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73:459–64.

    PubMed  CAS  Google Scholar 

  90. Shekarriz M, Thomas Jr AJ, Agarwal A. Effects of time and sperm concentration on reactive oxygen species formation in human semen. Arch Androl. 1995;34:69–75.

    PubMed  CAS  Google Scholar 

  91. Alvarez JG, Sharma RK, Ollero M, Saleh RA, Lopez MC, Thomas Jr AJ, Evenson DP, Agarwal A. Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril. 2002;78:319–29.

    PubMed  Google Scholar 

  92. Whittington K, Ford WC. Relative contribution of leukocytes and of spermatozoa to reactive oxygen species production in human sperm suspensions. Int J Androl. 1999;22:229–35.

    PubMed  CAS  Google Scholar 

  93. Wang X, Falcone T, Attaran M, Goldberg JM, Agarwal A, Sharma RK. Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil Steril. 2002;78(6):1272–7.

    PubMed  Google Scholar 

  94. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol. 1943;138:512–8.

    CAS  Google Scholar 

  95. Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril. 1979;31:531–7.

    PubMed  CAS  Google Scholar 

  96. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

    PubMed  Google Scholar 

  97. Aitken RJ. The Founders Lecture. Human spermatozoa: fruits of creation and seeds of doubt. Reprod Fertil Dev. 2005;16:655–64.

    Google Scholar 

  98. Balercia G, Armeni T, Mantero F, Principato G, Regoli F. Total oxyradical scavenging capacity toward different reactive oxygen species in seminal plasma and sperm cells. Clin Chem Lab Med. 2003;41:13–9.

    PubMed  CAS  Google Scholar 

  99. Zalata AA, Ahmed AH, Allamaneni SS, Comhaire FH, Agarwal A. Relationship between acrosin activity of human spermatozoa and oxidative stress. Asian J Androl. 2004;6:313–8.

    PubMed  CAS  Google Scholar 

  100. Griveau JF, Dumont E, Renard P, Callegari JP, Le Lannou D. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J Reprod Fertil. 1995;103:17–26.

    PubMed  CAS  Google Scholar 

  101. Hammadeh ME, Filippos A, Hamad MF. Reactive oxygen species and antioxidant in seminal plasma and their impact on male fertility. Int J Fertil Steril. 2009;3(3):87–110.

    Google Scholar 

  102. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52.

    PubMed  CAS  Google Scholar 

  103. Hammadeh ME, Stieber M, Haidl G, Schmidt W. Association between sperm chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia. 1998;30:29–35.

    PubMed  CAS  Google Scholar 

  104. Hammadeh ME, Al-Hasani S, Stieber M, et al. The effect of chromatin condensation (aniline blue staining) and morphology (strict criteria) of Human spermatozoa on fertilization, cleavage and pregnancy rates in an intracytoplasmic sperm injection programme. Hum Reprod. 1996;11:2468.

    PubMed  CAS  Google Scholar 

  105. Hammadeh ME, Al Hasani S, Rosenbaum P, Schmidt W, Fischer Hammadeh C. Reactive oxygen species, total antioxidant concentration of seminal plasma and their effect on sperm parameters and outcome of IVF/ICSI patients. Arch Gynecol Obstet. 2008;277:515–26.

    PubMed  CAS  Google Scholar 

  106. Kao SH, Chao HT, Chen HW, Hwang TI, Liao TL, Wei YH. Increase of oxidative stress in human sperm with lower motility. Fertil Steril. 2008;8:2178–84.

    CAS  Google Scholar 

  107. Zini A, de Lamirande E, Gagnon C. Lower levels of nitric oxide promote human sperm capacitation in vitro. J Androl. 1996;16:424–31.

    Google Scholar 

  108. Leclerc P, de Lamirande E, Gagnon C. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med. 1997;22:643–56.

    PubMed  CAS  Google Scholar 

  109. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998;111:645–56.

    PubMed  CAS  Google Scholar 

  110. De Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10 Suppl 1:15–21.

    PubMed  CAS  Google Scholar 

  111. Herrero MB, de Lamirande E, Gagnon C. Nitric oxide regulates human sperm capacitation and proteintyrosine phosphorylation in vitro. Biol Reprod. 1999;61:575–81.

    PubMed  CAS  Google Scholar 

  112. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41:183–97.

    PubMed  CAS  Google Scholar 

  113. Sengoku K, Tamate K, Yoshida T, Takaoka Y, Miyamoto T, Ishikawa M. Effects of low concentrations of nitric oxide on the zona pellucida binding ability of human spermatozoa. Fertil Steril. 1998;69:522–7.

