Skip to main content

Electromagnetic Radiation and Oxidative Stress in the Male Germ Line

  • Chapter
  • First Online:
Book cover Studies on Men's Health and Fertility

Abstract

The beneficial impacts of mobile-based communications on society are considerable. Health concerns over the broadcast of radio frequency electromagnetic waves, which carry the information for this medium, are now gaining momentum but are not without its controversies. Studies in the past that aim to determine whether concerns are warranted are sometimes lacking in impact because of poor understanding of radiation science. Nevertheless, the studies completed to date are important in developing the field toward the goal of confirming or disproving claims that radio frequency electromagnetic radiation (RF-EMR) is a serious health issue. We focus on what has been achieved to date, toward determining the effects of RF-EMR on the male reproductive system and information presented which may underpin the potential mechanisms at play. We suggest that oxidative stress may have a key role in the detrimental effects observed in the human spermatozoon and that this cell type may be a unique model to determine the potential mechanism of action given its sensitivities to such stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darnell J, Lodish H, Baltimore D, editors. Nerve cells and the electrical properties of cell membranes. New York: Scientific American Books; 1986.

    Google Scholar 

  2. Sheppard AR, Swicord ML, Balzano Q. Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes. Health Phys. 2008;95(4):365–96.

    Article  PubMed  CAS  Google Scholar 

  3. Dubey RB, Hanmandlu M, Gupta SK. Risk of brain tumors from wireless phone use. J Comput Assist Tomogr. 2010;34(6):799–807.

    Article  PubMed  Google Scholar 

  4. de Vocht F, Burstyn I, Cherrie JW. Time trends (1998-2007) in brain cancer incidence rates in relation to mobile phone use in England. Bioelectromagnetics. 2011;32(5):334–9.

    Article  PubMed  Google Scholar 

  5. Joines WT, Zhang Y, Li CX, Jirtle RL. The measured electrical-properties of normal and malignant human tissues from 50 to 900 Mhz. Med Phys. 1994;21(4):547–50.

    Article  PubMed  CAS  Google Scholar 

  6. Ichikawa F, Chipchase J, Grignani R. Where’s the phone? A study of mobile phone location in public spaces. In: Paper presented at mobile technology, applications and systems, 2005 2nd international conference, Guangzhou, China; 2005.

    Google Scholar 

  7. Whittow WG, Panagamuwa CJ, Edwards RM, Vardaxoglou JC. On the effects of straight metallic jewellery on the specific absorption rates resulting from face-illuminating radio communication devices at popular cellular frequencies. Phys Med Biol. 2008;53(5):1167–82.

    Article  PubMed  CAS  Google Scholar 

  8. Foster KR, Glaser R. Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys. 2007;92(6):609–20.

    Article  PubMed  CAS  Google Scholar 

  9. Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16(2–3):79–88.

    Article  PubMed  CAS  Google Scholar 

  10. Challis LJ. Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics. 2005;Suppl 7:S98–106.

    Google Scholar 

  11. Johnson RD, Navratil M, Poe BG, et al. Analysis of mitochondria isolated from single cells. Anal Bioanal Chem. 2007;387(1):107–18.

    Article  PubMed  CAS  Google Scholar 

  12. Blank M. Do electromagnetic fields interact with electrons in the Na, K-ATPase? Bioelectromagnetics. 2005;26(8):677–83.

    Article  PubMed  CAS  Google Scholar 

  13. Blank M. Electric stimulation of protein synthesis in muscle. Adv Chem Ser. 1995;250:143–53.

    Article  CAS  Google Scholar 

  14. Luben RA. Membrane signal-transduction mechanisms and biological effects of low-energy electromagnetic fields. Adv Chem Ser. 1995;250:437–50.

    Article  CAS  Google Scholar 

  15. Kotnik T, Miklavcic D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J. 2006;90(2):480–91.

    Article  PubMed  CAS  Google Scholar 

  16. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 2002;70(2–3):120–9.

    Article  PubMed  CAS  Google Scholar 

  17. Seger R, Friedman J, Kraus S, Hauptman Y, Schiff Y. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007;405:559–68.

    Article  PubMed  Google Scholar 

  18. Kotnik T, Pucihar G, Miklavcic D. Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol. 2010;236(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  19. Cotgreave IA. Biological stress responses to radio frequency electromagnetic radiation: are mobile phones really so (heat) shocking? Arch Biochem Biophys. 2005;435(1):227–40.

    Article  PubMed  CAS  Google Scholar 

  20. Porcelli M, Cacciapuoti G, Fusco S, et al. Non-thermal effects of microwaves on proteins: thermophilic enzymes as model system. FEBS Lett. 1997;402(2–3):102–6.

    Article  PubMed  CAS  Google Scholar 

  21. de Pomerai DI, Smith B, Dawe A, et al. Microwave radiation can alter protein conformation without bulk heating. FEBS Lett. 2003;543(1–3):93–7.

