Skip to main content

Oesophago-Gastric Cancer

  • Chapter
  • First Online:
Biotargets of Cancer in Current Clinical Practice

Abstract

The continuing high incidence of oesophago-gastric cancer in Eastern countries along with the rising incidence, particularly of adenocarcinomas, in Western countries has led these cancers to become one of the leading causes of cancer-related death globally.

These cancers have proven to be resistant to standard chemotherapy agents in the majority of cases, and so the identification of treatable biotargets in this group of cancers is important to the advancement of treatment strategies.

This chapter will review the current evidence for the presence of biotargets that are in current clinical utility in these cancers and then assess the evidence for the use of targeted therapies that have subsequently been developed.

The different expression of markers in the variety of biologically discreet sub-types will be assessed including adenocarcinomas and squamous carcinomas, as well as sub-dividing according to the anatomical regions of the gastro-oesophageal tract. Biotargets are also differently expressed across racial groups, and so, where possible, the importance of individual targets will be considered in both Eastern and Western populations.

A number of targeted therapies have entered clinical usage for oesophago-gastric cancer including EGFR inhibitors, HER2 inhibitors, VEGF inhibitors and EpCAM-targeted treatments. The use of some of these remains restricted to clinical trials, and discussion will focus on the present usage and expected future developments of these treatment strategies in a fast-moving field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    PubMed  Google Scholar 

  2. Devesa SS, Blot WJ, Fraumeni Jr JF. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer. 1998;83(10):2049–53.

    PubMed  CAS  Google Scholar 

  3. Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005;97(2):142–6.

    PubMed  Google Scholar 

  4. Jeon J, Luebeck EG, Moolgavkar SH. Age effects and temporal trends in adenocarcinoma of the esophagus and gastric cardia (United States). Cancer Causes Control. 2006;17(7):971–81.

    PubMed  Google Scholar 

  5. Romano M, Ricci V, Zarrilli R. Mechanisms of disease: Helicobacter pylori-related gastric carcinogenesis–implications for chemoprevention. Nat Clin Pract Gastroenterol Hepatol. 2006;3(11):622–32.

    PubMed  CAS  Google Scholar 

  6. Islami F, Kamangar F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev Res (Phila). 2008;1(5):329–38.

    CAS  Google Scholar 

  7. Malfertheiner P, Megraud F, O’Morain C, et al. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut. 2007;56(6):772–81.

    PubMed  CAS  Google Scholar 

  8. Lao-Sirieix P, Caldas C, Fitzgerald RC. Genetic predisposition to gastro-oesophageal cancer. Curr Opin Genet Dev. 2010;20(3):210–7.

    PubMed  CAS  Google Scholar 

  9. Cameron AJ, Lagergren J, Henriksson C, Nyren O, Locke 3rd GR, Pedersen NL. Gastroesophageal reflux disease in monozygotic and dizygotic twins. Gastroenterology. 2002;122(1):55–9.

    PubMed  Google Scholar 

  10. Mohammed I, Cherkas LF, Riley SA, Spector TD, Trudgill NJ. Genetic influences in gastro-oesophageal reflux disease: a twin study. Gut. 2003;52(8):1085–9.

    PubMed  CAS  Google Scholar 

  11. Wu AH, Wan P, Bernstein L. A multiethnic population-based study of smoking, alcohol and body size and risk of adenocarcinomas of the stomach and esophagus (United States). Cancer Causes Control. 2001;12(8):721–32.

    PubMed  CAS  Google Scholar 

  12. Playford RJ. New British Society of Gastroenterology (BSG) guidelines for the diagnosis and management of Barrett’s oesophagus. Gut. 2006;55(4):442.

    PubMed  CAS  Google Scholar 

  13. Kelty CJ, Gough MD, Van Wyk Q, Stephenson TJ, Ackroyd R. Barrett’s oesophagus: intestinal metaplasia is not essential for cancer risk. Scand J Gastroenterol. 2007;42(11):1271–4.

    PubMed  Google Scholar 

  14. Siewert JR, Stein HJ. Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg. 1998;85(11):1457–9.

    PubMed  CAS  Google Scholar 

  15. Buskens CJ, Van Rees BP, Sivula A, et al. Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinoma of the esophagus. Gastroenterology. 2002;122(7):1800–7.

    PubMed  CAS  Google Scholar 

  16. Buskens CJ, Sivula A, van Rees BP, et al. Comparison of cyclooxygenase 2 expression in adenocarcinomas of the gastric cardia and distal oesophagus. Gut. 2003;52(12):1678–83.

    PubMed  CAS  Google Scholar 

  17. Isinger-Ekstrand A, Johansson J, Ohlsson M, et al. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array–comparative genomic hybridization. Cancer Genet Cytogenet. 2010;200(2):120–6.

    PubMed  CAS  Google Scholar 

  18. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21(14):2787–99.

    PubMed  CAS  Google Scholar 

  19. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441(7092):424–30.

    PubMed  CAS  Google Scholar 

  20. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    PubMed  CAS  Google Scholar 

  21. Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol. 1999;11(2):184–9.

    PubMed  CAS  Google Scholar 

  22. Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1:2005.0010.

    Google Scholar 

  23. Wang Y, Minoshima S, Shimizu N. Precise mapping of the EGF receptor gene on the human chromosome 7p12 using an improved fish technique. Jpn J Hum Genet. 1993;38(4):399–406.