    PubMed  CAS  Google Scholar 

  114. De Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14:255–65.

    Google Scholar 

  115. Sukcharoen N, Keith J, Irvine DS, Aitken RJ. Predicting the fertilizing potential of human sperm suspensions in vitro: importance of sperm morphology and leukocyte contamination. Fertil Steril. 1995;63:1293–300.

    PubMed  CAS  Google Scholar 

  116. Sukcharoen N, Keith J, Irvine DS, Aitken RJ. Prediction of the in-vitro fertilization (IVF) potential of human spermatozoa using sperm function tests: the effect of the delay between testing and IVF. Hum Reprod. 1996;11:1030–4.

    PubMed  CAS  Google Scholar 

  117. Aitken RJ, West KM. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int J Androl. 1990;13:433–51.

    PubMed  CAS  Google Scholar 

  118. Kodama H, Kuribayashi Y, Gagnon C. Effect of sperm lipid peroxidation on fertilization. J Androl. 1996;17:151–7.

    PubMed  CAS  Google Scholar 

  119. Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26:279–85.

    PubMed  CAS  Google Scholar 

  120. Zini A, Bielecki R, Phang D, et al. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75:674–7.

    PubMed  CAS  Google Scholar 

  121. Ellington J, Evenson DP, Wright Jr RW, et al. Higher quality human sperm in a sample selectively attach to oviduct (fallopian tube) epithelial cells in vitro. Fertil Steril. 1999;71:924–9.

    PubMed  CAS  Google Scholar 

  122. Huang CC, Lin DP, Tsao HM, et al. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84:130–40.

    PubMed  Google Scholar 

  123. Zini A, Meriano J, Kader K, et al. Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod. 2005;20:3476–80.

    PubMed  CAS  Google Scholar 

  124. Hansen M, Kurinczuk JJ, Bower C, et al. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346:725–30.

    PubMed  Google Scholar 

  125. Bonduelle M, Aytoz A, Van Assche E, et al. Incidence of chromosomal aberrations in children born after assisted reproduction through intracytoplasmic sperm injection. Hum Reprod. 1998;13:781–92.

    PubMed  CAS  Google Scholar 

  126. Tarozzi N, Bizzaro D, Flamigni C, Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online. 2007;14(6):746–57.

    PubMed  CAS  Google Scholar 

  127. Agarwal A, Gupta S, Sekhon L, Shah R. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10(8):1375–403.

    PubMed  CAS  Google Scholar 

  128. Hammadeh ME, Radwan M, Al-Hasani S, et al. Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod Biomed Online. 2006;13(5):696–706.

    PubMed  CAS  Google Scholar 

  129. Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86(3):503–12.

    PubMed  CAS  Google Scholar 

  130. Falcone T, Hurd W. Clinical reproductive medicine and surgery. Philadelphia: Mosby Elsevier; 2007. p. 233–50.

    Google Scholar 

  131. Barbieri E, Hidalgo M, Venegas A, Smith R, Lissi E. Varicocele-associated decrease in antioxidant defenses. J Androl. 1999;20:713–7.

    PubMed  CAS  Google Scholar 

  132. Ozbek E, Turkoz Y, Gokdeniz R, Davarci M, Ozugurlu F. Increased nitric oxide production in the spermatic vein of patients with varicocele. Eur Urol. 2000;37:172–5.

    PubMed  CAS  Google Scholar 

  133. Weinberg JB, Doty E, Bonaventura J, Haney AF. Nitric oxide inhibition of human sperm motility. Fertil Steril. 1995;64:408–13.

    PubMed  CAS  Google Scholar 

  134. Saleh R, Agarwal A, Sharma R, Said T, Sikka S, Thomas Jr A. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.

    PubMed  Google Scholar 

  135. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.

    PubMed  CAS  Google Scholar 

  136. Said TM, Tellez S, Evenson DP, Del Valle AP. Assessment of sperm quality, DNA integrity and cryopreservation protocols in men diagnosed with testicular and systemic malignancies. Andrologia. 2009;41:377–82.

    PubMed  CAS  Google Scholar 

  137. Kobayashi H, Larson K, Sharma R, et al. DNA damage in cancer patients before treatment as measured by the sperm chromatin structure assay. Fertil Steril. 2001;75:469–75.

    PubMed  CAS  Google Scholar 

  138. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14:727–33.