    Article  PubMed  Google Scholar 

  22. Mancinelli F, Caraglia M, Abbruzzese A, d’Ambrosio G, Massa R, Bismuto E. Non-thermal effects of electromagnetic fields at mobile phone frequency on the refolding of an intracellular protein: myoglobin. J Cell Biochem. 2004;93(1):188–96.

    Article  PubMed  CAS  Google Scholar 

  23. De Iuliis GN, Thomson LK, Mitchell LA, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81(3):517–24.

    Article  PubMed  Google Scholar 

  24. Pacey AA. Environmental and lifestyle factors associated with sperm DNA damage. Hum Fertil. 2010;13(4):189–93.

    Article  CAS  Google Scholar 

  25. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    Article  PubMed  CAS  Google Scholar 

  26. Robaire B, Delbes G, Hales BF. Toxicants and human sperm chromatin integrity. Mol Hum Reprod. 2010;16(1):14–22.

    Article  PubMed  Google Scholar 

  27. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  28. Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32(1):46–56.

    Article  PubMed  CAS  Google Scholar 

  29. Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online. 2006;12(4):466–72.

    Article  PubMed  CAS  Google Scholar 

  30. Grundler W, Kaiser F, Keilmann F, Walleczek J. Mechanisms of electromagnetic-interaction with cellular-systems. Naturwissenschaften. 1992;79(12):551–9.

    Article  PubMed  CAS  Google Scholar 

  31. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4(7):e6446.

    Article  PubMed  Google Scholar 

  32. Naziroglu M, Gumral N. Modulator effects of l-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol. 2009;85(8):680–9.

    Article  PubMed  CAS  Google Scholar 

  33. Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz Radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicol Ind Health. 2007;23(7):411–20.

    Article  PubMed  CAS  Google Scholar 

  34. Ozguner F, Altinbas A, Ozaydin M, et al. Mobile phone-induced myocardial oxidative stress: protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol Ind Health. 2005;21(9):223–30.

    Article  PubMed  CAS  Google Scholar 

  35. Aitken RJ, Sawyer D. The human spermatozoon—not waving but drowning. Adv Exp Med Biol. 2002;518:85–98.

    Article  Google Scholar 

  36. Delamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa—a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10:15–21.

    Google Scholar 

  37. Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa—the balance of benefit and risk. Bioessays. 1994;16(4):259–67.

    Article  PubMed  CAS  Google Scholar 

  38. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122(4):497–506.

    Article  PubMed  CAS  Google Scholar 

  39. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  40. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93(8):3199–207.

    Article  PubMed  CAS  Google Scholar 

  41. Agarwal A, Desai NR, Kesari KK. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol. 2009;7:114.

    Article  PubMed  Google Scholar 

  42. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25(10):2415–26.

    Article  PubMed  CAS  Google Scholar 

  43. Zini A, Delamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients—levels of superoxide dismutase-like and catalase-like activities in seminal plasma and spermatozoa. Int J Androl. 1993;16(3):183–8.

    Article  PubMed  CAS  Google Scholar 

  44. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33–44.

    PubMed  CAS  Google Scholar 

  45. Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.

    Article  PubMed  CAS  Google Scholar 

  46. Kato Y, Osawa T. Detection of lipid-lysine amide-type adduct as a marker of PUFA oxidation and its applications. Arch Biochem Biophys. 2010;501(2):182–7.

    Article  PubMed  CAS  Google Scholar 

  47. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.

    PubMed  CAS  Google Scholar 

  48. Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res. 2005;36(4):350–5.

    Article  PubMed  CAS  Google Scholar 

  49. Oral B, Guney M, Ozguner F, et al. Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Adv Ther. 2006;23(6):957–73.

    Article  PubMed  CAS  Google Scholar 

  50. Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem. 2006;282(1–2):83–8.

    Article  PubMed  CAS  Google Scholar 

  51. Verschaeve L, Juutilainen J, Lagroye I, Miyakoshi J, Saunders R, de Seze R, Tenforde T, van Rongen E, Veyret B, Xu Z. In vitro and in vivo genotoxicity of radiofrequency fields. Muta Res. 2010;705(3):252–68.

    Article  PubMed  CAS  Google Scholar 

  52. Chia SE, Tay SK. Occupational risk for male infertility: a case-control study of 218 infertile and 227 fertile men. J Occup Environ Med. 2001;43(11):946–51.

    Article  PubMed  CAS  Google Scholar 

  53. Fejes I, Zavaczki Z, Szollosi J, et al. Is there a relationship between cell phone use and semen quality? Arch Androl. 2005;51(5):385–93.

    Article  PubMed  CAS  Google Scholar 

  54. Dasdag S, Ketani MA, Akdag Z, et al. Whole-body microwave exposure emitted by cellular phones and testicular function of rats. Urol Res. 1999;27(3):219–23.

