Skip to main content

Successful Scale-Up and Quality Assessments of Human Embryonic Stem Cells for Cell Therapy: Challenges and Overview

  • Chapter
  • First Online:
Adult and Embryonic Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1362 Accesses

Abstract

Large-scale production of human embryonic stem cells (hESCs) is the most inevitable choice to fulfill biomedical research needs to produce mature, functional, and pure derivatives of cell types that can be utilized for transplantation purposes or in drug discovery. Currently, the status of technology suggests that large-scale culturing of hESCs is complex, and several challenges must be addressed. There is a great need for convenient, inexpensive culture systems that can facilitate the propagation of hESCs in serum-free and feeder-free culture conditions, so the cells produced in large scale can meet the demands of cell therapy applications and in screening purposes for toxicology, pharmacology, and drug discovery. As a parallel effort it is equally important to assess the quality of hESCs obtained in this scaled-up procedure and develop a reliable cost-effective method to qualify the cells that can be used for various downstream purposes. In this chapter, we describe various methods used to culture hESCs in large scale and other advances in eliminating xenogenic components from the culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexis J, Christelle FR, Kristine W, Maeve C, Alastair C, Nicholas A, Siddharthan C (2006) Automated mechanical passaging: a novel and efficient method for human embryonic stem cells expansion. Stem Cells 24:230–235

    Article  Google Scholar 

  • Allegrucci C, Wu YZ, Thurston A (2007) Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum Mol Genet 16:1253–1268

    Article  PubMed  CAS  Google Scholar 

  • Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    Article  PubMed  CAS  Google Scholar 

  • Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjay J (2007) Analysis of Oct4-dependent transcriptional networks regulating self renewal and pluripotency in human embryonic stem cells. Stem Cells 25:500–510

    Article  PubMed  CAS  Google Scholar 

  • Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, Hayek A (2005) Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495

    Article  PubMed  CAS  Google Scholar 

  • Bigdeli N, Karlsson C, Strehl R, Concaro S, Hyllner J, Lindahl A (2009) Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 27:1812–1821

    Article  PubMed  Google Scholar 

  • Chen X, Song XH, Yin Z, Zou XH, Wang LL, Hu H, Cao T, Zheng M, Ouyang HW (2009) Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells 27:1276–1287

    Article  PubMed  CAS  Google Scholar 

  • Chin AC, Padmanabhan J, Oh SK, Choo AB (2010) Defined and serum-free media support undifferentiated human embryonic stem cell growth. Stem Cells Dev 19:753–761

    Google Scholar 

  • Cobo F, Cortes JL, Cabera C, Nieto A, Concha A (2007) Microbiological contamination in stem cell cultures. Cell Biol Int 31(9):991–995

    Article  PubMed  CAS  Google Scholar 

  • Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22:275–282

    Article  PubMed  Google Scholar 

  • Dina GH, David A, Kessler (2006) FDA Regulation of Stem-Cell–Based Therapies. The New Eng. J. Med. 355:1730–1735

    Article  PubMed  CAS  Google Scholar 

  • Draper JS, Moorer HD, Ruban LN, Gokhale PJ, Andrews PW (2004) Culture and characterization of human embryonic stem cells. Stem Cells Dev 13:325–326

    Article  PubMed  CAS  Google Scholar 

  • Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L (2006) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation and self-renewal of human embryonic stem cells. Stem Cells 10:1489–1501

    Article  Google Scholar 

  • Fang D, Leishear K, Nquyen TK, Finko R, Cai K, Fukunaga M, Li L, Brafford PA, Kulp AN, Xu X, Smalley KS, Herlyn M (2006) Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem Cells 24(7):1668–1677

    Article  PubMed  Google Scholar 

  • Garcia-Gonzalo FR, Izpisua Belmonte JC (2008) Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS One 3:e1384

    Article  PubMed  Google Scholar 

  • Gerecht-Nir S, Cohen S, Itskovitz-Eldor J (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng 86:493–502

    Article  PubMed  CAS  Google Scholar 

  • Halme DG, Kessler DA (2006) FDA regulation of stem-cell–based therapies. N Engl J Med 355:1730–1735

    Article  PubMed  CAS  Google Scholar 

  • Heng BC, Kuleshova LL, Bested SM, Liu H, Cao T (2005) The cryopreservation of human embryonic stem cells. Biotechnol Appl Biochem 41:97–104

    Article  PubMed  CAS  Google Scholar 

  • Hoffman LM, Carpenter MK (2005) Characterization and culture of human embryonic stem cells. Nat Biotechnol 23:699–708

    Article  PubMed  CAS  Google Scholar 

  • Hunt CJ, Timmons PM (2007) Cryopreservation of human embryonic stem cell lines. Methods Mol Biol 368:261–270

    Article  PubMed  CAS  Google Scholar 

  • Inzunza J, Gertow K, Stromberg MA (2005) Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23:544–549

    Article  PubMed  CAS  Google Scholar 

  • Kate W, MaryLynn T, Sackamone P, Mahendra R, Udaykumar K, Mohan V (2008) Defined cell culture media for pluripotent human embryonic stem cells. Med Sci Dig 33(14):41–48

    Google Scholar 

  • Kleinman HK, McGarvey M, Liotta LA, Robey PG, Tryggvason K, Martin GR (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R (2005) Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 91:688–698

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Qian L, Wessells RJ, Bidet Y, Jagla K, Bodmer R (2006) Hedgehog and RAS pathways cooperate in the anterior-posterior specification and positioning of cardiac progenitor cells. Dev. Biol. 290:373–385

    Article  PubMed  CAS  Google Scholar 

  • Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A 15:2051–2063

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Hou R, Booth CJ, Yang SH, Snyder M (2006) Defined culture conditions of human embryonic stem cells. PNAS Proc Natl Acad Sci USA 103(15):5688–5693

    Article  CAS  Google Scholar 

  • Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646

    Article  PubMed  CAS  Google Scholar 

  • Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25:20–31

    Article  PubMed  CAS  Google Scholar 

  • Niebruegge S, Bauwens CL, Peerani R, Thavandiran N, Masse S, Sevaptisidis E, Nanthakumar K, Woodhouse K, Husain M, Kumacheva E, Zandstra PW (2009) Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng 102:493–507

    Article  PubMed  CAS  Google Scholar 

  • Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S (2006) Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 24:426–433

    Article  Google Scholar 

  • Okamura RM, Lebkowski J, Au M, Priest CA, Denham J, Majumdar AS (2007) Immunological properties of human embryonic stem cell-derived oligodendrocyte progenitor cells. J Neuroimmunol 192:134–144

    Article  PubMed  CAS  Google Scholar 

  • Pera MF, Alan OT (2004) Human embryonic stem cells: prospects for development. Development 131:5515–5525

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194

    Article  PubMed  CAS  Google Scholar 

  • Richards M, Fong CY, Tan S, Chan WK, Bongso A (2004) An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22:779–789

    Article  PubMed  Google Scholar 

  • Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of NANOG by OCT4 and SOX2. J Biol Chem 280:24731–24737

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Meier L, Skalsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  PubMed  CAS  Google Scholar 

  • Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8:263–271

    Article  PubMed  CAS  Google Scholar 

  • Stojkovic P, Lako M, Przyborski S, Stewart R, Armstrong L, Evans J, Zhang X, Stojkovic M (2005) Human-serum matrix supports undifferentiated growth of human embryonic stem cells. Stem Cells 23:895–902

    Article  PubMed  CAS  Google Scholar 

  • Terstegge S, Laufenberg I, Pochert J (2007) Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 96:195–201

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell line derived from human blastocyst. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Vallier L, Alexander M, Pederson RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:495–4509

    Article  Google Scholar 

  • Wang D, Liu W, Han B, Xu R (2005) The bioreactor: a powerful tool for large-scale culture of animal cells. Curr Pharm Biotechnol 6:397–403

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. PNAS Proc Natl Acad Sci USA 103(18):6907–6912

    Article  CAS  Google Scholar 

  • Zeng X, Rao MS (2006) The therapeutic potential of embryonic stem cells: a focus on stem cell stability. Curr Opin Mol Ther 8:338–344

    PubMed  Google Scholar 

Download references

Acknowledgments

MCV acknowledges the stimulating discussions and the encouragement from Dr. Mahendra Rao currently at NIH, who was responsible for persuading to write this article. MCV is also indebted to Sandra Kuligowski and Maureen Cook at Grand Island, NY for enabling deep insights in to the GMP process and Quality Control systems in cell and media manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan C. Vemuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vemuri, M.C., Swamilingiah, G.M., Pal, S., Kaur, J., Kolkundkar, U. (2012). Successful Scale-Up and Quality Assessments of Human Embryonic Stem Cells for Cell Therapy: Challenges and Overview. In: Turksen, K. (eds) Adult and Embryonic Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-630-2_11

Download citation

Publish with us

Policies and ethics