Skip to main content

Varicocele and Oxidative Stress

  • Chapter
  • First Online:
Studies on Men's Health and Fertility

Abstract

A varicocele is an abnormal dilatation of the pampiniform plexus within the spermatic cord. It is the most common male infertility factor, with multiple potential etiologies involved in its development. However, despite ongoing extensive research on varicoceles, the exact mechanism(s) by which varicocele influences male fertility is not known. Recent studies have shown that infertile men with varicocele have higher levels of seminal oxidative stress (OS) markers, and/or lower seminal antioxidant levels, than do fertile men and infertile men without varicocele. The abnormally high levels of seminal OS biomarkers (e.g., reactive oxygen species, malonaldehyde) in infertile men with varicocele is clinically relevant as these markers have been associated with poor sperm function and reduced fertility potential. In addition, infertile patients with varicocele possess high levels of sperm DNA damage and the mechanism of varicocele-induced sperm DNA damage is believed to be at least in part due to OS. The observed improvement in seminal OS and sperm DNA damage after varicocele repair supports the premise that varicocele can induce seminal OS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naughton CK, Nangia AK, Agarwal A. Pathophysiology of varicoceles in male infertility. Hum Reprod Update. 2001;7(5):473–81.

    PubMed  CAS  Google Scholar 

  2. Shafik A, Bedeir GA. Venous tension patterns in cord veins. I: in normal and varicocele individuals. J Urol. 1980;123(3):383–5.

    PubMed  CAS  Google Scholar 

  3. Ahlberg NE, Bartley O, Chidekel N. Right and left gonadal veins. An anatomical and statistical study. Acta Radiol Diagn (Stockh). 1966;4(6):593–601.

    CAS  Google Scholar 

  4. Comhaire F, Monteyne R, Kunnen M. The value of scrotal thermography as compared with selective retrograde venography of the internal spermatic vein for the diagnosis of “subclinical” varicocele. Fertil Steril. 1976;27(6):694–8.

    PubMed  CAS  Google Scholar 

  5. Zorgniotti AW, Macleod J. Studies in temperature, human semen quality, and varicocele. Fertil Steril. 1973;24(11):854–63.

    PubMed  CAS  Google Scholar 

  6. Goldstein M, Eid JF. Elevation of intratesticular and scrotal skin surface temperature in men with varicocele. J Urol. 1989;142(3):743–5.

    PubMed  CAS  Google Scholar 

  7. Mieusset R, et al. Association of scrotal hyperthermia with impaired spermatogenesis in infertile men. Fertil Steril. 1987;48(6):1006–11.

    PubMed  CAS  Google Scholar 

  8. Jung A, Eberl M, Schill WB. Improvement of semen quality by nocturnal scrotal cooling and moderate behavioural change to reduce genital heat stress in men with oligoasthenoteratozoospermia. Reproduction. 2001;121(4):595–603.

    PubMed  CAS  Google Scholar 

  9. Comhaire F, Vermeulen A. Varicocele sterility: cortisol and catecholamines. Fertil Steril. 1974;25(1):88–95.

    PubMed  CAS  Google Scholar 

  10. Ito H, et al. Internal spermatic vein prostaglandins in varicocele patients. Fertil Steril. 1982;37(2):218–22.

    PubMed  CAS  Google Scholar 

  11. Ozbek E, et al. The role of adrenomedullin in varicocele and impotence. BJU Int. 2000;86(6):694–8.

    PubMed  CAS  Google Scholar 

  12. Kilinc F, et al. Experimental varicocele induces hypoxia inducible factor-1alpha, vascular endothelial growth factor expression and angiogenesis in the rat testis. J Urol. 2004;172(3):1188–91.

    PubMed  CAS  Google Scholar 

  13. Lee JD, Jeng SY, Lee TH. Increased expression of hypoxia-inducible factor-1alpha in the internal spermatic vein of patients with varicocele. J Urol. 2006;175(3 Pt 1):1045–8; discussion 1048.

    Google Scholar 

  14. Guzick DS, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345(19):1388–93.

    PubMed  CAS  Google Scholar 

  15. ESHRE Capri Workshop Group. Social determinants of human reproduction. Hum Reprod. 2001;16(7):1518–26.

    Google Scholar 

  16. Akbay E, et al. The prevalence of varicocele and varicocele-related testicular atrophy in Turkish children and adolescents. BJU Int. 2000;86(4):490–3.

