Skip to main content

Human Embryonic Stem Cells from Laboratory and Clinical Perspectives

  • Chapter
  • First Online:
  • 1422 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Because they can be obtained during the earliest developmental stage and they have the capability for self-renewal and indefinite expansion potential as well as the ability to differentiate in all somatic cell types, human embryonic stem cells (hESCs) have become important research sources in basic science. These scientific areas encompass human embryology, developmental genetics, and disease modeling as well as areas of applied science and medical therapy such as pharmacology, toxicology, and cellular therapy. Their therapeutic potential, on the other hand, still awaits major solution strategies for problems, including immune rejection, possibility tumor formation, and Good Manufacturing Practice (GMP)-grade production among others. In the light of the contemporary literature and laboratory applications, we summarize and discuss the current level of laboratory practice and the problems and alternative solution strategies for using hESCs in clinical practice. We also take note of the novel tools generated from hESC technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aflatoonian B, Ruban L, Shamsuddin S et al (2010) Generation of Sheffield (Shef) human embryonic stem cell lines using a microdrop culture system. In Vitro Cell Dev Biol Anim 46:236–241

    Article  PubMed  Google Scholar 

  • Amit M, Shariki C, Margulets V et al (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    Article  PubMed  CAS  Google Scholar 

  • Asgari S, Pournasr B, Salekdeh GH (2010) Induced pluripotent stem cells: a new era for hepatology. J Hepatol 53:738–751

    Article  PubMed  Google Scholar 

  • Bavister B (2004) Oxygen concentration and preimplantation development. Reprod Biomed Online 9:484–486

    Article  PubMed  Google Scholar 

  • Bendall SC, Stewart MH, George MD et al (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Bielanska M, Tan SL, Ao A (2002) Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod 17:413–419

    Article  PubMed  Google Scholar 

  • Bielanska M, Tan SL, Ao A (2003) Chromosomal information derived from single blastomeres isolated from cleavage-stage embryos and cultured in vitro. Fertil Steril 79:1304–1311

    Article  PubMed  Google Scholar 

  • Borstlab J, Stacey G, Kurtz A et al (2008) First evaluation of the European hESCreg. Nat Biotechnol 26:859–860

    Article  Google Scholar 

  • Brimble SN, Zeng X, Weiler DA et al (2004) Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev 13:585–597

    Article  PubMed  CAS  Google Scholar 

  • Byrne JA, Pedersen DA, Clepper LL et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450:497–502

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Klimanskaya I, Becker S et al (2006) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439:216–219

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Klimanskaya I, Becker S et al (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2:113–117

    Article  PubMed  CAS  Google Scholar 

  • Civin CI, Rao MS (2006) How many human embryonic stem cell lines are sufficient? A U.S. perspective. Stem Cells 24:800–803

    Article  PubMed  Google Scholar 

  • Deb K, Sivaguru M, Yong HY et al (2006) Cdx2 gene expression and trophectoderm lineage specification in mouse embryos. Science 311:992–996

    Article  PubMed  CAS  Google Scholar 

  • Dumoulin JC, Meijers CJ, Bras M et al (1999) Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum Reprod 14:465–469

    Article  PubMed  CAS  Google Scholar 

  • Edwards RG (2005) Genetics of polarity in mammalian embryos. Reprod Biomed Online 11:104–114

    Article  PubMed  CAS  Google Scholar 

  • Ellerstrom C, Strehl R, Moya K et al (2006) Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24:2170–2176

    Article  PubMed  Google Scholar 

  • Faden RR, Dawson L, Bateman-House AS et al (2003) Public stem cell banks: considerations of justice in stem cell research and therapy. Hastings Cent Rep 33:13–27

    PubMed  Google Scholar 

  • Findikli N, Candan NZ, Kahraman S (2006) Human embryonic stem cell culture: current limitations and novel strategies. Reprod Biomed Online 13:581–590

    Article  PubMed  CAS  Google Scholar 

  • Fong CY, Richards M, Bongso A (2006) Unsuccessful derivation of human embryonic stem cell lines from pairs of human blastomeres. Reprod Biomed Online 13:295–300

    Article  PubMed  Google Scholar 

  • Forsyth NR, Musio A, Vezzoni P (2006) Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8:16–23

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Gonzalo F, Belmonde JCI (2008) Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS One 3:e1384

