Skip to main content

New Treatment Modalities by Disease-Specific and Patient-Specific Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
  • 1330 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The broadly accepted and deeply rooted belief in developmental biology was that terminally differentiated cells had lost the potential to produce other cell types. In 2006, however, mouse somatic cells were reprogrammed as induced pluripotent stem (iPS) cells that resembled embryonic stem cells. This therapeutic promise is being challenged by thousand of researchers worldwide to understand the ability of these cells to reverse biological clocks. Utilizing both “forward” and “reverse” genetic approaches with the aid of iPS cells offers exciting prospects for dissecting molecular mechanisms of commitment and differentiation in a cell lineage. This discovery will help clarify our understanding of the rewired regulatory networks active in somatic and pluripotent cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aasen T, Raya A et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    PubMed  CAS  Google Scholar 

  • Abaci HE, Truitt R et al (2010) Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am J Physiol Cell Physiol 298(6):C1527–C1537

    PubMed  CAS  Google Scholar 

  • Alipio Z, Adcock DM et al (2010) Sustained factor VIII production in hemophiliac mice 1 year after engraftment with induced pluripotent stem cell-derived factor VIII producing endothelial cells. Blood Coagul Fibrinolysis 21(5):502–504

    PubMed  Google Scholar 

  • Arbel G, Caspi O et al (2010) Methods for human embryonic stem cells derived cardiomyocytes cultivation, genetic manipulation, and transplantation. Methods Mol Biol 660:85–95

    PubMed  CAS  Google Scholar 

  • Aronofsky D (1998) Pi. USA: 84 minutes

    Google Scholar 

  • Banerjee I, Sharma N et al (2011) Impact of co-culture on pancreatic differentiation of embryonic stem cells. J Tissue Eng Regen Med 5(4):313–323

    Google Scholar 

  • Bhutani N, Brady JJ et al (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463(7284):1042–1047

    PubMed  CAS  Google Scholar 

  • Brambrink T, Foreman R et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2(2):151–159

    PubMed  CAS  Google Scholar 

  • Byrne JA, Pedersen DA et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497–502

    PubMed  CAS  Google Scholar 

  • Cai J, Yang M et al (2010) Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 19(7):1017–1023

    PubMed  CAS  Google Scholar 

  • Carvajal-Vergara X, Sevilla A et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465(7299):808–812

    PubMed  CAS  Google Scholar 

  • Chin MH, Mason MJ et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1):111–123

    PubMed  CAS  Google Scholar 

  • Colebrook C (2002) Understanding Deleuze. Allen and Unwin, Crows Nest

    Google Scholar 

  • Colman A, Dreesen O (2009) Pluripotent stem cells and disease modeling. Cell Stem Cell 5(3):244–247

    PubMed  CAS  Google Scholar 

  • Comyn O, Lee E et al (2010) Induced pluripotent stem cell therapies for retinal disease. Curr Opin Neurol 23(1):4–9

    PubMed  Google Scholar 

  • Corning PA (2002) The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7(6):18–30

    Google Scholar 

  • Cowan CA, Atienza J et al (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309(5739):1369–1373

    PubMed  CAS  Google Scholar 

  • Cox JL, Rizzino A (2010) Induced pluripotent stem cells: what lies beyond the paradigm shift. Exp Biol Med (Maywood) 235(2):148–158

    CAS  Google Scholar 

  • Daley GQ, Lensch MW et al (2009) Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 4(3):200–201, author reply 202

    PubMed  CAS  Google Scholar 

  • Dick E, Rajamohan D et al (2010) Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans 38(4):1037–1045

    PubMed  CAS  Google Scholar 

  • Dimos JT, Rodolfa KT et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221

    PubMed  CAS  Google Scholar 

  • Ebert AD, Yu J et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    PubMed  CAS  Google Scholar 

  • Ellis J, Bruneau BG et al (2009) Alternative induced pluripotent stem cell characterization criteria for in vitro applications. Cell Stem Cell 4(3):198–199, author reply 202

    PubMed  CAS  Google Scholar 

  • Eminli S, Foudi A et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41(9):968–976

    PubMed  CAS  Google Scholar 

  • Esteban MA, Wang T et al (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6(1):71–79

    PubMed  CAS  Google Scholar 

  • Feng B, Ng JH et al (2009) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4(4):301–312

    PubMed  CAS  Google Scholar 

  • Fusaki N, Ban H et al (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362

    PubMed  CAS  Google Scholar 

  • Gamm DM, Meyer JS (2010) Directed differentiation of human induced pluripotent stem cells: a retina perspective. Regen Med 5(3):315–317

    PubMed  Google Scholar 

  • Gearhart J (1998) New potential for human embryonic stem cells. Science 282(5391):1061–1062