    PubMed  CAS  Google Scholar 

  24. Rizzo S, Bronte G, Fanale D, et al. Prognostic vs predictive molecular biomarkers in colorectal cancer: is KRAS and BRAF wild type status required for anti-EGFR therapy? Cancer Treat Rev. 2010;36 Suppl 3:S56–61.

    PubMed  CAS  Google Scholar 

  25. Koutras AK, Fountzilas G, Kalogeras KT, Starakis I, Iconomou G, Kalofonos HP. The upgraded role of HER3 and HER4 receptors in breast cancer. Crit Rev Oncol Hematol. 2010;74(2):73–8.

    PubMed  Google Scholar 

  26. Zhang XL, Yang YS, Xu DP, et al. Comparative study on overexpression of HER2/neu and HER3 in gastric cancer. World J Surg. 2009;33(10):2112–8.

    PubMed  Google Scholar 

  27. Hanna W. Testing for HER2 status. Oncology. 2001;61 Suppl 2:22–30.

    PubMed  CAS  Google Scholar 

  28. Cappuzzo F, Ciuleanu T, Stelmakh L, et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2010;11(6):521–9.

    PubMed  CAS  Google Scholar 

  29. Sholl LM, Xiao Y, Joshi V, et al. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am J Clin Pathol. 2010;133(6):922–34.

    PubMed  CAS  Google Scholar 

  30. Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–55.

    PubMed  CAS  Google Scholar 

  31. Hirsch FR, Varella-Garcia M, McCoy J, et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol. 2005;23(28):6838–45.

    PubMed  CAS  Google Scholar 

  32. Itakura Y, Sasano H, Shiga C, et al. Epidermal growth factor receptor overexpression in esophageal carcinoma. An immunohistochemical study correlated with clinicopathologic findings and DNA amplification. Cancer. 1994;74(3):795–804.

    PubMed  CAS  Google Scholar 

  33. Hanawa M, Suzuki S, Dobashi Y, et al. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer. 2006;118(5):1173–80.

    PubMed  CAS  Google Scholar 

  34. Gotoh M, Takiuchi H, Kawabe S, et al. Epidermal growth factor receptor is a possible predictor of sensitivity to chemoradiotherapy in the primary lesion of esophageal squamous cell carcinoma. Jpn J Clin Oncol. 2007;37(9):652–7.

    PubMed  Google Scholar 

  35. Sunpaweravong P, Sunpaweravong S, Puttawibul P, et al. Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131(2):111–9.

    PubMed  CAS  Google Scholar 

  36. Zhang G, Zhang Q, Yin L, et al. Expression of nucleostemin, epidermal growth factor and epidermal growth factor receptor in human esophageal squamous cell carcinoma tissues. J Cancer Res Clin Oncol. 2010;136(4):587–94.

    PubMed  CAS  Google Scholar 

  37. Kitagawa Y, Ueda M, Ando N, Ozawa S, Shimizu N, Kitajima M. Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 1996;2(5):909–14.

    PubMed  CAS  Google Scholar 

  38. Gibault L, Metges JP, Conan-Charlet V, et al. Diffuse EGFR staining is associated with reduced overall survival in locally advanced oesophageal squamous cell cancer. Br J Cancer. 2005;93(1):107–15.

    PubMed  CAS  Google Scholar 

  39. Boone J, van Hillegersberg R, Offerhaus GJ, van Diest PJ, Borel Rinkes IH, Ten Kate FJ. Targets for molecular therapy in esophageal squamous cell carcinoma: an immunohistochemical analysis. Dis Esophagus. 2009;22(6):496–504.

    PubMed  CAS  Google Scholar 

  40. Sarbia M, Ott N, Puhringer-Oppermann F, Brucher BL. The predictive value of molecular markers (p53, EGFR, ATM, CHK2) in multimodally treated squamous cell carcinoma of the oesophagus. Br J Cancer. 2007;97(10):1404–8.

    PubMed  CAS  Google Scholar 

  41. Hickey K, Grehan D, Reid IM, O’Briain S, Walsh TN, Hennessy TP. Expression of epidermal growth factor receptor and proliferating cell nuclear antigen predicts response of esophageal squamous cell carcinoma to chemoradiotherapy. Cancer. 1994;74(6):1693–8.

    PubMed  CAS  Google Scholar 

  42. Wang KL, Wu TT, Choi IS, et al. Expression of epidermal growth factor receptor in esophageal and esophagogastric junction adenocarcinomas: association with poor outcome. Cancer. 2007;109(4):658–67.

    PubMed  CAS  Google Scholar 

  43. Langer R, Von Rahden BH, Nahrig J, et al. Prognostic significance of expression patterns of c-erbB-2, p53, p16INK4A, p27KIP1, cyclin D1 and epidermal growth factor receptor in oesophageal adenocarcinoma: a tissue microarray study. J Clin Pathol. 2006;59(6):631–4.

    PubMed  CAS  Google Scholar 

  44. Wilkinson NW, Black JD, Roukhadze E, et al. Epidermal growth factor receptor expression correlates with histologic grade in resected esophageal adenocarcinoma. J Gastrointest Surg. 2004;8(4):448–53.