    PubMed  CAS  Google Scholar 

  17. Laven JS, et al. Effects of varicocele treatment in adolescents: a randomized study. Fertil Steril. 1992;58(4):756–62.

    PubMed  CAS  Google Scholar 

  18. Lipshultz LI, Corriere Jr JN. Progressive testicular atrophy in the varicocele patient. J Urol. 1977;117(2):175–6.

    PubMed  CAS  Google Scholar 

  19. Pinto KJ, Kroovand RL, Jarow JP. Varicocele related testicular atrophy and its predictive effect upon fertility. J Urol. 1994;152(2 Pt 2):788–90.

    PubMed  CAS  Google Scholar 

  20. Sigman M, Jarow JP. Ipsilateral testicular hypotrophy is associated with decreased sperm counts in infertile men with varicoceles. J Urol. 1997;158(2):605–7.

    PubMed  CAS  Google Scholar 

  21. World Health Organization. The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. Fertil Steril. 1992;57(6):1289–93.

    Google Scholar 

  22. Zini A, et al. The influence of clinical and subclinical varicocele on testicular volume. Fertil Steril. 1997;68(4):671–4.

    PubMed  CAS  Google Scholar 

  23. Zini A, et al. Loss of left testicular volume in men with clinical left varicocele: correlation with grade of varicocele. Arch Androl. 1998;41(1):37–41.

    PubMed  CAS  Google Scholar 

  24. Alukal JP, et al. Testicular hypotrophy does not correlate with grade of adolescent varicocele. J Urol. 2005;174(6):2367–70; discussion 2370.

    Google Scholar 

  25. Diamond DA, et al. Relationship of varicocele grade and testicular hypotrophy to semen parameters in adolescents. J Urol. 2007;178(4 Pt 2):1584–8.

    PubMed  Google Scholar 

  26. Dubin L, Hotchkiss RS. Testis biopsy in subfertile men with varicocele. Fertil Steril. 1969;20(1):51–7.

    PubMed  CAS  Google Scholar 

  27. Comhaire F, Vermeulen A. Plasma testosterone in patients with varicocele and sexual inadequacy. J Clin Endocrinol Metab. 1975;40(5):824–9.

    PubMed  CAS  Google Scholar 

  28. Johnsen SG, Agger P. Quantitative evaluation of testicular biopsies before and after operation for varicocele. Fertil Steril. 1978;29(1):58–63.

    PubMed  CAS  Google Scholar 

  29. Hudson RW. The endocrinology of varicoceles. Fertil Steril. 1988;49(2):199–208.

    PubMed  CAS  Google Scholar 

  30. Agger P, Johnsen SG. Quantitative evaluation of testicular biopsies in varicocele. Fertil Steril. 1978;29(1):52–7.

    PubMed  CAS  Google Scholar 

  31. Ibrahim AA, et al. Bilateral testicular biopsy in men with varicocele. Fertil Steril. 1977;28(6):663–7.

    PubMed  CAS  Google Scholar 

  32. Santoro G, Romeo C. Normal and varicocele testis in adolescents. Asian J Androl. 2001;3(4):259–62.

    PubMed  CAS  Google Scholar 

  33. Lue YH, et al. Mild testicular hyperthermia induces profound transitional spermatogenic suppression through increased germ cell apoptosis in adult cynomolgus monkeys (Macaca fascicularis). J Androl. 2002;23(6):799–805.

    PubMed  Google Scholar 

  34. MacLeod J. Seminal cytology in the presence of varicocele. Fertil Steril. 1965;16(6):735–57.

    PubMed  CAS  Google Scholar 

  35. Ayodeji O, Baker HW. Is there a specific abnormality of sperm morphology in men with varicoceles? Fertil Steril. 1986;45(6):839–42.

    PubMed  CAS  Google Scholar 

  36. Johnson DE, Pohl DR, Rivera-Correa H. Varicocele: an innocuous condition? South Med J. 1970;63(1):34–6.

    PubMed  CAS  Google Scholar 

  37. Zargooshi J. Sperm count and sperm motility in incidental high-grade varicocele. Fertil Steril. 2007;88(5):1470–3.

    PubMed  Google Scholar 

  38. Chehval MJ, Purcell MH. Deterioration of semen parameters over time in men with untreated varicocele: evidence of progressive testicular damage. Fertil Steril. 1992;57(1):174–7.