    Article  PubMed  CAS  Google Scholar 

  55. Hong R, Liu Y, Yu YM, Hu K, Weng EQ. [Effects of extremely low frequency electromagnetic fields on male reproduction in mice]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2003;21(5):342–5.

    PubMed  Google Scholar 

  56. Lee JS, Ahn SS, Jung KC, Kim YW, Lee SK. Effects of 60 Hz electromagnetic field exposure on testicular germ cell apoptosis in mice. Asian J Androl. 2004;6(1):29–34.

    PubMed  Google Scholar 

  57. Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl. 2005;28(3): 171–9.

    Article  PubMed  CAS  Google Scholar 

  58. Erogul O, Oztas E, Yildirim I, et al. Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Arch Med Res. 2006;37(7):840–3.

    Article  PubMed  Google Scholar 

  59. Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril. 2007;88(4):957–64.

    Article  PubMed  CAS  Google Scholar 

  60. Wdowiak A, Wdowiak L, Wiktor H. Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med. 2007;14(1):169–72.

    PubMed  Google Scholar 

  61. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124–8.

    Article  PubMed  Google Scholar 

  62. Tice RR, Hook GG, Donner M, McRee DI, Guy AW. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnectics. 2002;23(2):113–26.

    Article  Google Scholar 

  63. d’Ambrosio G, Massa R, Scarfi MR & Zeni O. Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics. 2002;23(1):7–13.

    Article  Google Scholar 

  64. Deepinder F, Makker K, Agarwal A. Cell phones and male infertility: dissecting the relationship. Reprod Biomed Online. 2007;15(3):266–70.

    Article  PubMed  Google Scholar 

  65. Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo). 2009;64(6):561–5.

    Article  Google Scholar 

  66. Imai N, Kawabe M, Hikage T, Nojima T, Takahashi S, Shirai T. Effects on rat testis of 1.95-GHz W-CDMA for IMT-2000 cellular phones. Syst Biol Reprod Med. 2011;57(4):204–9.

    PubMed  Google Scholar 

  67. Lee HJ, Pack JK, Kim TH, et al. The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis. Bioelectromagnetics. 2010;31(7):528–34.

    Article  PubMed  CAS  Google Scholar 

  68. Agarwal A, Desai NR, Makker K, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318–25.

    Article  PubMed  Google Scholar 

  69. Desai NR, Kesari KK, Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol. 2009;7:114.

    Article  PubMed  Google Scholar 

  70. Tomruk A, Guler G, Dincel AS. The influence of 1800 MHz GSM-like signals on hepatic oxidative DNA and lipid damage in nonpregnant, pregnant, and newly born rabbits. Cell Biochem Biophys. 2010;56(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  71. Sokolovic D, Djindjic B, Nikolic J, et al. Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res (Tokyo). 2008;49(6):579–86.

    Article  CAS  Google Scholar 

  72. Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res. 2005;36(4): 350–5.

    Article  PubMed  CAS  Google Scholar 

  73. Seyhan N, Ozgur E, Guler G. Mobile phone radiation-induced free radical damage in the liver is inhibited by the antioxidants n-acetyl cysteine and epigallocatechin-gallate. Int J Radiat Biol. 2010;86(11):935–45.

    Article  PubMed  Google Scholar 

  74. Phillips KP, Tanphaichitr N. Human exposure to endocrine disrupters and semen quality. J Toxicol Environ Health B Crit Rev. 2008;11(3–4):188–220.

    PubMed  CAS  Google Scholar 

  75. Toppari J, Larsen JC, Christiansen P, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect. 1996;104 Suppl 4:741–803.

    Article  PubMed  CAS  Google Scholar 

  76. Agarwal A, Burns WR, Sabanegh E, Dada R, Rein B. Is male infertility a forerunner to cancer? Int Braz J Urol. 2010;36(5):527–36.

    Article  PubMed  Google Scholar 

  77. Sharpe RM, Skakkebaek NE. Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects. Fertil Steril. 2008;89(2 Suppl):e33–8.

    Article  PubMed  Google Scholar 

  78. Repacholi MH. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics. 1998;19(1):1–19.

    Article  PubMed  CAS  Google Scholar 

  79. Iorio R, Delle Monache S, Delle Monache S, Bennato F, et al. Involvement of mitochondrial activity in mediating ELF-EMF stimulatory effect on human sperm motility. Bioelectromagnetics. 2011;32(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  80. Mousavy SJ, Riazi GH, Kamarei M, et al. Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int J Biol Macromol. 2009;44(3):278–85.

    Article  PubMed  CAS  Google Scholar 

  81. Gerner C, Haudek V, Schandl U, et al. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling. Int Arch Occup Environ Health. 2010;83(6):691–702.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffry N. De Iuliis PhD, Bsc (Hons) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

De Iuliis, G.N., King, B.V., Aitken, R.J. (2012). Electromagnetic Radiation and Oxidative Stress in the Male Germ Line. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_1

Download citation

Publish with us

Policies and ethics