    PubMed  Google Scholar 

  45. van Dekken H, Hop WC, Tilanus HW, et al. Immunohistochemical evaluation of a panel of tumor cell markers during malignant progression in Barrett esophagus. Am J Clin Pathol. 2008;130(5):745–53.

    PubMed  Google Scholar 

  46. Miller CT, Moy JR, Lin L, et al. Gene amplification in esophageal adenocarcinomas and Barrett’s with high-grade dysplasia. Clin Cancer Res. 2003;9(13):4819–25.

    PubMed  CAS  Google Scholar 

  47. Kwak EL, Jankowski J, Thayer SP, et al. Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clin Cancer Res. 2006;12(14 Pt 1):4283–7.

    PubMed  CAS  Google Scholar 

  48. Takehana T, Kunitomo K, Suzuki S, et al. Expression of epidermal growth factor receptor in gastric carcinomas. Clin Gastroenterol Hepatol. 2003;1(6):438–45.

    PubMed  CAS  Google Scholar 

  49. Kim MA, Lee HS, Lee HE, Jeon YK, Yang HK, Kim WH. EGFR in gastric carcinomas: prognostic significance of protein overexpression and high gene copy number. Histopathology. 2008;52(6):738–46.

    PubMed  CAS  Google Scholar 

  50. Lee SA, Choi SR, Jang JS, et al. Expression of VEGF, EGFR, and IL-6 in gastric adenomas and adenocarcinomas by endoscopic submucosal dissection. Dig Dis Sci. 2010;55(7):1955–63.

    PubMed  CAS  Google Scholar 

  51. Han SW, Oh DY, Im SA, et al. Phase II study and biomarker analysis of cetuximab combined with modified FOLFOX6 in advanced gastric cancer. Br J Cancer. 2009;100(2):298–304.

    PubMed  CAS  Google Scholar 

  52. Mimori K, Nagahara H, Sudo T, et al. The epidermal growth factor receptor gene sequence is highly conserved in primary gastric cancers. J Surg Oncol. 2006;93(1):44–6.

    PubMed  CAS  Google Scholar 

  53. Lieto E, Ferraraccio F, Orditura M, et al. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann Surg Oncol. 2008;15(1):69–79.

    PubMed  Google Scholar 

  54. Bamias A, Karina M, Papakostas P, et al. A randomized phase III study of adjuvant platinum/docetaxel chemotherapy with or without radiation therapy in patients with gastric cancer. Cancer Chemother Pharmacol. 2010;65(6):1009–21.

    PubMed  CAS  Google Scholar 

  55. Gamboa-Dominguez A, Dominguez-Fonseca C, Quintanilla-Martinez L, et al. Epidermal growth factor receptor expression correlates with poor survival in gastric adenocarcinoma from Mexican patients: a multivariate analysis using a standardized immunohistochemical detection system. Mod Pathol. 2004;17(5):579–87.

    PubMed  CAS  Google Scholar 

  56. Ferry DR, Anderson M, Beddard K, et al. A phase II study of gefitinib monotherapy in advanced esophageal adenocarcinoma: evidence of gene expression, cellular, and clinical response. Clin Cancer Res. 2007;13(19):5869–75.

    PubMed  CAS  Google Scholar 

  57. Adelstein DJ, Rybicki LA, Carroll MA, Rice TW, Mekhail T. Phase II trial of gefitinib for recurrent or metastatic esophageal or gastroesophageal junction (GOJ) cancer. J Clin Oncol. 2005;23((16S)):4054.

    Google Scholar 

  58. Janmaat ML, Gallegos-Ruiz MI, Rodriguez JA, et al. Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. J Clin Oncol. 2006;24(10):1612–9.

    PubMed  CAS  Google Scholar 

  59. Dragovich T, McCoy S, Fenoglio-Preiser CM, et al. Phase II trial of erlotinib in gastroesophageal junction and gastric adenocarcinomas: SWOG 0127. J Clin Oncol. 2006;24(30):4922–7.

    PubMed  CAS  Google Scholar 

  60. Lorenzen S, Schuster T, Porschen R, et al. Cetuximab plus cisplatin-5-fluorouracil versus cisplatin-5-fluorouracil alone in first-line metastatic squamous cell carcinoma of the esophagus: a randomized phase II study of the Arbeitsgemeinschaft Internistische Onkologie. Ann Oncol. 2009;20(10):1667–73.

    PubMed  CAS  Google Scholar 

  61. Pinto C, Di Fabio F, Siena S, et al. Phase II study of cetuximab in combination with FOLFIRI in patients with untreated advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX study). Ann Oncol. 2007;18(3):510–7.

    PubMed  CAS  Google Scholar 

  62. Kim BG, Oh SY, Kwon HC, et al. A phase II study of irinotecan with biweekly, low dose leucovorin and bolus and continuous infusion 5-fluorouracil (modified FOLFIRI) as first line therapy for patients with recurrent or metastatic gastric cancer. Am J Clin Oncol. 2010;33(3):246–50.

    PubMed  CAS  Google Scholar 

  63. Kim JA, Lee J, Han B, et al. Docetaxel/cisplatin followed by FOLFIRI versus the reverse sequence in metastatic gastric cancer. Cancer Chemother Pharmacol. 2011;68(1):177–84.