    PubMed  CAS  Google Scholar 

  39. Lund L, Larsen SB. A follow-up study of semen quality and fertility in men with varicocele testis and in control subjects. Br J Urol. 1998;82(5):682–6.

    PubMed  CAS  Google Scholar 

  40. Zini A, San Gabriel M, Baazeem A. Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet. 2009;26(8):427–32.

    PubMed  Google Scholar 

  41. Aitken RJ, et al. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25(10):2415–26.

    PubMed  CAS  Google Scholar 

  42. Fraga CG, et al. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci USA. 1991;88(24):11003–6.

    PubMed  CAS  Google Scholar 

  43. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57(2):409–16.

    PubMed  CAS  Google Scholar 

  44. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil. 1987;81(2):459–69.

    PubMed  CAS  Google Scholar 

  45. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J Androl. 1992;13(5):379–86.

    PubMed  Google Scholar 

  46. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I: effects on the motility of intact spermatozoa and on sperm axonemes. J Androl. 1992;13(5):368–78.

    PubMed  Google Scholar 

  47. Zini A, Garrels K, Phang D. Antioxidant activity in the semen of fertile and infertile men. Urology. 2000;55(6):922–6.

    PubMed  CAS  Google Scholar 

  48. Yang MH, Schaich KM. Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes. Free Radic Biol Med. 1996;20(2):225–36.

    PubMed  CAS  Google Scholar 

  49. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322(1):33–41.

    PubMed  CAS  Google Scholar 

  50. Alvarez JG, et al. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8(5):338–48.

    PubMed  CAS  Google Scholar 

  51. Twigg J, et al. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.

    PubMed  CAS  Google Scholar 

  52. Weese DL, et al. Stimulated reactive oxygen species generation in the spermatozoa of infertile men. J Urol. 1993;149(1):64–7.

    PubMed  CAS  Google Scholar 

  53. Hendin BN, et al. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161(6):1831–4.

    PubMed  CAS  Google Scholar 

  54. Sharma RK, et al. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14(11):2801–7.

    PubMed  CAS  Google Scholar 

  55. Pasqualotto FF, et al. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73(3):459–64.

    PubMed  CAS  Google Scholar 

  56. Pasqualotto FF, et al. Oxidative stress in normospermic men undergoing infertility evaluation. J Androl. 2001;22(2):316–22.

    PubMed  CAS  Google Scholar 

  57. Allamaneni SS, et al. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril. 2004;82(6):1684–6.

    PubMed  Google Scholar 

  58. Hurtado de Catalfo GE, et al. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int J Androl. 2007;30(6):519–30.

    PubMed  CAS  Google Scholar 

  59. Pasqualotto FF, et al. Semen quality and oxidative stress scores in fertile and infertile patients with varicocele. Fertil Steril. 2008;89(3):602–7.

    PubMed  Google Scholar 

  60. Sakamoto Y, et al. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101(12):1547–52.

    PubMed  CAS  Google Scholar 

  61. Cocuzza M, et al. Impact of clinical varicocele and testis size on seminal reactive oxygen species levels in a fertile population: a prospective controlled study. Fertil Steril. 2008;90(4):1103–8.

    PubMed  CAS  Google Scholar 

  62. Mostafa T, et al. Seminal reactive oxygen species-antioxidant relationship in fertile males with and without varicocele. Andrologia. 2009;41(2):125–9.

    PubMed  CAS  Google Scholar 

  63. Ishikawa T, et al. Increased testicular 8-hydroxy-2’-deoxyguanosine in patients with varicocele. BJU Int. 2007;100(4):863–6.

    PubMed  CAS  Google Scholar 

  64. Shiraishi K, Naito K. Generation of 4-hydroxy-2-nonenal modified proteins in testes predicts improvement in spermatogenesis after varicocelectomy. Fertil Steril. 2006;86(1):233–5.

    PubMed  CAS  Google Scholar 

  65. Chen SS, Chang LS, Wei YH. Oxidative damage to proteins and decrease of antioxidant capacity in patients with varicocele. Free Radic Biol Med. 2001;30(11):1328–34.

    PubMed  CAS  Google Scholar 

  66. Mostafa T, et al. Reactive oxygen species and antioxidants relationship in the internal spermatic vein blood of infertile men with varicocele. Asian J Androl. 2006;8(4):451–4.

    PubMed  CAS  Google Scholar 

  67. Romeo C, et al. Nitric oxide production is increased in the spermatic veins of adolescents with left idiophatic varicocele. J Pediatr Surg. 2001;36(2):389–93.