    Article  PubMed  Google Scholar 

  • Geber S, Winston RM, Handyside AH (1995) Proliferation of blastomeres from biopsied cleavage stage human embryos in vitro: an alternative to blastocyst biopsy for preimplantation diagnosis. Hum Reprod 10:1492–1496

    PubMed  CAS  Google Scholar 

  • Handyside AH, Kontogianni EH, Hardy K et al (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344:768–770

    Article  PubMed  CAS  Google Scholar 

  • Hansis C, Grifo JA, Krey LC (2004) Candidate lineage marker genes in human preimplantation embryos. Reprod Biomed Online 8:577–583

    Article  PubMed  CAS  Google Scholar 

  • Harper JC, Coonen E, Handyside AH et al (1995) Mosaicism of autosomes and sex chromosomes in morphologically normal, monospermic preimplantation human embryos. Prenat Diagn 15:41–49

    Article  PubMed  CAS  Google Scholar 

  • Heins N, Englund MC, Sjoblom C et al (2004) Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22:367–376

    Article  PubMed  Google Scholar 

  • Hlinka D, Dudas M, Herman M et al (2001) Experimental attempts to extend the current preimplantation genetic diagnosis with individual karyotypization of human blastomeres. Reprod Nutr Dev 41:91–106

    Article  PubMed  CAS  Google Scholar 

  • Hovatta O (2006) Derivation of human embryonic stem cell lines, towards clinical quality. Reprod Fertil Dev 18:823–828

    Article  PubMed  Google Scholar 

  • Jacob S, Moley KH (2005) Gametes and embryo epigenetic reprogramming affect developmental outcome: implication for assisted reproductive technologies. Pediatr Res 58:437–446

    Article  PubMed  Google Scholar 

  • James D, Levine AJ, Besser D et al (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Janny L, Menezo YJ (1994) Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev 38:36–42

    Article  PubMed  CAS  Google Scholar 

  • Jones GM, Trounson AO, Lolatgis N et al (1998) Factors affecting the success of human blastocyst development and pregnancy following in vitro fertilization and embryo transfer. Fertil Steril 70:1022–1029

    Article  PubMed  CAS  Google Scholar 

  • Joris H, De Vos A, Janssens R et al (2003) Comparison of the results of human embryo biopsy and outcome of PGD after zona drilling using acid Tyrode medium or a laser. Hum Reprod 18:1896–1902

    Article  PubMed  CAS  Google Scholar 

  • Kaye PL (1997) Preimplantation growth factor physiology. Rev Reprod 2:121–127

    Article  PubMed  CAS  Google Scholar 

  • Kee K, Gonsalves JM, Clark AT et al (2006) Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev 15:831–837

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Oh SK, Park YB et al (2005) Methods for derivation of human embryonic stem cells. Stem Cells 23:1228–1233

    Article  PubMed  Google Scholar 

  • Klimanskaya I, Chung Y, Becker S et al (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485

    Article  PubMed  CAS  Google Scholar 

  • Kuliev A, Verlinsky Y (2005) Place of preimplantation diagnosis in genetic practice. Am J Med Genet A 134A:105–110

    Article  PubMed  Google Scholar 

  • Landry DW, Zucker HA (2004) Embryonic death and the creation of human embryonic stem cells. J Clin Invest 114:1184–1186

    PubMed  CAS  Google Scholar 

  • Lanzendorf SE, Boyd CA, Wright DL et al (2001) Use of human gametes obtained from anonymous donors for the production of human embryonic stem cell lines. Fertil Steril 76:132–137

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Lei J, Wininger D et al (2003) Multilineage potential of homozygous stem cells derived from metaphase II oocytes. Stem Cells 21:152–161

    Article  PubMed  Google Scholar 

  • Löser P, Schirm J, Guhr A (2010) Human embryonic stem cell lines and their use in international research. Stem Cells 28:240–246

    PubMed  Google Scholar 

  • Ludwig TE, Levenstein ME, Jones JM et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  PubMed  CAS  Google Scholar 

  • Mai Q, Yu Y, Li T et al (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Maitra A, Arking DE, Shivapurkar N et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Martin MJ, Muotri A, Gage F et al (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232

    Article  PubMed  CAS  Google Scholar 

  • Moor RM, Dai Y, Lee C et al (1998) Oocyte maturation and embryonic failure. Hum Reprod Update 4:223–236