    PubMed  CAS  Google Scholar 

  • Gerbal-Chaloin S, Duret C et al (2010) Isolation and culture of adult human liver progenitor cells: in vitro differentiation to hepatocyte-like cells. Methods Mol Biol 640:247–260

    PubMed  CAS  Google Scholar 

  • Grigoriadis AE, Kennedy M et al (2010) Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 115(14):2769–2776

    PubMed  CAS  Google Scholar 

  • Hanna J, Wernig M et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923

    PubMed  CAS  Google Scholar 

  • Hemberger M, Dean W et al (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10(8):526–537

    PubMed  CAS  Google Scholar 

  • Ho PJ, Yen ML et al (2010) Endogenous KLF4 expression in human fetal endothelial cells allows for reprogramming to pluripotency with just OCT3/4 and SOX2: brief report. Arterioscler Thromb Vasc Biol 30:1880–1881

    Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136(4):509–523

    PubMed  CAS  Google Scholar 

  • Homma K, Sone M et al (2010) Sirt1 plays an important role in mediating greater functionality of human ES/iPS-derived vascular endothelial cells. Atherosclerosis 212:36–39

    Google Scholar 

  • Hotta A, Cheung AY et al (2009) Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods 6(5):370–376

    PubMed  CAS  Google Scholar 

  • Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4(9):1295–1304

    PubMed  CAS  Google Scholar 

  • Huang S (2009) Reprogramming cell fates: reconciling rarity with robustness. Bioessays 31(5):546–560

    PubMed  CAS  Google Scholar 

  • Huang GT, Gronthos S et al (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    PubMed  CAS  Google Scholar 

  • Huang HP, Yu CY et al (2010) Factors from human embryonic stem cell-derived fibroblast-like cells promote topology-dependent hepatic differentiation in primate embryonic and induced pluripotent stem cells. J Biol Chem 285:33510–33519

    PubMed  CAS  Google Scholar 

  • Huangfu D, Osafune K et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275

    PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    PubMed  CAS  Google Scholar 

  • Jin ZB, Okamoto S et al (2009) Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J Genet 88(4):417–424

    PubMed  Google Scholar 

  • Kaichi S, Hasegawa K et al (2010) Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice. Cardiovasc Res 88:314–323

    PubMed  CAS  Google Scholar 

  • Kaji K, Norrby K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775

    PubMed  CAS  Google Scholar 

  • Kaneko S, Otsu M et al (2010) Reprogramming adult hematopoietic cells. Curr Opin Hematol 17(4):271–275

    PubMed  Google Scholar 

  • Karumbayaram S, Novitch BG et al (2009) Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27(4):806–811

    PubMed  CAS  Google Scholar 

  • Kauffman SA (1993) Self-organization and adaptation in complex system. Oxford University Press, New York/Oxford

    Google Scholar 

  • Kaufman DS (2009) Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood 114(17):3513–3523

    PubMed  CAS  Google Scholar 

  • Kawaguchi J, Mee PJ et al (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36(5):758–769

    PubMed  CAS  Google Scholar 

  • Kazuki Y, Hiratsuka M et al (2010) Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol Ther 18(2):386–393

    PubMed  CAS  Google Scholar 

  • Kim D, Kim CH et al (2009a) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    PubMed  CAS  Google Scholar 

  • Kim JB, Greber B et al (2009b) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):649–653

    PubMed  CAS  Google Scholar 

  • Kim K, Doi A et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    PubMed  CAS  Google Scholar 

  • Kloc M, Zagrodzinska B (2001) Chromatin elimination: an oddity or a common mechanism in differentiation and development? Differentiation 68(2–3):84–91

    PubMed  CAS  Google Scholar 

  • Kocaefe C, Balci D et al (2010) Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair. Stem Cell Rev 6(4):512–522

    PubMed  Google Scholar 

  • Koussoulakou DS, Margaritis LH et al (2009) A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 5(3):226–243

    PubMed  Google Scholar 

  • Lamba DA, McUsic A et al (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5(1):e8763

    PubMed  Google Scholar 

  • Lee G, Papapetrou EP et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406

    PubMed  CAS  Google Scholar 

  • Lee G, Chambers SM et al (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5(4):688–701

    PubMed  CAS  Google Scholar 

  • Li C, Zhou J et al (2009) Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Human Mol Genet 18(22):4340–4349

    PubMed  CAS  Google Scholar 

  • Lin T, Ambasudhan R et al (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6(11):805–808

    PubMed  CAS  Google Scholar 

  • Loh YH, Agarwal S et al (2009) Generation of induced pluripotent stem cells from human blood. Blood 113(22):5476–5479

    PubMed  CAS  Google Scholar 

  • Lowry WE, Richter L et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105(8):2883–2888

    PubMed  CAS  Google Scholar 

  • Lu M, Kardel MD et al (2009) Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells. Exp Hematol 37(8):924–936

    PubMed  CAS  Google Scholar 

  • Maehr R, Chen S et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106(37):15768–15773

    PubMed  CAS  Google Scholar 

  • Maherali N, Hochedlinger K (2008) Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3(6):595–605

    PubMed  CAS  Google Scholar 

  • Maherali N, Ahfeldt T et al (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3(3):340–345

    PubMed  CAS  Google Scholar 

  • Marchetto MC, Yeo GW et al (2009) Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 4(9):e7076

    PubMed  Google Scholar 

  • Martinez-Fernandez A, Nelson TJ et al (2010) c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. J Cardiovasc Transl Res 3(1):13–23

    PubMed  Google Scholar 

  • Masip M, Veiga A et al (2010) Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod 16(11):856–868

    PubMed  CAS  Google Scholar 

  • Meyer JS, Shearer RL et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 106(39):16698–16703

    PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Hanna J et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200):49–55

    PubMed  CAS  Google Scholar 

  • Miura K, Okada Y et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745

    PubMed  CAS  Google Scholar 

  • Nakagawa M, Koyanagi M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    PubMed  CAS  Google Scholar 

  • Nakatsuji N (2010) Banking human pluripotent stem cell lines for clinical application? J Dent Res 89(8):757–758

    PubMed  CAS  Google Scholar 

  • Narazaki G, Uosaki H et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506

    PubMed  Google Scholar 

  • Nelson TJ, Martinez-Fernandez A et al (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120(5):408–416

    PubMed  Google Scholar 

  • Nishimura K, Nakagawa T et al (2009) Transplantation of mouse induced pluripotent stem cells into the cochlea. Neuroreport 20(14):1250–1254

    PubMed  Google Scholar 

  • Okabe M, Otsu M et al (2009) Definitive proof for direct reprogramming of hematopoietic cells to pluripotency. Blood 114(9):1764–1767

    PubMed  CAS  Google Scholar 

  • Okita K, Ichisaka T et al (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    PubMed  CAS  Google Scholar 

  • Okita K, Nakagawa M et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    PubMed  CAS  Google Scholar 

  • Osafune K, Caron L et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26(3):313–315

    PubMed  CAS  Google Scholar 

  • Parameswaran S, Balasubramanian S et al (2010) Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 28(4):695–703

    PubMed  CAS  Google Scholar 

  • Park IH, Arora N et al (2008a) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    PubMed  CAS  Google Scholar 

  • Park IH, Lerou PH et al (2008b) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186

    PubMed  CAS  Google Scholar 

  • Park IH, Zhao R et al (2008c) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    PubMed  CAS  Google Scholar 

  • Pfannkuche K, Liang H et al (2009) Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. Cell Physiol Biochem 24(1–2):73–86

    PubMed  CAS  Google Scholar 

  • Polo JM, Liu S et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28(8):848–855

    PubMed  CAS  Google Scholar 

  • Ralston A, Rossant J (2010) The genetics of induced pluripotency. Reproduction 139(1):35–44

    PubMed  CAS  Google Scholar 

  • Rathjen J, Rathjen PD (2003) Lineage specific differentiation of mouse ES cells: formation and differentiation of early primitive ectoderm-like (EPL) cells. Methods Enzymol 365:3–25

    PubMed  Google Scholar 

  • Raya A, Rodriguez-Piza I et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59

    PubMed  CAS  Google Scholar 

  • Robbins RD, Prasain N et al (2010) Inducible pluripotent stem cells: not quite ready for prime time? Curr Opin Organ Transplant 15(1):61–67

    PubMed  Google Scholar 

  • Saha K, Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5(6):584–595

    PubMed  CAS  Google Scholar 

  • Senju S, Haruta M et al (2009) Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells 27(5):1021–1031

    PubMed  CAS  Google Scholar 

  • Senju S, Hirata S et al (2010) Pluripotent stem cells as source of dendritic cells for immune therapy. Int J Hematol 91(3):392–400

    PubMed  Google Scholar 

  • Slack JM (2002) Conrad Hal Waddington: the last Renaissance biologist? Nat Rev Genet 3(11):889–895

    PubMed  CAS  Google Scholar 

  • Soldner F, Hockemeyer D et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977

    PubMed  CAS  Google Scholar 

  • Sun N, Panetta NJ et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 106(37):15720–15725

    PubMed  CAS  Google Scholar 

  • Swistowski A, Peng J et al (2010) Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28(10):1893–1904

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    PubMed  CAS  Google Scholar 

  • Tamaoki N, Takahashi K et al (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89(8):773–778

    PubMed  CAS  Google Scholar 

  • Tanaka T, Tohyama S et al (2009) In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun 385(4):497–502

    PubMed  CAS  Google Scholar 

  • Taranger CK, Noer A et al (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16(12):5719–5735

    PubMed  CAS  Google Scholar 

  • Tashiro K, Inamura M et al (2009) Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells 27(8):1802–1811

    PubMed  CAS  Google Scholar 

  • Tateishi K, He J et al (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283(46):31601–31607

    PubMed  CAS  Google Scholar 

  • Taura D, Noguchi M et al (2009a) Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett 583(6):1029–1033

    PubMed  CAS  Google Scholar 

  • Taura D, Sone M et al (2009b) Induction and isolation of vascular cells from human induced pluripotent stem cells: brief report. Arterioscler Thromb Vasc Biol 29(7):1100–1103

    PubMed  CAS  Google Scholar 

  • Tchieu J, Kuoy E et al (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7(3):329–342

    PubMed  CAS  Google Scholar 

  • Teramura T, Onodera Y et al (2010) Induction of mesenchymal progenitor cells with chondrogenic property from mouse-induced pluripotent stem cells. Cell Reprogram 12(3):249–261

    PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    PubMed  CAS  Google Scholar 

  • Tsuneto M, Yamane T et al (2003) In vitro differentiation of mouse ES cells into hematopoietic, endothelial, and osteoblastic cell lineages: the possibility of in vitro organogenesis. Methods Enzymol 365:98–114

    PubMed  Google Scholar 

  • Ueda T, Yamada T et al (2010) Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem Biophys Res Commun 391(1):38–42

    PubMed  CAS  Google Scholar 

  • Utikal J, Maherali N et al (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122(Pt 19):3502–3510

    PubMed  CAS  Google Scholar 

  • Vierbuchen T, Ostermeier A et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    PubMed  CAS  Google Scholar 

  • Waddington C (1957) The strategy of genes. Geo Allen and Unwin, London

    Google Scholar 

  • Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183(4676):1654–1655

    PubMed  CAS  Google Scholar 

  • Waddington CH, Robertson E (1966) Selection for developmental canalisation. Genet Res 7(3):303–312

    PubMed  CAS  Google Scholar 

  • Wakayama T, Tabar V et al (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292(5517):740–743

    PubMed  CAS  Google Scholar 

  • Wang Y, Mah N et al (2010) A transcriptional roadmap to the induction of pluripotency in somatic cells. Stem Cell Rev 6(2):282–296

    PubMed  CAS  Google Scholar 

  • Warren L, Manos PD et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    PubMed  CAS  Google Scholar 

  • Wdziekonski B, Villageois P et al (2003) Development of adipocytes from differentiated ES cells. Methods Enzymol 365:268–277

    PubMed  CAS  Google Scholar 

  • Wernig M, Meissner A et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324

    PubMed  CAS  Google Scholar 

  • Wernig M, Zhao JP et al (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105(15):5856–5861

    PubMed  CAS  Google Scholar 

  • Xie CQ, Huang H et al (2009) A comparison of murine smooth muscle cells generated from embryonic versus induced pluripotent stem cells. Stem Cells Dev 18(5):741–748

    PubMed  CAS  Google Scholar 

  • Xu D, Alipio Z et al (2009) Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA 106(3):808–813

    PubMed  CAS  Google Scholar 

  • Yan X, Qin H et al (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19(4):469–480

    PubMed  CAS  Google Scholar 

  • Ye L, Chang JC et al (2009a) Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci USA 106(24):9826–9830

    PubMed  CAS  Google Scholar 

  • Ye Z, Zhan H et al (2009b) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114(27):5473–5480

    PubMed  CAS  Google Scholar 

  • Ying QL, Smith AG (2003) Defined conditions for neural commitment and differentiation. Methods Enzymol 365:327–341

    PubMed  CAS  Google Scholar 

  • Ying QL, Wray J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    PubMed  CAS  Google Scholar 

  • Yu J, Hu K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801

    PubMed  CAS  Google Scholar 

  • Zhang D, Jiang W et al (2009a) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19(4):429–438

    PubMed  CAS  Google Scholar 

  • Zhang J, Wilson GF et al (2009b) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):e30–e41

    PubMed  CAS  Google Scholar 

  • Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27(11):2667–2674

    PubMed  CAS  Google Scholar 

  • Zhou H, Wu S et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    PubMed  CAS  Google Scholar 

  • Zhou J, Su P et al (2010) High-efficiency induction of neural conversion in hESCs and hiPSCs with a single chemical inhibitor of TGF-beta superfamily receptors. Stem Cells 28(10):1741–1750

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Yildirim D.D.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yildirim, S. (2012). New Treatment Modalities by Disease-Specific and Patient-Specific Induced Pluripotent Stem Cells. In: Turksen, K. (eds) Adult and Embryonic Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-630-2_14

Download citation

Publish with us

Policies and ethics