    PubMed  CAS  Google Scholar 

  139. Behrman HR, Kodaman PH, Preston SL, et al. Oxidative stress and the ovary. J Soc Gynecol Investig. 2001;8:S40–2.

    PubMed  CAS  Google Scholar 

  140. Sugino N, Karube-Harada A, Taketani T, et al. Withdrawal of ovarian steroids stimulates prostaglandin F2alpha production through nuclear factor-kappaB activation via oxygen radicals in human endometrial stromal cells: potential relevance to menstruation. J Reprod Dev. 2004;50:215–25.

    PubMed  CAS  Google Scholar 

  141. Du B, Takahashi K, Ishida GM, Nakahara K, Saito H, Kurachi H. Usefulness of intra-ovarian artery pulsatility and resistance indices measurement on the day of follicle aspiration for the assessment of oocyte quality. Fertil Steril. 2006;85(2):366–70.

    PubMed  CAS  Google Scholar 

  142. Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12(5):1047–455.

    PubMed  Google Scholar 

  143. Lee TH, Wu MY, Chen MJ, Chao KH, Ho HN, Yang YS. Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles. Fertil Steril. 2004;82(1):126–31.

    PubMed  CAS  Google Scholar 

  144. Jozwik M, Wolczynski S, Szamatowicz M. Oxidative stress markers in preovulatory follicular fluid in humans. Mol Hum Reprod. 1999;5:409–13.

    PubMed  CAS  Google Scholar 

  145. Sugino N, Takiguchi S, Kashida S, Karube A, Nakamura Y, Kato H. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol Hum Reprod. 2000;6(1):19–25.

    PubMed  CAS  Google Scholar 

  146. Paszkowski T, Traub AI, Robinson SY, et al. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta. 1995;236:173–80.

    PubMed  CAS  Google Scholar 

  147. Baker MA, Aitken RJ. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reprod Biol Endocrinol. 2005;3:67–75.

    PubMed  Google Scholar 

  148. Dumoulin JC, Meijers CJ, Bras M, Coonen E, Geraedts JP, Evers JL. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum Reprod. 1999;14(2):465–9.

    PubMed  CAS  Google Scholar 

  149. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62(7):1186–97.

    PubMed  CAS  Google Scholar 

  150. Wiener-Megnazi Z, Shiloh H, Avraham L. Oxidative parameters of embryo culture media may predict treatment outcome in in vitro fertilization: a novel applicable tool for improving embryo selection. Fertil Steril. 2011;95:979–84.

    PubMed  Google Scholar 

  151. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H. Molecular cues to implantation. Endocr Rev. 2004;25:341–73.

    PubMed  CAS  Google Scholar 

  152. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7:185–99.

    PubMed  Google Scholar 

  153. Ashok BT, David L, Chen YG, Garikapaty VP, Chander B, Kanduc D, Mittelman A, Tiwari RK. Peptide mimotopes of oncoproteins as therapeutic agents in breast cancer. Int J Mol Med. 2003;11:465–71.

    PubMed  CAS  Google Scholar 

  154. Riesewijk A, Martin J, van Os R, Horcajadas JA, Polman J, Pellicer A, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod. 2003;9:253–64.

    PubMed  CAS  Google Scholar 

  155. Narimoto K, Noda Y, Shiotani M, et al. Immunohistochemical assessment of superoxide dismutase expression in the human endometrium throughout the menstrual cycle. Acta Histochem Cytochem. 1990;23:487–98.

    CAS  Google Scholar 

  156. Sugino N, Kashida S, Takiguchi S, et al. Induction of superoxide dismutase by decidualization in human endometrial stromal cells. Mol Hum Reprod. 2000;6:178–84.

    PubMed  CAS  Google Scholar 

  157. Sugino N, Nakata M, Kashida S, et al. Decreased superoxide dismutase expression and increased concentrations of lipid peroxide and prostaglandin F in the decidua of failed pregnancy. Mol Hum Reprod. 2000;6:642–7.

    PubMed  CAS  Google Scholar 

  158. Sugino N, Karube-Harada A, Kashida S, Takiguchi S, Kato H. Reactive oxygen species stimulate prostaglandin F2 alpha production in human endometrial stromal cells in vitro. Hum Reprod. 2001;16:1797–801.

    PubMed  CAS  Google Scholar 

  159. Azumaguchi A, Henmi H, Kanazawa T, Saito M. Mechanism underlying the low implantation rate in patients with thin endometrium. J Mamm Ova Res. 2009;26:134–8.

    Google Scholar 

  160. Jauniaux E, Hempstock J, Greenwold N, et al. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal a and abnormal early pregnancies. Am J Pathol. 2003;162:115–25.

    PubMed  Google Scholar 

  161. Agarwal A, Allamaneni SS, Nallella KP, George AT, Mascha E. Correlation of reactive oxygen species levels with the fertilization rate after in vitro fertilization: a qualified meta-analysis. Fertil Steril. 2005;84:228–31.

    PubMed  CAS  Google Scholar 

  162. Fait V, Sela S, Ophir E, et al. Peripheral polymorphonuclear leukocyte priming contributes to oxidative stress in early pregnancy. J Soc Gynecol Investig. 2005;12:46–9.

    PubMed  CAS  Google Scholar 

  163. Banerjee S, Smallwood A, Moorhead J, et al. Placental expression of IFN-{gamma} and its receptor IFN-{gamma}R2 fail to switch from early hypoxic to late normotensive development in preeclampsia. J Clin Endocrinol Metab. 2005;90:944–52.

    PubMed  CAS  Google Scholar 

  164. Peterson JD, Herzenberg LA, Vasquez K, et al. Glutathione levels in antigen presenting cells modulate Th1 compared with Th2 response patterns. Proc Natl Acad Sci USA. 1998;95:3071–6.

    PubMed  CAS  Google Scholar 

  165. Zini A, de Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl. 1993;16:183–8.

    PubMed  CAS  Google Scholar 

  166. Machaty Z, Thompson JG, Abeydeera LR, Day BN, Prather RS. Inhibitors of mitochondrial ATP production at the time of compaction improve development of in vitro produced porcine embryos. Mol Reprod Dev. 2001;58:39–44.

    PubMed  CAS  Google Scholar 

  167. Oyawoye O, Abdel Gadir A, Garner A, Constantinovici N, Perrett C, Hardiman P. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod. 2003;18(11):2270–4.

    PubMed  CAS  Google Scholar 

  168. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998;13(4):998–1002.

    PubMed  CAS  Google Scholar 

  169. Wiener-Megnazi Z, Vardi L, Lissak A, et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil Steril. 2004;82 Suppl 3:1171–6.

    PubMed  CAS  Google Scholar 

  170. Pasqualotto EB, Agarwal A, Sharma RK, et al. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril. 2004;81(4):973–6.

    PubMed  CAS  Google Scholar 

  171. Das S, Chattopadhyay R, Ghosh S, et al. Reactive oxygen species level in follicular fluid—embryo quality marker in IVF? Hum Reprod. 2006;21(9):2403–7.

    PubMed  CAS  Google Scholar 

  172. Bedaiwy M, Agarwal A, Said TM, et al. Role of total antioxidant capacity in the differential growth of human embryos in vitro. Fertil Steril. 2006;86(2):304–9.

    PubMed  CAS  Google Scholar 

  173. Bedaiwy MA, Falcone T, Mohamed MS, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril. 2004;82(3):593–600.

    PubMed  CAS  Google Scholar 

  174. Ebisch IM, Peters WH, Thomas CM, Wetzels AM, Peer PG, Steegers-Theunissen RP. Homocysteine, glutathione and related thiols affect fertility parameters in the subfertile couple. Hum Reprod. 2006;21:1725–33.

    PubMed  CAS  Google Scholar 

  175. Seino T, Saito H, Kaneko T, Takahashi T, Kawachiya S, Kurachi H. Eight-hydroxy-2′-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil Steril. 2002;77(6):1184–90.

    PubMed  Google Scholar 

  176. Shiverick KT, Salafia C. Cigarette smoking and pregnancy I: ovarian, uterine and placental effects. Placenta. 1999;20(4):265–72.

    PubMed  CAS  Google Scholar 

  177. Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000;118:47–55.

    PubMed  CAS  Google Scholar 

  178. Duru NK, Morshedi M, Schuffner A, Oehninger S. Semen treatment with progesterone and/or acetyl-l-carnitine does not improve sperm motility or membrane damage after cryopreservation-thawing. Fertil Steril. 2000;74:715–20.

    PubMed  CAS  Google Scholar 

  179. Alvarez JG. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular sperm. Hum Reprod. 2005;20:2031–2; author reply 2–3.

    Google Scholar 

  180. Greco E, Scarselli F, Iacobelli M, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    PubMed  Google Scholar 

  181. Steele EK, McClure N, Maxwell RJ, Lewis SE. A comparison of DNA damage in testicular and proximal epididymal spermatozoa in obstructive azoospermia. Mol Hum Reprod. 1999;5:831–5.

