Skip to main content

Role of Protamine Disulphide Cross-Linking in Counteracting Oxidative Damage to DNA

  • Chapter
  • First Online:
Studies on Men's Health and Fertility

Abstract

Free radical (oxygen and nitrogen-derived)-induced sperm DNA damage may take place during the process of spermatogenesis, during sperm transit through the epididymis, in the distal seminal ducts of the male genital tract and in vitro during sperm processing. Free radical-induced DNA damage during spermatogenesis may result in damage of the DNA strands and of highly sensitive telomeric DNA sequences. Post-testicular sperm DNA damage in the epididymis is considered one of the main causes of sperm DNA damage. Release of oxygen radical-producing immature spermatozoa into seminiferous tubules may result in damage of mature spermatozoa during co-migration spermatozoa through the epididymis. Post-testicular free radical-induced sperm DNA damage may also take place in the proximal portion of the epididymis through free radicals such as the superoxide anion that leak from redox recycling mechanisms involved in disulphide bond cross-­linking of protamines and flagellar proteins; in the cauda epididymis through free radicals produced by the epithelial cells; and during sperm processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, Evenson D, Thomas Jr AJ, Alvarez JG. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16:1912–21.

    Article  PubMed  CAS  Google Scholar 

  2. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.

    Article  PubMed  CAS  Google Scholar 

  3. Gosálvez J, Cortés-Gutiérrez EI, Nuñez R, Fernández JL, Caballero P, López-Fernández C, Holt WV. A dynamic assessment of sperm DNA fragmentation versus sperm viability in proven fertile human donors. Fertil Steril. 2009;92:1915–9.

    Article  PubMed  Google Scholar 

  4. Toro E, Fernández S, Colomar A, Casanovas A, Alvarez JG, López-Teijón M, Velilla E. Processing of semen can result in increased sperm DNA fragmentation. Fertil Steril. 2009;92:2109–12.

    Article  PubMed  Google Scholar 

  5. Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991;24:203–14.

    Article  PubMed  CAS  Google Scholar 

  6. Lee YJ, Shacter E. Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem. 1999;274:19792–8.

    Article  PubMed  CAS  Google Scholar 

  7. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.

    Article  PubMed  CAS  Google Scholar 

  8. Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays. 2004;26:533–42.

    Article  PubMed  CAS  Google Scholar 

  9. Marchetti F, Wyrobek AJ. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage. DNA Repair. 2008;7:572–81.

    Article  PubMed  CAS  Google Scholar 

  10. Creech MM, Arnold EV, Boyle B, Muzinich MC, Montville C, Bohle DS, Atherton RW. Sperm motility enhancement by nitric oxide produced by the oocytes of fathead minnows, Pimephelas promelas. J Androl. 1998;19:667–74.

    PubMed  CAS  Google Scholar 

  11. Hellstrom WJC, Bell M, Wang R, Sikka SC. Effect of sodium nitroprusside on sperm motility, viability, and lipid peroxidation. Fertil Steril. 1994;61:117–22.

    Google Scholar 

  12. Caulfield JL, Whishnok JS, Tannenbaum SR. Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J Biol Chem. 1998;273:12689–95.

    Article  PubMed  CAS  Google Scholar 

  13. Burney S, Caulfield JL, Niles C, Whishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res. 1999;424:37–49.

    Article  PubMed  CAS  Google Scholar 

  14. Grishko VI, Druzhyna N, LeDoux SP, Wilson GL. Nitric oxide-induced damage to mtDNA and its subsequent repair. Nucleic Acids Res. 1999;27:4510–6.

    Article  PubMed  CAS  Google Scholar 

  15. Vázquez-Gundín F, Riveroa M, Gosálvez J, Fernández JL. Radiation-induced DNA breaks in different human satellite DNA sequence areas, analyzed by DNA breakage detection—fluorescence in situ hybridization. Radiat Res. 2002;157:711–20.