    Google Scholar 

  64. Kim SH, Lee GW, Go SI, et al. A phase II study of irinotecan, continuous 5-fluorouracil, and leucovorin (FOLFIRI) combination chemotherapy for patients with recurrent or metastatic gastric cancer previously treated with a fluoropyrimidine-based regimen. Am J Clin Oncol. 2010;33(6):572–6.

    PubMed  CAS  Google Scholar 

  65. Li Q, Chen J, Zhao X, et al. A pilot study of irinotecan combined with 5-fluorouracil and leucovorin for the treatment of Chinese patients with locally advanced and metastatic gastric cancer. Tumori. 2009;95(4):432–7.

    PubMed  CAS  Google Scholar 

  66. Pinto C, Di Fabio F, Barone C, et al. Phase II study of cetuximab in combination with cisplatin and docetaxel in patients with untreated advanced gastric or gastro-oesophageal junction adenocarcinoma (DOCETUX study). Br J Cancer. 2009;101(8):1261–8.

    PubMed  CAS  Google Scholar 

  67. Okines AF, Ashley SE, Cunningham D, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for advanced esophagogastric cancer: dose-finding study for the prospective multicenter, randomized, phase II/III REAL-3 trial. J Clin Oncol. 2010;28(25):3945–50.

    PubMed  CAS  Google Scholar 

  68. Barros FF, Powe DG, Ellis IO, Green AR. Understanding the HER family in breast cancer: interaction with ligands, dimerization and treatments. Histopathology. 2010;56(5):560–72.

    PubMed  Google Scholar 

  69. Coussens L, Yang-Feng TL, Liao YC, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 1985;230(4730):1132–9.

    PubMed  CAS  Google Scholar 

  70. Gusterson BA, Gelber RD, Goldhirsch A, et al. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol. 1992;10(7):1049–56.

    PubMed  CAS  Google Scholar 

  71. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    PubMed  CAS  Google Scholar 

  72. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269–80.

    PubMed  CAS  Google Scholar 

  73. Dave B, Migliaccio I, Gutierrez MC, et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol. 2011;29(2):166–73.

    PubMed  CAS  Google Scholar 

  74. Hofmann M, Stoss O, Shi D, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52(7):797–805.

    PubMed  CAS  Google Scholar 

  75. Marx AH, Tharun L, Muth J, et al. HER-2 amplification is highly homogenous in gastric cancer. Hum Pathol. 2009;40(6):769–77.

    PubMed  CAS  Google Scholar 

  76. Barros-Silva JD, Leitao D, Afonso L, et al. Association of ERBB2 gene status with histopathological parameters and disease-specific survival in gastric carcinoma patients. Br J Cancer. 2009;100(3):487–93.

    PubMed  CAS  Google Scholar 

  77. Reichelt U, Duesedau P, Tsourlakis M, et al. Frequent homogeneous HER-2 amplification in primary and metastatic adenocarcinoma of the esophagus. Mod Pathol. 2007;20(1):120–9.

    PubMed  CAS  Google Scholar 

  78. Grabsch H, Sivakumar S, Gray S, Gabbert HE, Muller W. HER2 expression in gastric cancer: Rare, heterogeneous and of no prognostic value—conclusions from 924 cases of two independent series. Cell Oncol. 2010;32(1–2):57–65.

    PubMed  Google Scholar 

  79. Reddy S, Shaller CC, Doss M, et al. Evaluation of the anti-HER2 C6.5 diabody as a PET radiotracer to monitor HER2 status and predict response to trastuzumab treatment. Clin Cancer Res. 21 Dec 2010. doi: 10.1158/1078-0432.CCR-10-1654

  80. Dijkers EC. Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87(5):586–92.

    PubMed  CAS  Google Scholar 

  81. Yu GZ, Chen Y, Wang JJ. Overexpression of Grb2/HER2 signaling in Chinese gastric cancer: their relationship with clinicopathological parameters and prognostic significance. J Cancer Res Clin Oncol. 2009;135(10):1331–9.

    PubMed  CAS  Google Scholar 

  82. Kim JH, Kim MA, Lee HS, Kim WH. Comparative analysis of protein expressions in primary and metastatic gastric carcinomas. Hum Pathol. 2009;40(3):314–22.

    PubMed  CAS  Google Scholar 

  83. Press MF, Hung G, Godolphin W, Slamon DJ. Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res. 1994;54(10):2771–7.

    PubMed  CAS  Google Scholar 

  84. Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. J Clin Oncol. 1999;17(7):1983–7.

    PubMed  CAS  Google Scholar 

  85. Rauser S, Weis R, Braselmann H, et al. Significance of HER2 low-level copy gain in Barrett’s cancer: implications for fluorescence in situ hybridization testing in tissues. Clin Cancer Res. 2007;13(17):5115–23.

    PubMed  CAS  Google Scholar 

  86. Holden J, Garrett Z, Stevens A. NICE guidance on trastuzumab for the treatment of HER2-positive metastatic gastric cancer. Lancet Oncol. 2011;12(1):16–7.

    PubMed  Google Scholar 

  87. Yan B, Yau EX. Bte Omar SS, et al. A study of HER2 gene amplification and protein expression in gastric cancer. J Clin Pathol. 2010;63(9):839–42.

    PubMed  Google Scholar 

  88. Park DI, Yun JW, Park JH, et al. HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig Dis Sci. 2006;51(8):1371–9.