    PubMed  CAS  Google Scholar 

  182. Sun JG, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56:602–7.

    PubMed  CAS  Google Scholar 

  183. Duran EH, Gurgan T, Gunalp S, Enginsu ME, Yarali H, Ayhan A. A logistic regression model including DNA status and morphology of spermatozoa for prediction of fertilization in vitro. Hum Reprod. 1998;13:1235–9.

    PubMed  CAS  Google Scholar 

  184. Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod. 2000;15:1717–22.

    PubMed  CAS  Google Scholar 

  185. Chan PJ, Calinisan JH, Corselli JU, Patton WC, King A. Updating quality control assays in the assisted reproductive technologies laboratory with a cryopreserved hamster oocyte DNA cytogenotoxic assay. J Assist Reprod Genet. 2001;18:129–34.

    PubMed  CAS  Google Scholar 

  186. Tomlinson MJ, Moffatt O, Manicardi GC, Biyyaro D, Afnanm M, Sakkas D. Interrelationship between seminal parameters and sperm nuclear DNA damage before and after density gradients centrifugation implication for assisted reproduction. Hum Reprod. 2001;16:2160–5.

    PubMed  CAS  Google Scholar 

  187. Muriel LL, Garrido N, Fernandez JL, Remohi J, Pellicer A, et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2006;85:371–83.

    PubMed  CAS  Google Scholar 

  188. Muriel LL, Mesguer M, Ferdinanz JL, Al Varez J, et al. Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod. 2006;21:738–44.

    PubMed  Google Scholar 

  189. Velez De La Calle JF, Muller A, Walschaerts M, Clavere J, et al. Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril. 2008;90:1792–9.

    PubMed  Google Scholar 

  190. Carrell DT, Liu L, Peterson CM, et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl. 2003;49:49–55.

    PubMed  CAS  Google Scholar 

  191. Henkle R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.

    Google Scholar 

  192. Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online. 2006;12:466–72.

    PubMed  CAS  Google Scholar 

  193. Saleh RA, Agarwal A, Nelson DR, Nada EA, El-Tonsy MH, Alvarez JG, Thomas Jr AJ, Sharma RK. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78:313–8.

    PubMed  Google Scholar 

  194. Bungum M, Humaidan P, Spano M, Jepson K, et al. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;19:1401–8.

    PubMed  CAS  Google Scholar 

  195. Erenpreiss J, Bungum M, Spano M, Elzanaty S, Orbidans J, Giwercman A. Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Hum Reprod. 2006;21:2061–4.

    PubMed  CAS  Google Scholar 

  196. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    PubMed  CAS  Google Scholar 

  197. Evenson DP, Jost LK, Marshall D, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    PubMed  CAS  Google Scholar 

  198. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73:43–50.

    PubMed  CAS  Google Scholar 

  199. Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril. 2005;84:356–64.

    PubMed  Google Scholar 

  200. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.

    PubMed  Google Scholar 

  201. Gandini L, Lombardo F, Paoli D, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19:1409–17.

    PubMed  CAS  Google Scholar 

  202. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17:3122–8.

    PubMed  CAS  Google Scholar 

  203. Benchaib M, Lorange J, Mazoyer C, et al. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87:93–100.

    PubMed  CAS  Google Scholar 

  204. Alpay Z, Saed GM, Diamond MP. Female infertility and free radicals: potential role in adhesions and endometriosis. J Soc Gynecol Investig. 2006;13(6):390–8.

    PubMed  CAS  Google Scholar 

  205. Murphy AA, Palinski W, Rankin S, Morales AJ, Parthasarathy S. Macrophage scavenger receptor(s) and oxidatively modified proteins in endometriosis. Fertil Steril. 1998;69(6):1085–91.

    PubMed  CAS  Google Scholar 

  206. Jackson LW, Schisterman EF, Dey-Rao R, Browne R, Armstrong D. Oxidative stress and endometriosis. Hum Reprod. 2005;20(7):2014–20.

    PubMed  CAS  Google Scholar 

  207. Gupta S, Agarwal A, Krajcir N, Alvarez JG. Role of oxidative stress in endometriosis. Reprod Biomed Online. 2006;13:126–34.

    PubMed  CAS  Google Scholar 

  208. Szczepanska M, Kozlik J, Skrzypczak J, Mikolajczyk M. Oxidative stress may be a piece in the endometriosis puzzle. Fertil Steril. 2003;79(6):1288–93.