    Article  PubMed  Google Scholar 

  16. Fernández JL, Gosálvez J, Goyanes V. High frequency of mutagen-induced chromatid exchanges at interstitial telomere-like DNA sequence blocks of Chinese hamster cells. Chromosome Res. 1995;3:281–4.

    Article  PubMed  Google Scholar 

  17. Favetta LA, Madan P, Mastromonaco GF, St. John EJ, King WA, Betts DH. The oxidative stress adaptor p66shc is required for permanent embryo arrest in vitro. BMC Dev Biol. 2007;7:132.

    Article  PubMed  Google Scholar 

  18. Donate LE, Blasco MA. Telomeres in cancer and ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366:76–84.

    Article  PubMed  CAS  Google Scholar 

  19. Mosquera A, Gosálvez J, Sabatier L, Fernandez JL. Hamster cells are hypersensitive to nitric oxide damage, and DNA-PKcs has a specific local role in its repair. Genes Chromosomes Cancer. 2005;44:76–84.

    Article  PubMed  CAS  Google Scholar 

  20. Tamayo M, Mosquera A, Regoc I, Francisco J, Blanco FJ, Gosálvez J, Fernández JL. Decreased length of telomeric DNA sequences and increased numerical chromosome aberrations in human osteoarthriticchondrocytes. Mutat Res. 2011;708:50–8.

    Article  PubMed  CAS  Google Scholar 

  21. Liu L, Blasco M, Trimarchi J, Keefe D. An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol. 2002;249:74–84.

    Article  PubMed  CAS  Google Scholar 

  22. Santiso R, Tamayo M, Gosálvez J, Meseguer M, Garrido N, Fernández JL. Swim-up procedure selects spermatozoa with longer telomere length. Mutat Res. 2010;688:88–90.

    Article  PubMed  CAS  Google Scholar 

  23. Aitken J, Krausz C, Buckingham D. Relationships between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol Reprod Dev. 1994;39:268–79.

    Article  PubMed  CAS  Google Scholar 

  24. Gil-Guzman E, Ollero M, Lopez MC, Sharma RK, Alvarez JG, Thomas Jr AJ, Agarwal A. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16:1922–30.

    Article  PubMed  CAS  Google Scholar 

  25. Ollero M, Powers D, Alvarez JG. Variation of docosahexaenoic acid content in subsets of human spermatozoa at different stages of maturation: implications for sperm lipoperoxidative damage. Mol Reprod Dev. 2000;55:326–34.

    Article  PubMed  CAS  Google Scholar 

  26. Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl. 1996;17:276–87.

    PubMed  CAS  Google Scholar 

  27. Jow WW, Schlegel PN, Cichon Z, Phillips D, Goldstein M, Bardin CW. J Androl. 1993;14:439–47.

    PubMed  CAS  Google Scholar 

  28. Steele EK, McClure N, Maxwell RJ, Lewis SE. A comparison of DNA damage in testicular and proximal epididymal spermatozoa in obstructive azoospermia. Mol Hum Reprod. 1999;5:831–5.

    Article  PubMed  CAS  Google Scholar 

  29. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Franco G, Anniballo N, Mendoza C, Tesarik J. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Article  PubMed  Google Scholar 

  30. Moskovtsev SI, Jarvi K, Mullen JB, Cadesky KI, Hannam T, Lo KC. Testicular spermatozoa have statistically significant lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93:1142–6.

    Article  PubMed  CAS  Google Scholar 

  31. Drevet JR. The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol. 2006;250:70–9.

    Article  PubMed  CAS  Google Scholar 

  32. Alvarez JG, Sharma RK, Ollero M, Saleh RA, Lopez MC, Thomas Jr AJ, Evenson DP, Agarwal A. Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril. 2002;78:319–29.

    Article  PubMed  Google Scholar 

  33. Gallegos G, Ramos B, Santiso R, Goyanes V, Gosálvez J, Fernández JL. Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and mycoplasma. Fertil Steril. 2008;90:328–34.