    PubMed  CAS  Google Scholar 

  89. Bartlett JM, Campbell FM, Ibrahim M, et al. A UK NEQAS ISH multicenter ring study using the Ventana HER2 dual-color ISH assay. Am J Clin Pathol. 2011;135(1):157–62.

    PubMed  CAS  Google Scholar 

  90. Yonemura Y, Ninomiya I, Yamaguchi A, et al. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res. 1991;51(3):1034–8.

    PubMed  CAS  Google Scholar 

  91. Uchino S, Tsuda H, Maruyama K, et al. Overexpression of c-erbB-2 protein in gastric cancer. Its correlation with long-term survival of patients. Cancer. 1993;72(11):3179–84.

    PubMed  CAS  Google Scholar 

  92. Mizutani T, Onda M, Tokunaga A, Yamanaka N, Sugisaki Y. Relationship of C-erbB-2 protein expression and gene amplification to invasion and metastasis in human gastric cancer. Cancer. 1993;72(7):2083–8.

    PubMed  CAS  Google Scholar 

  93. Takehana T, Kunitomo K, Kono K, et al. Status of c-erbB-2 in gastric adenocarcinoma: a comparative study of immunohistochemistry, fluorescence in situ hybridization and enzyme-linked immuno-sorbent assay. Int J Cancer. 2002;98(6):833–7.

    PubMed  CAS  Google Scholar 

  94. Ishikawa T, Kobayashi M, Mai M, Suzuki T, Ooi A. Amplification of the c-erbB-2 (HER-2/neu) gene in gastric cancer cells. Detection by fluorescence in situ hybridization. Am J Pathol. 1997;151(3):761–8.

    PubMed  CAS  Google Scholar 

  95. Nakajima M, Sawada H, Yamada Y, et al. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer. 1999;85(9):1894–902.

    PubMed  CAS  Google Scholar 

  96. Park JB, Rhim JS, Park SC, Kimm SW, Kraus MH. Amplification, overexpression, and rearrangement of the erbB-2 protooncogene in primary human stomach carcinomas. Cancer Res. 1989;49(23):6605–9.

    PubMed  CAS  Google Scholar 

  97. Hilton DA, West KP. c-erbB-2 oncogene product expression and prognosis in gastric carcinoma. J Clin Pathol. 1992;45(5):454–6.

    PubMed  CAS  Google Scholar 

  98. Tanner M, Hollmen M, Junttila TT, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16(2):273–8.

    PubMed  CAS  Google Scholar 

  99. Allgayer H, Babic R, Gruetzner KU, Tarabichi A, Schildberg FW, Heiss MM. c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol. 2000;18(11):2201–9.

    PubMed  CAS  Google Scholar 

  100. Schoppmann SF, Jesch B, Friedrich J, et al. Expression of Her-2 in carcinomas of the esophagus. Am J Surg Pathol. 2010;34(12):1868–73.

    PubMed  Google Scholar 

  101. Hardwick RH, Barham CP, Ozua P, et al. Immunohistochemical detection of p53 and c-erbB-2 in oesophageal carcinoma; no correlation with prognosis. Eur J Surg Oncol. 1997;23(1):30–5.

    PubMed  CAS  Google Scholar 

  102. Flejou JF, Paraf F, Muzeau F, et al. Expression of c-erbB-2 oncogene product in Barrett’s adenocarcinoma: pathological and prognostic correlations. J Clin Pathol. 1994;47(1):23–6.

    PubMed  CAS  Google Scholar 

  103. Hardwick RH, Shepherd NA, Moorghen M, Newcomb PV, Alderson D. c-erbB-2 overexpression in the dysplasia/carcinoma sequence of Barrett’s oesophagus. J Clin Pathol. 1995;48(2):129–32.

    PubMed  CAS  Google Scholar 

  104. Brien TP, Odze RD, Sheehan CE, McKenna BJ, Ross JS. HER-2/neu gene amplification by FISH predicts poor survival in Barrett’s esophagus-­associated adenocarcinoma. Hum Pathol. 2000;31(1):35–9.

    PubMed  CAS  Google Scholar 

  105. Dreilich M, Wanders A, Brattstrom D, et al. HER-2 overexpression (3+) in patients with squamous cell esophageal carcinoma correlates with poorer survival. Dis Esophagus. 2006;19(4):224–31.

    PubMed  CAS  Google Scholar 

  106. Mimura K, Kono K, Hanawa M, et al. Frequencies of HER-2/neu expression and gene amplification in patients with oesophageal squamous cell carcinoma. Br J Cancer. 2005;92(7):1253–60.

    PubMed  CAS  Google Scholar 

  107. Wei Q, Chen L, Sheng L, Nordgren H, Wester K, Carlsson J. EGFR, HER2 and HER3 expression in esophageal primary tumours and corresponding metastases. Int J Oncol. 2007;31(3):493–9.

    PubMed  Google Scholar 

  108. Sato-Kuwabara Y, Neves JI, Fregnani JH, Sallum RA, Soares FA. Evaluation of gene amplification and protein expression of HER-2/neu in esophageal squamous cell carcinoma using Fluorescence in situ Hybridization (FISH) and immunohistochemistry. BMC Cancer. 2009;9:6.