    PubMed  Google Scholar 

  209. Kusçu NK, Var A. Oxidative stress but not endothelial dysfunction exists in non-obese, young group of patients with polycystic ovary syndrome. Acta Obstet Gynecol Scand. 2009;88(5):612–7.

    PubMed  Google Scholar 

  210. Fenkci IV, Serteser M, Fenkci S, Kose S. Paraoxonase levels in women with polycystic ovary syndrome. J Reprod Med. 2007;52(10):879–83.

    PubMed  CAS  Google Scholar 

  211. Nácul AP, Andrade CD, Schwarz P, de Bittencourt Jr PI, Spritzer PM. Nitric oxide and fibrinogen in polycystic ovary syndrome: associations with insulin resistance and obesity. Eur J Obstet Gynecol Reprod Biol. 2007;133(2):191–6.

    PubMed  Google Scholar 

  212. Aurrekoetxea I, Ruiz-Sanz J, del Agua AR, et al. Serum oxidizability and antioxidant status in patients undergoing in vitro fertilization. Fertil Steril. 2010;94:1279–86.

    PubMed  CAS  Google Scholar 

  213. Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Reproduction. 2002;123:479–86.

    PubMed  CAS  Google Scholar 

  214. Dennery PA. Role of redox in fetal development and neonatal diseases. Antioxid Redox Signal. 2004;6:147–53.

    PubMed  CAS  Google Scholar 

  215. Gadea J, Gumbao D, Matas C, Romar R. Supplementation of the thawing media with reduced glutathione improves function and the in vitro fertilizing ability of boar spermatozoa after cryopreservation. J Androl. 2005;26(6):749–56.

    PubMed  CAS  Google Scholar 

  216. Chan PJ, Calinisan JH, Corselli JU, Patton WC, King A. Updating quality control assays in the assisted reproductive technologies laboratory with a cryopreserved hamster oocyte DNA cytogenotoxic assay. J Assist Reprod Genet. 2001;18(3):129–34.

    PubMed  CAS  Google Scholar 

  217. Kim SS, Yang HW, Kang HG, et al. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril. 2004;82(3):679–85.

    PubMed  CAS  Google Scholar 

  218. Speroff L, Glass RH, Kase NG. Assisted reproduction clinical gynecologic endocrinology and infertility. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 1999. p. 643–724.

    Google Scholar 

  219. Esfandiari N, Falcone T, Agarwal A, et al. Protein supplementation and the incidence of apoptosis and oxidative stress in mouse embryos. Obstet Gynecol. 2005;105(3):653–60.

    PubMed  CAS  Google Scholar 

  220. Feugang JM, de Roover R, Moens A, et al. Addition of beta-mercaptoethanol or Trolox at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents. Theriogenology. 2004;61(1):71–90.

    PubMed  CAS  Google Scholar 

  221. Dalvit G, Llanes SP, Descalzo A, Insani M, Beconi M, Cetica P. Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation. Reprod Domest Anim. 2005;40(2):93–7.

    PubMed  CAS  Google Scholar 

  222. Oyamada T, Fukui Y. Oxygen tension and medium supplements for in vitro maturation of bovine oocytes cultured individually in a chemically defined medium. J Reprod Dev. 2004;50(1):107–17.

    PubMed  CAS  Google Scholar 

  223. Ali AA, Bilodeau JF, Sirard MA. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology. 2003;59(3–4):939–49.

    PubMed  CAS  Google Scholar 

  224. Guerin P, Guillaud J, Menezo Y. Hypotaurine in spermatozoa and genital secretions and its production by oviduct epithelial cells in vitro. Hum Reprod. 1995;10(4):866–72.

    PubMed  CAS  Google Scholar 

  225. Lornage J. Biological aspects of endometriosis in vitro fertilization. J Gynecol Obstet Biol Reprod (Paris). 2003;32(8 Pt 2):S48–50.

    CAS  Google Scholar 

  226. Dirnfeld M, Shiloh H, Bider D, et al. A prospective randomized controlled study of the effect of short coincubation of gametes during insemination on zona pellucida thickness. Gynecol Endocrinol. 2003;17(5):397–403.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Eid Hammadeh DVM, BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hammadeh, M.E., Hamad, M., Refaat, K., Said, T.M., Fischer-Hammadeh, C. (2012). Effect of Oxidative Stress on ART Outcome. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_21

Download citation

Publish with us

Policies and ethics