    Article  PubMed  CAS  Google Scholar 

  • Munne S, Alikani M, Tomkin G et al (1995) Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertil Steril 64:382–391

    PubMed  CAS  Google Scholar 

  • Munne S, Colls VE, Bermudez MG et al (2005) Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil Steril 84:1328–1334

    Article  PubMed  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–668

    Article  PubMed  CAS  Google Scholar 

  • Niemitz EL, Feinberg A (2004) Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 74:599–609

    Article  PubMed  CAS  Google Scholar 

  • Nizzardo M, Simone C, Falcone M (2010) Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci 67:3837–3847

    Article  PubMed  CAS  Google Scholar 

  • Obruca A, Strohmer H, Sakkas D et al (1994) Use of lasers in assisted fertilization and hatching. Hum Reprod 9:1723–1726

    PubMed  CAS  Google Scholar 

  • Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  PubMed  CAS  Google Scholar 

  • Pera MF, Andrade J, Houssami S et al (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska K, Wianny F, Pedersen RA et al (2001) Blastomeres arising from the first cleavage division have distinguishable fates in normal mouse development. Development 128:3739–3748

    PubMed  CAS  Google Scholar 

  • Rao MS, Auerbach JM (2006) Estimating human embryonic stem-cell numbers. Lancet 367:650

    Article  PubMed  Google Scholar 

  • Rechitsky S, Kuliev A, Sharapova T et al (2006) Preimplantation HLA typing with aneuploidy testing. Reprod Biomed Online 12:89–100

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff BE, Pera MF, Fong CY et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  PubMed  CAS  Google Scholar 

  • Revazova ES, Turovets NA, Kochetkova OD et al (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449

    Article  PubMed  CAS  Google Scholar 

  • Richards M, Bongso A (2006) Propagation of human embryonic stem cells on human feeder cells. Methods Mol Biol 331:23–41

    PubMed  Google Scholar 

  • Rienzi L, Greco E, Ubaldi F et al (2001) Laser-assisted intracytoplasmic sperm injection. Fertil Steril 76:1045–1047

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  PubMed  CAS  Google Scholar 

  • Schoolcraft WB, Gardner DK, Lane M et al (1999) Blastocyst culture and transfer: analysis of results and parameters affecting outcome in two in vitro fertilization programs. Fertil Steril 72:604–609

    Article  PubMed  CAS  Google Scholar 

  • Sjogren A, Hardarson T, Andersson K et al (2004) Human blastocysts for the development of embryonic stem cells. Reprod Biomed Online 9:326–329

    Article  PubMed  Google Scholar 

  • Stacey G, Hunt CJ (2006) The UK Stem Cell Bank: a UK government-funded, international resource center for stem cell research. Regen Med 1:139–142

    Article  PubMed  Google Scholar 

  • Stephenson EL, Braude PR, Mason C (2006) Proposal for a universal minimum information convention for the reporting on the derivation of human embryonic stem cell lines. Regen Med 1:739–750

    Article  PubMed  Google Scholar 

  • Strom S, Inzunza J, Grinnemo KH et al (2007) Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod 22:3051–3058

    Article  PubMed  Google Scholar 

  • Summers MC, Biggers JD (2003) Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update 9:557–582

    Article  PubMed  CAS  Google Scholar 

  • Suss-Toby E, Gerecht-Nir S, Amit M et al (2004) Derivation of a diploid human embryonic stem cell line from a mononuclear zygote. Hum Reprod 19:670–675

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Taylor CJ, Bolton EM, Pocock S et al (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  PubMed  Google Scholar 

  • Terstegge S, Laufenberg I, Pochert J et al (2007) Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 96:195–201

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Turetsky T, Aizenman E, Gil Y et al (2008) Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod 23:46–53

    Article  PubMed  CAS  Google Scholar 

  • Vrana KE, Hipp JD, Goss AM et al (2003) Nonhuman primate parthenogenetic stem cells. Proc Natl Acad Sci USA 100(Suppl 1):11911–11916

    Article  PubMed  CAS  Google Scholar 

  • Xu RH, Chen X, Li DS et al (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Xu RH, Peck RM, Li DS et al (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Przyborski SS, Cooke M et al (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necati Findikli M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Findikli, N. (2012). Human Embryonic Stem Cells from Laboratory and Clinical Perspectives. In: Turksen, K. (eds) Adult and Embryonic Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-630-2_12

Download citation

Publish with us

Policies and ethics