    PubMed  Google Scholar 

  109. Akamatsu M, Matsumoto T, Oka K, et al. c-erbB-2 oncoprotein expression related to chemoradioresistance in esophageal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2003;57(5):1323–7.

    PubMed  CAS  Google Scholar 

  110. Miyazono F, Metzger R, Warnecke-Eberz U, et al. Quantitative c-erbB-2 but not c-erbB-1 mRNA expression is a promising marker to predict minor histopathologic response to neoadjuvant radiochemotherapy in oesophageal cancer. Br J Cancer. 2004;91(4):666–72.

    PubMed  CAS  Google Scholar 

  111. Bang Y, Chung H, Xu J, et al. Pathological features of advanced gastric cancer (GC): Relationship to human epidermal growth factor receptor 2 (HER2) positivity in the global screening programme of the ToGA trial. 2009 ASCO Annu Meet. 27:15s. J Clin Oncol 2009:(suppl; abstr 4556).

    Google Scholar 

  112. Polkowski W, van Sandick JW, Offerhaus GJ, et al. Prognostic value of Lauren classification and c-erbB-2 oncogene overexpression in adenocarcinoma of the esophagus and gastroesophageal junction. Ann Surg Oncol. 1999;6(3):290–7.

    PubMed  CAS  Google Scholar 

  113. Kang Y, Bang Y, Lordick S, et al. Incidence of gastric and gastro-esophageal cancer in the ToGA trial: Correlation with HER2 positivity. ASCO Gastrointest Cancers Symp. 2008. [Epub ahead of print] http://www.asco.org/ascov2/Meetings/Abstracts?&vmview=abst_detail_view&confID=53&abstractID =10587. Accessed 10 Feb 2012.

    Google Scholar 

  114. Bang YJ, Van Cutsem E, Feyereislova A, et al. trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    PubMed  CAS  Google Scholar 

  115. Tubbs RR, Pettay JD, Roche PC, Stoler MH, Jenkins RB, Grogan TM. Discrepancies in clinical laboratory testing of eligibility for trastuzumab therapy: apparent immunohistochemical false-positives do not get the message. J Clin Oncol. 2001;19(10):2714–21.

    PubMed  CAS  Google Scholar 

  116. Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66(3):1630–9.

    PubMed  CAS  Google Scholar 

  117. Wainberg ZA, Anghel A, Desai AJ, et al. Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo. Clin Cancer Res. 2010;16(5):1509–19.

    PubMed  CAS  Google Scholar 

  118. Safran H, Dipetrillo T, Akerman P, et al. Phase I/II study of trastuzumab, paclitaxel, cisplatin and radiation for locally advanced, HER2 overexpressing, esophageal adenocarcinoma. Int J Radiat Oncol Biol Phys. 2007;67(2):405–9.

    PubMed  CAS  Google Scholar 

  119. Folkman J, Cole P, Zimmerman S. Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Ann Surg. 1966;164(3):491–502.

    PubMed  CAS  Google Scholar 

  120. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    PubMed  CAS  Google Scholar 

  121. DiSalvo J, Bayne ML, Conn G, et al. Purification and characterization of a naturally occurring vascular endothelial growth factor.placenta growth factor heterodimer. J Biol Chem. 1995;270(13):7717–23.

    PubMed  CAS  Google Scholar 

  122. Olofsson B, Pajusola K, Kaipainen A, et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A. 1996;93(6):2576–81.

    PubMed  CAS  Google Scholar 

  123. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15(7):1751.

    PubMed  CAS  Google Scholar 

  124. Shibuya M. Vascular endothelial growth factor receptor-2: its unique signaling and specific ligand, VEGF-E. Cancer Sci. 2003;94(9):751–6.

    PubMed  CAS  Google Scholar 

  125. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266(18):11947–54.

    PubMed  CAS  Google Scholar 

  126. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991;5(12):1806–14.

    PubMed  CAS  Google Scholar 

  127. Pellet-Many C, Frankel P, Jia H, Zachary I. Neuropilins: structure, function and role in disease. Biochem J. 2008;411(2):211–26.

    PubMed  CAS  Google Scholar 

  128. Geretti E, Shimizu A, Klagsbrun M. Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis. 2008;11(1):31–9.

    PubMed  CAS  Google Scholar 

  129. Pan Q, Chathery Y, Wu Y, et al. Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem. 2007;282(33):24049–56.

    PubMed  CAS  Google Scholar 

  130. Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem. 1994;269(41):25646–54.

    PubMed  CAS  Google Scholar 

  131. Olofsson B, Korpelainen E, Pepper MS, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci U S A. 1998;95(20):11709–14.

    PubMed  CAS  Google Scholar 

  132. Silvestre JS, Tamarat R, Ebrahimian TG, et al. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res. 2003;93(2):114–23.

    PubMed  CAS  Google Scholar 

  133. Cao Y, Chen H, Zhou L, et al. Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR. J Biol Chem. 1996;271(6):3154–62.

    PubMed  CAS  Google Scholar 

  134. Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A. 1998;95(2):548–53.

    PubMed  CAS  Google Scholar 

  135. Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995;92(8):3566–70.

    PubMed  CAS  Google Scholar 

  136. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312(5):549–60.

    PubMed  CAS  Google Scholar 

  137. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49.

    PubMed  CAS  Google Scholar 

  138. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem. 2001;276(29):26969–79.

    PubMed  CAS  Google Scholar 

  139. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80.