    PubMed  CAS  Google Scholar 

  68. Turkyilmaz Z, et al. Increased nitric oxide is accompanied by lipid oxidation in adolescent varicocele. Int J Androl. 2004;27(3):183–7.

    PubMed  Google Scholar 

  69. Moskovtsev SI, et al. Cause-specific treatment in patients with high sperm DNA damage resulted in significant DNA improvement. Syst Biol Reprod Med. 2009;55(2):109–15.

    PubMed  CAS  Google Scholar 

  70. Oliva A, Dotta A, Multigner L. Pentoxifylline and antioxidants improve sperm quality in male patients with varicocele. Fertil Steril. 2009;91(4 Suppl):1536–9.

    PubMed  CAS  Google Scholar 

  71. Paradiso Galatioto G, et al. May antioxidant therapy improve sperm parameters of men with persistent oligospermia after retrograde embolization for varicocele. World J Urol. 2008;26(1):97–102.

    PubMed  CAS  Google Scholar 

  72. Agarwal A, et al. Role of oxidative stress in pathogenesis of varicocele and infertility. Urology. 2009;73(3):461–9.

    PubMed  Google Scholar 

  73. Nallella KP, et al. Relationship of interleukin-6 with semen characteristics and oxidative stress in patients with varicocele. Urology. 2004;64(5):1010–3.

    PubMed  Google Scholar 

  74. Konukoglu D, Serin O, Turhan MS. Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch Med Res. 2006;37(5):602–6.

    PubMed  CAS  Google Scholar 

  75. Ishikawa T, et al. Expression of leptin and leptin receptor in the testis of fertile and infertile patients. Andrologia. 2007;39(1):22–7.

    PubMed  CAS  Google Scholar 

  76. Chen Z, et al. Glial cell line-derived neurotrophic factor promotes survival and induces differentiation through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathway respectively in PC12 cells. Neuroscience. 2001;104(2):593–8.

    PubMed  CAS  Google Scholar 

  77. Akkoyunlu G, et al. Immunolocalization of glial cell-derived neurotrophic factor (GDNF) and its receptor GFR-alpha1 in varicocele-induced rat testis. Acta Histochem. 2007;109(2):130–7.

    PubMed  CAS  Google Scholar 

  78. Benoff S, et al. Deletions in L-type calcium channel alpha1 subunit testicular transcripts correlate with testicular cadmium and apoptosis in infertile men with varicoceles. Fertil Steril. 2005;83(3):622–34.

    PubMed  CAS  Google Scholar 

  79. Benoff SH, et al. Bilateral increased apoptosis and bilateral accumulation of cadmium in infertile men with left varicocele. Hum Reprod. 2004;19(3):616–27.

    PubMed  CAS  Google Scholar 

  80. Shiraishi K, Naito K. Increased expression of Leydig cell haem oxygenase-1 preserves spermatogenesis in varicocele. Hum Reprod. 2005;20(9):2608–13.

    PubMed  CAS  Google Scholar 

  81. Schlesinger MH, Wilets IF, Nagler HM. Treatment outcome after varicocelectomy. A critical analysis. Urol Clin North Am. 1994;21(3):517–29.

    PubMed  CAS  Google Scholar 

  82. Kim ED, et al. Varicocele repair improves semen parameters in azoospermic men with spermatogenic failure. J Urol. 1999;162(3 Pt 1):737–40.

    PubMed  CAS  Google Scholar 

  83. Cayan S, et al. Can varicocelectomy significantly change the way couples use assisted reproductive technologies? J Urol. 2002;167(4):1749–52.

    PubMed  Google Scholar 

  84. Smit M, et al. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2010;183(1):270–4.

    PubMed  Google Scholar 

  85. Aitken RJ, Irvine DS, Wu FC. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol. 1991;164(2):542–51.

    PubMed  CAS  Google Scholar 

  86. Barbieri ER, et al. Varicocele-associated decrease in antioxidant defenses. J Androl. 1999;20(6):713–7.

    PubMed  CAS  Google Scholar 

  87. Smith R, et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006;21(4):986–93.

    PubMed  CAS  Google Scholar 

  88. Saleh RA, et al. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80(6):1431–6.

    PubMed  Google Scholar 

  89. Zini A, et al. Effect of varicocelectomy on the abnormal retention of residual cytoplasm by human spermatozoa. Hum Reprod. 1999;14(7):1791–3.