    Article  PubMed  Google Scholar 

  34. Mitropoulos D, Deliconstantinos G, Zervas A, et al. Nitric oxide synthase and xanthine oxidase activities in the spermatic vein of patients with varicocele: a potential role for nitric oxide and peroxynitrite in sperm dysfunction. J Urol. 1996;156:1952.

    Article  PubMed  CAS  Google Scholar 

  35. Romeo C, Ientile R, Santoro G, et al. Nitric oxide production is increased in the spermatic veins of adolescents with left idiopathic varicocele. J Pediatr Surg. 2001;36:389.

    Article  PubMed  CAS  Google Scholar 

  36. Ozbek E, Turkoz Y, Gokdeniz R, et al. Increased nitric oxide production in the spermatic vein of patients with varicocele. Eur Urol. 2000;37:172.

    Article  PubMed  CAS  Google Scholar 

  37. Chen SS, Huang WJ, Chang LS, et al. 8-Hydroxy-2′-deoxyguanosine in leukocyte DNA of spermatic vein as a biomarker of oxidative stress in patients with varicocele. J Urol. 2004;172:1418.

    Article  PubMed  CAS  Google Scholar 

  38. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas Jr AJ. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.

    Article  PubMed  Google Scholar 

  39. Smith R, Kaune H, Parodi D, Madariaga M, Rios R, Morales I, Castro A. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006;21:986–93.

    Article  PubMed  CAS  Google Scholar 

  40. Dada R, Venkatesh S, Kumar K, Shamsi MB. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2010;184:1577–82.

    Article  PubMed  Google Scholar 

  41. Smit M, et al. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2010;183(1):270–4.

    Article  PubMed  Google Scholar 

  42. Barbieri ER, Hidalgo ME, Venegas A, Smith R, Lissi EA. Varicocele-associated decrease in antioxidant defenses. J Androl. 1999;20:713–7.

    PubMed  CAS  Google Scholar 

  43. Hendin BN, Kolettis PN, Sharma RK, Thomas Jr AJ, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161:1831–4.

    Article  PubMed  CAS  Google Scholar 

  44. Allamaneni SS, Naughton CK, Sharma RK, Thomas Jr AJ, Agarwal A. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril. 2004;82:1684–6.

    Article  PubMed  Google Scholar 

  45. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43.

    Article  PubMed  Google Scholar 

  46. Türkyilmaz Z, Gülen S, Sönmez K, Karabulut R, Dinçer S, Can Başaklar A, Kale N. Increased nitric oxide is accompanied by lipid oxidation in adolescent varicocele. Int J Androl. 2004;27:183–7.

    Article  PubMed  Google Scholar 

  47. Gosálvez J, López-Fernández C, Fernández JL, Gouraud A, Holt WV. The extent of iatrogenic DNA damage in spermatozoa as a species-specific characteristic. Mol Reprod Dev. Mol Reprod Dev. 2011;78:951–61.

    Google Scholar 

  48. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44:569–74.

    Article  PubMed  CAS  Google Scholar 

  49. Ward WS. The structure of the sleeping genome: implications of sperm DNA organization for somatic cells. J Cell Biochem. 1994;55:77–82.

    Article  PubMed  CAS  Google Scholar 

  50. Wykes SM, Krawetz SA. The structural organization of sperm chromatin. J Biol Chem. 2003;278:29471–7.

    Article  PubMed  CAS  Google Scholar 

  51. Biegeleisen K. The probable structure of the protamine-DNA complex. J Theor Biol. 2006;241:533–40.

    Article  PubMed  CAS  Google Scholar 

  52. McKay DJ, Renaux BS, Dixon GH. The amino acid sequence of human sperm protamine P1. Biosci Rep. 1985;5:383–91.

    Article  PubMed  CAS  Google Scholar 

  53. Mengual L, Ballesca JL, Ascaso C, Oliva R. Marked differences in protamine content and P1/P2 ratios in sperm cells from Percoll fractions between patients and controls. J Androl. 2003;24:438–47.

    PubMed  Google Scholar 

  54. Yoshii T, Kuji N, Komatsu S, Iwahashi K, Tanaka Y, Yoshida H, Wada A, Yoshimura Y. Fine resolution of human sperm nucleoproteins by two-dimensional electrophoresis. Mol Hum Reprod. 2005;11:677–81.

    Article  PubMed  CAS  Google Scholar 

  55. Balhorn R, Gledhill BL, Wyrobek AJ. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry. 1977;16:4074–80.

    Article  PubMed  CAS  Google Scholar 

  56. Balhorn R. A model for the structure of chromatin in mammalian sperm. J Cell Biol. 1982;93:298–305.

    Article  PubMed  CAS  Google Scholar 

  57. Oliva R, Dixon GH. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol. 1991;40:25–94.

    Article  PubMed  CAS  Google Scholar 

  58. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417–35.

    Article  PubMed  CAS  Google Scholar 

  59. de Yebra L, Ballescà JL, Vanrell JA, Corzett M, Balhorn R, Oliva R. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69:755–9.

    Article  PubMed  Google Scholar 

  60. Aoki VW, Moskovtsev SI, Willis J, Liu LH, Mullen JBM, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26:741–8.

    Article  PubMed  CAS  Google Scholar 

  61. García-Peiró A, Martínez-Heredia J, Oliver-Bonet M, Abad C, Amengua JM, Navarro J, Jones C, Coward K, Gosálvez J, Benet J. Protamine P1/P2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steril. 2011;95(1):105–9.

    Article  PubMed  Google Scholar 

  62. Szczygiel MA, Ward WS. Combination of dithiothreitol and detergent treatment of spermatozoa causes paternal chromosomal damage. Biol Reprod. 2002;67:1532–7.

    Article  PubMed  CAS  Google Scholar 

  63. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:33–44.

    PubMed  CAS  Google Scholar 

  64. Aitken RJ, De Luliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2008;32:46–56.

    Article  PubMed  Google Scholar 

  65. Bedford JM, Calvin HI. Changes in –S–S– linked structures of the sperm tail during epididymal maturation, with comparative observations in sub-mammalian species. J Exp Zool. 1974;187:181–204.

    Article  PubMed  CAS  Google Scholar 

  66. Yanagimachi R. Stability of the mammalian sperm nucleus. Zygote. 1994;2:383–4.

    PubMed  CAS  Google Scholar 

  67. Ahmadi A, Soon-Chye NG. Destruction of protamine in human sperm inhibits sperm binding and penetration in the zona-free hamster penetration test but increases sperm head decondensation and male pronuclear formation in the hamster–ICSI assay. J Assist Reprod Genet. 1999;16:128–32.

    Article  PubMed  CAS  Google Scholar 

  68. Vilfan ID, Conwell CC, Hud NV. Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem. 2004;279:20088–95.

    Article  PubMed  CAS  Google Scholar 

  69. Enciso M, Johnston SD, Gosalvez J. Differential resistance of mammalian sperm chromatin to oxidative stress as assessed by a two-tailed comet assay. Reprod Fertil Dev. 2011;23(5):633–7.

    Article  PubMed  CAS  Google Scholar 

  70. Cummins JM. Decondensation of sperm nuclei of Australian marsupials: effects of air drying and of calcium and magnesium. Gamete Res. 1980;3:351–67.

    Article  CAS  Google Scholar 

  71. Balhorn R. Molecular biology of chromosome function. In: Adolph KV, Adolph KV, editors. Mammalian protamines: structure and molecular interactions. New York: Springer; 1989. p. 366–95.

    Google Scholar 

  72. Bennetts LE, Aitken RJ. A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol Reprod Dev. 2005;71:77–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan G. Alvarez MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alvarez, J.G., Gosalvez, J. (2012). Role of Protamine Disulphide Cross-Linking in Counteracting Oxidative Damage to DNA. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_11

Download citation

Publish with us

Policies and ethics