    PubMed  CAS  Google Scholar 

  140. Fukumura D, Xavier R, Sugiura T, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998;94(6):715–25.

    PubMed  CAS  Google Scholar 

  141. Kut C. Mac Gabhann F, Popel AS. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer. 2007;97(7):978–85.

    PubMed  CAS  Google Scholar 

  142. Lee KH, Choi EY, Kim MK, et al. Hepatoma-derived growth factor regulates the bad-mediated apoptotic pathway and induction of vascular endothelial growth factor in stomach cancer cells. Oncol Res. 2010;19(2):67–76.

    PubMed  CAS  Google Scholar 

  143. Breier G, Blum S, Peli J, et al. Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis. Int J Cancer. 2002;97(2):142–8.

    PubMed  CAS  Google Scholar 

  144. Yoshikawa T, Tsuburaya A, Kobayashi O, et al. Plasma concentrations of VEGF and bFGF in patients with gastric carcinoma. Cancer Lett. 2000;153(1–2):7–12.

    PubMed  CAS  Google Scholar 

  145. Hyodo I, Doi T, Endo H, et al. Clinical significance of plasma vascular endothelial growth factor in gastrointestinal cancer. Eur J Cancer. 1998;34(13):2041–5.

    PubMed  CAS  Google Scholar 

  146. Eroglu A, Demirci S, Ayyildiz A, et al. Serum concentrations of vascular endothelial growth factor and nitrite as an estimate of in vivo nitric oxide in patients with gastric cancer. Br J Cancer. 1999;80(10):1630–4.

    PubMed  CAS  Google Scholar 

  147. Karayiannakis AJ, Syrigos KN, Polychronidis A, et al. Circulating VEGF levels in the serum of gastric cancer patients: correlation with pathological variables, patient survival, and tumor surgery. Ann Surg. 2002;236(1):37–42.

    PubMed  Google Scholar 

  148. Shimada H, Takeda A, Nabeya Y, et al. Clinical significance of serum vascular endothelial growth factor in esophageal squamous cell carcinoma. Cancer. 2001;92(3):663–9.

    PubMed  CAS  Google Scholar 

  149. Shih CH, Ozawa S, Ando N, Ueda M, Kitajima M. Vascular endothelial growth factor expression predicts outcome and lymph node metastasis in squamous cell carcinoma of the esophagus. Clin Cancer Res. 2000;6(3):1161–8.

    PubMed  CAS  Google Scholar 

  150. Maeda K, Chung YS, Ogawa Y, et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer. 1996;77(5):858–63.

    PubMed  CAS  Google Scholar 

  151. Hirashima Y, Yamada Y, Matsubara J, et al. Impact of vascular endothelial growth factor receptor 1, 2, and 3 expression on the outcome of patients with gastric cancer. Cancer Sci. 2008;100(2):310–5.

    Google Scholar 

  152. Bose D, Meric-Bernstam F, Hofstetter W, et al. Vascular endothelial growth factor targeted therapy in the perioperative setting: implications for patient care. Lancet Oncol. 2010;11(4):373–82.

    PubMed  CAS  Google Scholar 

  153. Allegra CJ, Yothers G, O’Connell MJ, et al. Initial safety report of NSABP C-08: A randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J Clin Oncol. 2009;27(20):3385–90.

    PubMed  CAS  Google Scholar 

  154. Van Cutsem E, Rivera F, Berry S, et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol. 2009;20(11):1842–7.

    PubMed  Google Scholar 

  155. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6423):841–4.

    PubMed  CAS  Google Scholar 

  156. Jain RK, Duda DG, Willett CG, et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol. 2009;6(6):327–38.

    PubMed  CAS  Google Scholar 

  157. Sun W, Powell M, O’Dwyer PJ, et al. Phase II study of sorafenib in combination with docetaxel and cisplatin in the treatment of metastatic or advanced gastric and gastroesophageal junction adenocarcinoma: ECOG 5203. J Clin Oncol. 2010;28(18):2947–51.

    PubMed  CAS  Google Scholar 

  158. Ilson D, Shah MA, Kelsen DP, et al. Phase II trial of sorafenib in esophageal (E) and gastroesophageal junction (GOJ) cancer: response observed in adenocarcinoma. J Clin Oncol. 2010; 28 (suppl; abstr e14668)

    Google Scholar 

  159. Study of oxaliplatin and sorafenib combination to treat gastric cancer relapsed after a cisplatin based treatment http://clinicaltrials.gov/ct2/show/NCT01262482. Accessed 18 Apr 2011.

  160. Sorafenib trial in advanced and/or recurrent gastric adenocarcinoma: treatment evaluation (STARGATE) http://clinicaltrial.gov/ct2/show/NCT01187212. Accessed 18 Apr 2011.

  161. Bang YJ, Kang YK, Kang WK, et al. Phase II study of sunitinib as second-line treatment for advanced gastric cancer. Invest New Drugs. 12 May 2010. [Epub ahead of print].

    Google Scholar 

  162. Moehler MH, Hatmann JT, Lordick F, et al. An open-label, multicenter phase II trial of sunitinib for patients with chemorefractory metastatic gastric cancer. J Clin Oncol. 2010;28:(suppl; abstr e14503)

    Google Scholar 

  163. Horgan AM, Hornby J, Wong R, et al. Adjuvant sunitinib following trimodality therapy for locally advanced esophageal cancer (LAEC). ASCO. 2010:Abstract No. 105.