    PubMed  CAS  Google Scholar 

  90. Mostafa T, et al. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24(5):261–5.

    PubMed  CAS  Google Scholar 

  91. Mancini A, et al. Seminal antioxidant capacity in pre- and postoperative varicocele. J Androl. 2004;25(1):44–9.

    PubMed  Google Scholar 

  92. Chen SS, et al. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179(2):639–42.

    PubMed  CAS  Google Scholar 

  93. Dada R, et al. Attenuation of oxidative stress & DNA damage in varicocelectomy: implications in infertility management. Indian J Med Res. 2010;132(6):728–30.

    PubMed  Google Scholar 

  94. Cervellione RM, et al. Effect of varicocelectomy on the plasma oxidative stress parameters. J Pediatr Surg. 2006;41(2):403–6.

    PubMed  Google Scholar 

  95. Evenson DP, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.

    PubMed  CAS  Google Scholar 

  96. Zini A, et al. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.

    PubMed  CAS  Google Scholar 

  97. Spano M, et al. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73(1):43–50.

    PubMed  CAS  Google Scholar 

  98. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.

    PubMed  CAS  Google Scholar 

  99. de Yebra L, et al. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69(4):755–9.

    PubMed  Google Scholar 

  100. Sakkas D, et al. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod Biomed Online. 2003;7(4):428–32.

    PubMed  Google Scholar 

  101. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727–33.

    PubMed  CAS  Google Scholar 

  102. Enciso M, et al. Infertile men with varicocele show a high relative proportion of sperm cells with intense nuclear damage level, evidenced by the sperm chromatin dispersion test. J Androl. 2006;27(1):106–11.

    PubMed  Google Scholar 

  103. Simsek F, et al. Role of apoptosis in testicular tissue damage caused by varicocele. Arch Esp Urol. 1998;51(9):947–50.

    PubMed  CAS  Google Scholar 

  104. El-Domyati MM, et al. The expression and distribution of deoxyribonucleic acid repair and apoptosis markers in testicular germ cells of infertile varicocele patients resembles that of old fertile men. Fertil Steril. 2010;93(3):795–801.

    PubMed  CAS  Google Scholar 

  105. Hsu HS, et al. Decreased blood flow and defective energy metabolism in the varicocele-bearing testicles of rats. Eur Urol. 1994;25(1):71–5.

    PubMed  CAS  Google Scholar 

  106. Li H, et al. Effect of surgically induced varicocele on testicular blood flow and Sertoli cell function. Urology. 1999;53(6):1258–62.

    PubMed  CAS  Google Scholar 

  107. Fujisawa M, et al. The significance of gonadotropin-releasing hormone test for predicting fertility after varicocelectomy. Fertil Steril. 1994;61(4):779–82.

    PubMed  CAS  Google Scholar 

  108. Mieusset R, Bujan L. Testicular heating and its possible contributions to male infertility: a review. Int J Androl. 1995;18(4):169–84.

    PubMed  CAS  Google Scholar 

  109. Zini A, et al. Varicocele is associated with abnormal retention of cytoplasmic droplets by human spermatozoa. Fertil Steril. 2000;74(3):461–4.

    PubMed  CAS  Google Scholar 

  110. Benoff S, et al. A potential role for cadmium in the etiology of varicocele-associated infertility. Fertil Steril. 1997;67(2):336–47.

    PubMed  CAS  Google Scholar 

  111. Marmar JL. The pathophysiology of varicoceles in the light of current molecular and genetic information. Hum Reprod Update. 2001;7(5):461–72.

    PubMed  CAS  Google Scholar 

  112. French DB, Desai NR, Agarwal A. Varicocele repair: does it still have a role in infertility treatment? Curr Opin Obstet Gynecol. 2008;20(3):269–74.

    PubMed  Google Scholar 

  113. Werthman P, et al. Significant decrease in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril. 2008;90(5):1800–4.

    PubMed  Google Scholar 

  114. Zini A, et al. Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod. 2005;20(4):1018–21.

    PubMed  CAS  Google Scholar 

  115. Zini A, et al. Effect of microsurgical varicocelectomy on human sperm chromatin and DNA integrity: a prospective trial. Int J Androl. 2010;34(1):14–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Zini MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zini, A., Al-hathal, N. (2012). Varicocele and Oxidative Stress. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_18

Download citation

Publish with us

Policies and ethics