    Google Scholar 

  164. Sunitinib in treating patients with relapsed or refractory esophageal or gastroesophageal junction cancer http://clinicaltrials.gov/ct2/show/NCT00702884. Accessed 18 Apr 2011.

  165. Sorafenib for patients with metastatic or recurrent esophageal and gastroesophageal junction cancer. http://clinicaltrials.gov/ct2/show/NCT00917462. Accessed 18 Apr 2011.

  166. Shah MA, Ramanathan RK, Ilson DH, et al. Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol. 2006;24(33):5201–6.

    PubMed  CAS  Google Scholar 

  167. Shah MA, Jhawer M, Ilson DH, et al. Phase II study of modified docetaxel, cisplatin, and fluorouracil with bevacizumab in patients with metastatic gastroesophageal adenocarcinoma. J Clin Oncol. 2011;29(7):868–74.

    PubMed  CAS  Google Scholar 

  168. El-Rayes BF, Zalupski M, Bekai-Saab T, et al. A phase II study of bevacizumab, oxaliplatin, and docetaxel in locally advanced and metastatic gastric and gastroesophageal junction cancers. Ann Oncol. 2010;21(10):1999–2004.

    PubMed  CAS  Google Scholar 

  169. Kang Y, Ohtsu A, Van Cutsem E, et al. AVAGAST: a randomized, double-blind, placebo-controlled, phase III study of first-line capecitabine and cisplatin plus bevacizumab or placebo in patients with advanced gastric cancer (AGC). JCO. 2010;28(Suppl 18):LBA4007

    Google Scholar 

  170. Heideman DA, Snijders PJ, Craanen ME, et al. Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Ther. 2001;8(5):342–51.

    PubMed  CAS  Google Scholar 

  171. Anders M, Sarbia M, Grotzinger C, et al. Expression of EpCam and villin in Barrett’s esophagus and in gastric cardia. Dis Markers. 2008;24(6):287–92.

    PubMed  CAS  Google Scholar 

  172. Joo M, Kim H, Kim MK, Yu HJ, Kim JP. Expression of Ep-CAM in intestinal metaplasia, gastric epithelial dysplasia and gastric adenocarcinoma. J Gastroenterol Hepatol. 2005;20(7):1039–45.

    PubMed  Google Scholar 

  173. Wenqi D, Li W, Shanshan C, et al. EpCAM is overexpressed in gastric cancer and its downregulation suppresses proliferation of gastric cancer. J Cancer Res Clin Oncol. 2009;135(9):1277–85.

    PubMed  Google Scholar 

  174. Stoecklein NH, Siegmund A, Scheunemann P, et al. Ep-CAM expression in squamous cell carcinoma of the esophagus: a potential therapeutic target and prognostic marker. BMC Cancer. 2006;6:165.

    PubMed  Google Scholar 

  175. Passebosc-Faure K, Li G, Lambert C, et al. Evaluation of a panel of molecular markers for the diagnosis of malignant serous effusions. Clin Cancer Res. 2005;11(19 Pt 1):6862–7.

    PubMed  CAS  Google Scholar 

  176. De Angelis M, Buley ID, Heryet A, Gray W. Immunocytochemical staining of serous effusions with the monoclonal antibody Ber-EP4. Cytopathology. 1992;3(2):111–7.

    PubMed  Google Scholar 

  177. Diaz-Arias AA, Loy TS, Bickel JT, Chapman RK. Utility of BER-EP4 in the diagnosis of adenocarcinoma in effusions: an immunocytochemical study of 232 cases. Diagn Cytopathol. 1993;9(5):516–21.

    PubMed  CAS  Google Scholar 

  178. Kimura H, Kato H, Faried A, et al. Prognostic significance of EpCAM expression in human esophageal cancer. Int J Oncol. 2007;30(1):171–9.

    PubMed  CAS  Google Scholar 

  179. Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127(9):2209–21.

    PubMed  CAS  Google Scholar 

  180. Fields AL, Keller A, Schwartzberg L, et al. Adjuvant therapy with the monoclonal antibody Edrecolomab plus fluorouracil-based therapy does not improve overall survival of patients with stage III colon cancer. J Clin Oncol. 2009;27(12):1941–7.

    PubMed  CAS  Google Scholar 

  181. Strohlein MA, Lordick F, Ruttinger D, et al. Immunotherapy of peritoneal carcinomatosis with the antibody catumaxomab in colon, gastric, or pancreatic cancer: an open-label, multicenter, phase I/II trial. Onkologie. 2011;34(3):101–8.

    PubMed  Google Scholar 

  182. clinicaltrials.gov. Phase II study with catumaxomab in patients with gastric cancer after neoadjuvant CTx and curative resection. ClinicalTrials.gov identifier: NCT00464893: http://clinicaltrials.gov/ct2/show/NCT00464893. Accessed 18 Apr 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue A. Watson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reece-Smith, A.M., Parsons, S.L., Watson, S.A. (2012). Oesophago-Gastric Cancer. In: Bologna, M. (eds) Biotargets of Cancer in Current Clinical Practice. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-61779-615-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-615-9_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-614-2

  • Online ISBN: 978-1-61779-615-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics