Skip to main content

Non-Hodgkin’s Lymphomas

  • Chapter
  • First Online:
Biotargets of Cancer in Current Clinical Practice

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 826 Accesses

Abstract

The use of rituximab-based chemoimmunotherapy regimens has dramatically improved the overall survival of patients with non-Hodgkin’s lymphomas (NHLs), across all categories. However, relapse and resistance to rituximab frequently hampers the possibility of a cure, and the development of more and more effective therapeutic strategies represents an urgent medical need for lymphoma patients. Importantly, the management of indolent lymphomas still remains a clinical challenge, with no curative treatments available. Despite the lack of common-shared tumor-restricted “druggable” antigens for B-cell lymphoma, exciting progress has been made toward the characterization of the molecular mechanisms sustaining the growth of these diseases. A broad array of novel compounds interfering with prolymphoma signaling pathways are now available, and most of them have already demonstrated a clear evidence of activity against NHL. In the near future, it is highly likely that the introduction of these agents in polychemoimmunotherapy programs will increase the therapeutic windows of these regimens toward more specific and effective antitumor activity with reduced toxicity. Furthermore, increasing evidences are showing the critical role of microenvironment, and in particular immune cells, for B-cell lymphoma survival and proliferation. The possibility of counteracting the immunosuppressant tumor niche through the effective recruitment of a continuing antitumor immune attack is an attractive therapeutic option. The development of immunomodulatory drugs, the recent demonstration that certain conventional chemotherapeutic agents can provide immune-adjuvant side effects, and the continuous advancement in active immunotherapeutic strategies thus open new possibilities for the design of rationale chemoimmunotherapy combination strategies for maximal antilymphoma cytotoxic and immune effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    PubMed  Google Scholar 

  2. Fisher SG, Fisher RI. The epidemiology of non-Hodgkin’s lymphoma. Oncogene. 2004;23(38):6524–34.

    PubMed  CAS  Google Scholar 

  3. Brack C, Hirama M, Lenhard-Schuller R, Tonegawa S. A complete immunoglobulin gene is created by somatic recombination. Cell. 1978;15(1):1–14.

    PubMed  CAS  Google Scholar 

  4. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.

    PubMed  CAS  Google Scholar 

  5. Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nat Rev Immunol. 2009;9(1):15–27.

    PubMed  CAS  Google Scholar 

  6. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.

    PubMed  CAS  Google Scholar 

  7. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13(2):199–212.

    PubMed  CAS  Google Scholar 

  8. Klein U, Casola S, Cattoretti G, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7(7): 773–82.

    PubMed  CAS  Google Scholar 

  9. Shaffer AL, Lin KI, Kuo TC, et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002;17(1):51–62.

    PubMed  CAS  Google Scholar 

  10. Epstein FH, Küppers R, Klein U, Hansmann M-L, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med. 1999;341:1520–9.

    CAS  Google Scholar 

  11. Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol. 2002;2(12):920–32.

    PubMed  CAS  Google Scholar 

  12. Küppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5:251–62.

    PubMed  Google Scholar 

  13. The JES. WHO classification of lymphomas: implications for clinical practice and translational research. Hematology (Am Soc Hematol Educ Program). 2008;2009:523–31.

    Google Scholar 

  14. Küppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 2001;20:5580–94.

    PubMed  Google Scholar 

  15. Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96(3):808–22.

    PubMed  CAS  Google Scholar 

  16. Jäger U, Böcskör S, Le T, et al. Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood. 2000;95:3520–9.

    PubMed  Google Scholar 

  17. Bross L, Fukita Y, McBlane F, Démolliére C, Rajewsky K, Jacobs H. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity. 2000;13(5):589–97.

    PubMed  CAS  Google Scholar 

  18. Esser C, Radbruch A. Immunoglobulin class switching: molecular and cellular analysis. Annu Rev Immunol. 1990;8(1):717–35.

    PubMed  CAS  Google Scholar 

  19. Pasqualucci L, Bereschenko O, Niu H, et al. Molecular pathogenesis of non-Hodgkin’s lymphoma: the role of Bcl-6. Leuk Lymphoma. 2003;44 Suppl 3:S5–12.

    PubMed  CAS  Google Scholar 

  20. Klein U, Tu Y, Stolovitzky GA, et al. Transcriptional analysis of the B cell germinal center reaction. Proc Natl Acad Sci USA. 2003;100(5):2639–44.

    PubMed  CAS  Google Scholar 

  21. Magner WJ, Kazim AL, Stewart C, et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000; 165(12):7017–24.

    PubMed  CAS  Google Scholar 

  22. Lemoine M, Younes A. Histone deacetylase inhibitors in the treatment of lymphoma. Discov Med. 2010;10(54):462–70.

    PubMed  Google Scholar 

  23. Lenz G, Nagel I, Siebert R, et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J Exp Med. 2007;204(3):633–43.

    PubMed  CAS  Google Scholar 

  24. Lenz G, Wright GW, Emre NC, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci USA. 2008;105(36):13520–5.

    PubMed  CAS  Google Scholar 

  25. Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med. 2001;194(12):1861–74.

    PubMed  CAS  Google Scholar 

  26. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88–92.

    PubMed  CAS  Google Scholar 

  27. Reeder CB, Ansell SM. Novel therapeutic agents for B-cell lymphoma: developing rational combinations. Blood. 2011;117(5):1453–62.

    PubMed  CAS  Google Scholar 

  28. Rui L, Emre NC, Kruhlak MJ, et al. Cooperative epigenetic modulation by cancer amplicon genes. Cancer cell. 2010;18(6):590–605.

    PubMed  CAS  Google Scholar 

  29. Choi WW, Weisenburger DD, Greiner TC, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15(17):5494–502.

    PubMed  CAS  Google Scholar 

  30. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23.

    PubMed  CAS  Google Scholar 

  31. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16(8):2780–95.

    PubMed  CAS  Google Scholar 

  32. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69.

    PubMed  CAS  Google Scholar 

  33. Ngan B-Y, Chen-Levy Z, Weiss LM, Warnke RA, Cleary ML. Expression in non-Hodgkin’s lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 1988;318(25):1638–44.

    PubMed  CAS  Google Scholar 

  34. Pezzella F, Tse AG, Cordell JL, Pulford KA, Gatter KC, Mason DY. Expression of the bcl-2 oncogene protein is not specific for the 14;18 chromosomal translocation. Am J Pathol. 1990;137(2):225–32.

    PubMed  CAS  Google Scholar 

  35. Hiddemann W, Buske C, Dreyling M, et al. Treatment strategies in follicular lymphomas: current status and future perspectives. J Clin Oncol. 2005;23(26): 6394–9.

    PubMed  CAS  Google Scholar 

  36. Rosenberg SA. Follicular lymphoma revisited. J Clin Oncol. 2008;26(4):515–6.

    PubMed  Google Scholar 

  37. Lossos IS. Higher-grade transformation of follicular lymphoma – a continuous enigma. Leukemia. 2005;19(8):1331–3.

    PubMed  CAS  Google Scholar 

  38. Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. N Engl J Med. 1984;311(23):1471–5.

    PubMed  CAS  Google Scholar 

  39. O’Brien ME, Easterbrook P, Powell J, et al. The natural history of low grade non-Hodgkin’s lymphoma and the impact of a no initial treatment policy on survival. Q J Med. 1991;80(292):651–60.

    PubMed  Google Scholar 

  40. Rohatiner AZ, Lister TA. The clinical course of follicular lymphoma. Best Pract Res Clin Haematol. 2005;18(1):1–10.

    PubMed  Google Scholar 

  41. Montoto S, Davies AJ, Matthews J, et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol. 2007;25(17):2426–33.

    PubMed  Google Scholar 

  42. Herreros B, Sanchez-Aguilera A, Piris MA. Lymphoma microenvironment: culprit or innocent? Leukemia. 2008;22(1):49–58.

    PubMed  CAS  Google Scholar 

  43. Glas AM, Knoops L, Delahaye L, et al. Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J Clin Oncol. 2007;25(4):390–8.

    PubMed  CAS  Google Scholar 

  44. Alvaro T, Lejeune M, Salvado MT, et al. Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol. 2006; 24(34):5350–7.

    PubMed  Google Scholar 

  45. Wotherspoon AC, Doglioni C, Diss TC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342(8871):575–7.

    PubMed  CAS  Google Scholar 

  46. Hermine O, Lefrere F, Bronowicki JP, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med. 2002;347(2):89–94.

    PubMed  CAS  Google Scholar 

  47. Sagaert X, De Wolf-Peeters C, Noels H, Baens M. The pathogenesis of MALT lymphomas: where do we stand? Leukemia. 2007;21(3):389–96.

    PubMed  CAS  Google Scholar 

  48. Dave SS. Follicular lymphoma and the microenvironment. Blood. 2008;111(9):4427–8.

    PubMed  CAS  Google Scholar 

  49. de Jong D. Molecular pathogenesis of follicular lymphoma: a cross talk of genetic and immunologic factors. J Clin Oncol. 2005;23(26):6358–63.

    PubMed  Google Scholar 

  50. Eray M, Postila V, Eeva J, et al. Follicular lymphoma cell lines, an in vitro model for antigenic selection and cytokine-mediated growth regulation of germinal centre B cells. Scand J Immunol. 2003;57(6):545–55.

    PubMed  CAS  Google Scholar 

  51. Goval JJ, Thielen C, Bourguignon C, et al. The prevention of spontaneous apoptosis of follicular lymphoma B cells by a follicular dendritic cell line: involvement of caspase-3, caspase-8 and c-FLIP. Haematologica. 2008;93(8):1169–77.

    PubMed  CAS  Google Scholar 

  52. Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood. 2010;115:289–95.

    PubMed  CAS  Google Scholar 

  53. Yang Z-Z, Novak AJ, Stenson MJ, Witzig TE, Ansell SM. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood. 2006;107(9):3639–46.

    PubMed  CAS  Google Scholar 

  54. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25- T cells. Blood. 2007;110(7):2537–44.

    PubMed  CAS  Google Scholar 

  55. Ai WZ, Hou JZ, Zeiser R, Czerwinski D, Negrin RS, Levy R. Follicular lymphoma B cells induce the conversion of conventional CD4+ T cells to T-regulatory cells. Int J Cancer. 2009;124(1):239–44.

    PubMed  CAS  Google Scholar 

  56. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJC, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA. 2007;104(49):19446–51.

    PubMed  CAS  Google Scholar 

  57. Alvaro T, Lejeune M, Camacho FI, et al. The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma. Haematologica. 2006;91:1605–12.

    PubMed  CAS  Google Scholar 

  58. Farinha P, Masoudi H, Skinnider BF, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005;106(6):2169–74.

    PubMed  CAS  Google Scholar 

  59. Lee AM, Clear AJ, Calaminici M, et al. Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J Clin Oncol. 2006;24(31):5052–9.

    PubMed  CAS  Google Scholar 

  60. Keating MJ, O’Brien S, Albitar M, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol. 2005;23(18):4079–88.

    PubMed  CAS  Google Scholar 

  61. Leget GA, Czuczman MS. Use of rituximab, the new FDA-approved antibody. Curr Opin Oncol. 1998;10(6):548–51.

    PubMed  CAS  Google Scholar 

  62. Marcus R, Imrie K, Belch A, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005;105(4):1417–23.

    PubMed  CAS  Google Scholar 

  63. Hiddemann W, Kneba M, Dreyling M, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106(12):3725–32.

    PubMed  CAS  Google Scholar 

  64. Herold M, Haas A, Srock S, et al. Rituximab added to first-line mitoxantrone, chlorambucil, and prednisolone chemotherapy followed by interferon maintenance prolongs survival in patients with advanced follicular lymphoma: an East German Study Group Hematology and Oncology Study. J Clin Oncol. 2007;25(15): 1986–92.

    PubMed  CAS  Google Scholar 

  65. Schulz H, Bohlius JF, Trelle S, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2007;99(9):706–14.

    PubMed  CAS  Google Scholar 

  66. Tan D, Horning SJ. Follicular lymphoma: clinical features and treatment. Hematol Oncol Clin North Am. 2008;22(5):863–82.

    PubMed  Google Scholar 

  67. Vose JM, Link BK, Grossbard ML, et al. Phase II study of rituximab in combination with chop chemotherapy in patients with previously untreated, aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2001;19(2):389–97.

    PubMed  CAS  Google Scholar 

  68. Press OW, Leonard JP, Coiffier B, Levy R, Timmerman J. Immunotherapy of non-Hodgkin’s lymphomas. Hematology Am Soc Hematol Educ Program. 2001(1);221–40.

    Google Scholar 

  69. Zelenetz AD, Abramson JS, Advani RH, et al. NCCN Clinical Practice Guidelines in Oncology: non-Hodgkin’s lymphomas. J Natl Compr Canc Netw. 2010;8(3):288–334.

    PubMed  Google Scholar 

  70. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91.

    PubMed  CAS  Google Scholar 

  71. Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(19):3121–7.

    PubMed  CAS  Google Scholar 

  72. Pfreundschuh M, Trumper L, Kloess M, et al. Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood. 2004;104(3):634–41.

    PubMed  CAS  Google Scholar 

  73. Pfreundschuh M, Schubert J, Ziepert M, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 2008;9(2): 105–16.

    PubMed  CAS  Google Scholar 

  74. Gribben JG, How I. treat indolent lymphoma. Blood. 2007;109(11):4617–26.

    PubMed  CAS  Google Scholar 

  75. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65.

    PubMed  CAS  Google Scholar 

  76. Buske C, Hoster E, Dreyling M, Hasford J, Unterhalt M, Hiddemann W. The Follicular Lymphoma International Prognostic Index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood. 2006;108(5):1504–8.

    PubMed  CAS  Google Scholar 

  77. Federico M, Bellei M, Marcheselli L, et al. Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol. 2009;27(27):4555–62.

    PubMed  Google Scholar 

  78. Vitolo U, Ferreri AsJM, Montoto S. Follicular lymphomas. Crit Rev Oncol Hematol. 2008;66(3):248–61.

    PubMed  Google Scholar 

  79. Hoppe RT, Kushlan P, Kaplan HS, Rosenberg SA, Brown BW. The treatment of advanced stage favorable histology non-Hodgkin’s lymphoma: a preliminary report of a randomized trial comparing single agent chemotherapy, combination chemotherapy, and whole body irradiation. Blood. 1981;58(3):592–8.

    PubMed  CAS  Google Scholar 

  80. Vaughan Hudson B, Vaughan Hudson G, MacLennan KA, Anderson L, Linch DC. Clinical stage 1 non-Hodgkin’s lymphoma: long-term follow-up of patients treated by the British National Lymphoma Investigation with radiotherapy alone as initial therapy. Br J Cancer. 1994;69(6):1088–93.

    PubMed  CAS  Google Scholar 

  81. Wilder RB, Jones D, Tucker SL, et al. Long-term results with radiotherapy for Stage I-II follicular lymphomas. Int J Radiat Oncol Biol Phys. 2001;51(5):1219–27.

    PubMed  CAS  Google Scholar 

  82. Colombat P, Salles G, Brousse N, et al. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood. 2001;97(1):101–6.

    PubMed  CAS  Google Scholar 

  83. Hainsworth JD, Burris 3rd HA, Morrissey LH, et al. Rituximab monoclonal antibody as initial systemic therapy for patients with low-grade non-Hodgkin lymphoma. Blood. 2000;95(10):3052–6.

    PubMed  CAS  Google Scholar 

  84. Hainsworth JD. Monoclonal antibody therapy in lymphoid malignancies. Oncologist. 2000;5(5): 376–84.

    PubMed  CAS  Google Scholar 

  85. Solal-Celigny P. Rituximab as first-line monotherapy in low-grade follicular lymphoma with a low tumor burden. Anticancer Drugs. 2001;12 Suppl 2:S11–4.

    PubMed  CAS  Google Scholar 

  86. Brice P, Bastion Y, Lepage E, et al. Comparison in low-tumor-burden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon alfa: a randomized study from the Groupe d’Etude des Lymphomes Folliculaires. Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 1997;15(3):1110–7.

    PubMed  CAS  Google Scholar 

  87. van Oers MH, Klasa R, Marcus RE, et al. Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood. 2006;108(10):3295–301.

    PubMed  Google Scholar 

  88. Salles G, Seymour JF, Offner F, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2011;377(9759):42–51.

    PubMed  CAS  Google Scholar 

  89. McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.

    PubMed  CAS  Google Scholar 

  90. McLaughlin P, Hagemeister FB, Grillo-Lopez AJ. Rituximab in indolent lymphoma: the single-agent pivotal trial. Semin Oncol. 1999;26(5 Suppl 14): 79–87.

    PubMed  CAS  Google Scholar 

  91. Freedman AS, Ritz J, Neuberg D, et al. Autologous bone marrow transplantation in 69 patients with a history of low-grade B-cell non-Hodgkin’s lymphoma. Blood. 1991;77(11):2524–9.

    PubMed  CAS  Google Scholar 

  92. Freedman AS, Neuberg D, Mauch P, et al. Long-term follow-up of autologous bone marrow transplantation in patients with relapsed follicular lymphoma. Blood. 1999;94(10):3325–33.

    PubMed  CAS  Google Scholar 

  93. Apostolidis J, Gupta RK, Grenzelias D, et al. High-dose therapy with autologous bone marrow support as consolidation of remission in follicular lymphoma: long-term clinical and molecular follow-up. J Clin Oncol. 2000;18(3):527–36.

    PubMed  CAS  Google Scholar 

  94. Rohatiner AZ, Nadler L, Davies AJ, et al. Myeloablative therapy with autologous bone marrow transplantation for follicular lymphoma at the time of second or subsequent remission: long-term follow-up. J Clin Oncol. 2007;25(18):2554–9.

    PubMed  Google Scholar 

  95. Toze CL, Barnett MJ, Connors JM, et al. Long-term disease-free survival of patients with advanced follicular lymphoma after allogeneic bone marrow transplantation. Br J Haematol. 2004;127(3):311–21.

    PubMed  Google Scholar 

  96. Gribben JG, Zahrieh D, Stephans K, et al. Autologous and allogeneic stem cell transplantations for poor-risk chronic lymphocytic leukemia. Blood. 2005;106(13):4389–96.

    PubMed  CAS  Google Scholar 

  97. Morris E, Thomson K, Craddock C, et al. Outcomes after alemtuzumab-containing reduced-intensity allogeneic transplantation regimen for relapsed and refractory non-Hodgkin lymphoma. Blood. 2004;104(13):3865–71.

    PubMed  CAS  Google Scholar 

  98. Rezvani AR, Storer B, Maris M, et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in relapsed, refractory, and transformed indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26(2):211–7.

    PubMed  Google Scholar 

  99. Khouri IF, McLaughlin P, Saliba RM, et al. Eight-year experience with allogeneic stem cell transplantation for relapsed follicular lymphoma after nonmyeloablative conditioning with fludarabine, cyclophosphamide, and rituximab. Blood. 2008;111(12):5530–6.

    PubMed  CAS  Google Scholar 

  100. Friedberg JW, Cohen P, Chen L, et al. Bendamustine in patients with rituximab-refractory indolent and transformed non-Hodgkin’s lymphoma: results from a phase II multicenter, single-agent study. J Clin Oncol. 2008;26(2):204–10.

    PubMed  CAS  Google Scholar 

  101. Czuczman MS, Rummel MJ. Clinical Roundtable Monograph: recent advances in NHL. Highlights from the 51st ASH Annual Meeting and Exposition, December 5–8, 2009, New Orleans, Louisiana. Clin Adv Hematol Oncol. 2010;8(2):A1–11.

    Google Scholar 

  102. Sirotnak FM, DeGraw JI, Colwell WT, Piper JR. A new analogue of 10-deazaaminopterin with markedly enhanced curative effects against human tumor xenografts in mice. Cancer Chemother Pharmacol. 1998;42(4):313–8.

    PubMed  CAS  Google Scholar 

  103. O’Connor OA, Hamlin PA, Portlock C, et al. Pralatrexate, a novel class of antifol with high affinity for the reduced folate carrier-type 1, produces marked complete and durable remissions in a diversity of chemotherapy refractory cases of T-cell lymphoma. Br J Haematol. 2007;139(3):425–8.

    PubMed  Google Scholar 

  104. Engert A, Herbrecht R, Santoro A, Zinzani PL, Gorbatchevsky I. EXTEND PIX301: a phase III randomized trial of pixantrone versus other chemotherapeutic agents as third-line monotherapy in patients with relapsed, aggressive non-Hodgkin’s lymphoma. Clin Lymphoma Myeloma. 2006;7(2):152–4.

    PubMed  Google Scholar 

  105. Gururajan M, Dasu T, Shahidain S, et al. Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. J Immunol. 2007;178(1):111–21.

    PubMed  CAS  Google Scholar 

  106. Gururajan M, Jennings CD, Bondada S. Cutting edge: constitutive B cell receptor signaling is critical for basal growth of B lymphoma. J Immunol. 2006;176(10):5715–9.

    PubMed  CAS  Google Scholar 

  107. Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101(12):4667–79.

    PubMed  CAS  Google Scholar 

  108. Soriano AO, Yang H, Faderl S, et al. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2007;110(7):2302–8.

    PubMed  CAS  Google Scholar 

  109. Tolcher AW, Mita A, Lewis LD, et al. Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol. 2008;26(32):5198–203.

    PubMed  CAS  Google Scholar 

  110. Gupta M, Ansell SM, Novak AJ, Kumar S, Kaufmann SH, Witzig TE. Inhibition of histone deacetylase overcomes rapamycin-mediated resistance in diffuse large B-cell lymphoma by inhibiting Akt signaling through mTORC2. Blood. 2009;114(14):2926–35.

    PubMed  CAS  Google Scholar 

  111. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4(5):335–48.

    PubMed  CAS  Google Scholar 

  112. Coiffier B, Lepretre S, Pedersen LM, et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1–2 study. Blood. 2008;111(3):1094–100.

    PubMed  CAS  Google Scholar 

  113. Kausar F, Mustafa K, Sweis G, et al. Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert Opin Biol Ther. 2009;9(7):889–95.

    PubMed  CAS  Google Scholar 

  114. Kaminski MS, Kitamura K, Maloney DG, Levy R. Idiotype vaccination against murine B cell lymphoma. Inhibition of tumor immunity by free idiotype protein. J Immunol. 1987;138(4):1289–96.

    PubMed  CAS  Google Scholar 

  115. Advani R, Sharman JP, Smith SM, et al. Effect of Btk inhibitor PCI-32765 monotherapy on responses in patients with relapsed aggressive NHL: Evidence of antitumor activity from a phase I study. J Clin Oncol. 2010;28:15s(suppl; abstr 8012).

    Google Scholar 

  116. Nowakowski GS, Maurer MJ, Habermann TM, et al. Statin use and prognosis in patients with diffuse large B-cell lymphoma and follicular lymphoma in the rituximab era. J Clin Oncol. 2010;28(3):412–7.

    PubMed  CAS  Google Scholar 

  117. Kwak LW, Campbell M, Levy R. Idiotype vaccination post-bone marrow transplantation for B-cell lymphoma: initial studies in a murine model. Cancer Detect Prev. 1991;15(4):323–5.

    PubMed  CAS  Google Scholar 

  118. Anderson KC. Lenalidomide and thalidomide: mechanisms of action–similarities and differences. Semin Hematol. 2005;42(4 Suppl 4):S3–8.

    PubMed  CAS  Google Scholar 

  119. Morschhauser F, Seymour JF, Kluin-Nelemans HC, et al. A phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Ann Oncol. 2008;19(2):247–53.

    PubMed  CAS  Google Scholar 

  120. Schwartzberg L, Hermann RC, Flinn IW, et al. Enzastaurin in patients with follicular lymphoma: Results of a phase II study. J Clin Oncol. 2010;28:15s, (suppl; abstr 8040).

    Google Scholar 

  121. Lannutti BJ, Meadows SA, Herman SE, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117(2):591–4.

    PubMed  CAS  Google Scholar 

  122. Furman et al. ASCO 2010, abstract 3032.

    Google Scholar 

  123. Kahl et al. ASH annual meeting 2010, abstract 1777.

    Google Scholar 

  124. Furman et al. ASH annual meeting 2010, abstract 55.

    Google Scholar 

  125. Hoellenriegel et al. ASH annual meeting 2010, abstract 48.

    Google Scholar 

  126. Flinn et al. ASH annual meeting 2010, abstract 2832.

    Google Scholar 

  127. Hideshima T, Catley L, Yasui H, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006;107(10):4053–62.

    PubMed  CAS  Google Scholar 

  128. Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23(23):5347–56.

    PubMed  CAS  Google Scholar 

  129. Ansell SM, Inwards DJ, Rowland Jr KM, et al. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer. 2008;113(3):508–14.

    PubMed  CAS  Google Scholar 

  130. Hess G, Herbrecht R, Romaguera J, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27(23):3822–9.

    PubMed  CAS  Google Scholar 

  131. Smith SM, van Besien K, Karrison T, et al. Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: The University of Chicago phase II consortium. J Clin Oncol. 2010;28(31):4740–6.

    PubMed  CAS  Google Scholar 

  132. Haritunians T, Mori A, O’Kelly J, Luong QT, Giles FJ, Koeffler HP. Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia. 2007;21(2):333–9.

    PubMed  CAS  Google Scholar 

  133. Zent CS, LaPlant BR, Johnston PB, et al. The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer. 2010;116(9):2201–7.

    PubMed  Google Scholar 

  134. Best OG, Singh N, Forsyth C, Mulligan SP. The novel Hsp-90 inhibitor SNX7081 is significantly more potent than 17-AAG against primary CLL cells and a range of haematological cell lines, irrespective of lesions in the TP53 pathway. Br J Haematol. 2010;151(2):185–8.

    PubMed  CAS  Google Scholar 

  135. Widmann T, Sester U, Gartner BC, et al. Levels of CMV specific CD4 T cells are dynamic and correlate with CMV viremia after allogeneic stem cell transplantation. PLoS One. 2008;3(11):e3634.

    PubMed  Google Scholar 

  136. Held G, Schubert J, Pfreundschuh M. [Treatment of hematological malignancies with monoclonal antibodies]. Internist (Berl). 2008;49(8):929–30, 932–4, 936–7.

    Google Scholar 

  137. Orlowski RZ, Baldwin Jr AS. NF-kappaB as a therapeutic target in cancer. Trends Mol Med. 2002;8(8):385–9.

    PubMed  CAS  Google Scholar 

  138. Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87(3):1104–12.

    PubMed  CAS  Google Scholar 

  139. Goy A, Younes A, McLaughlin P, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(4):667–75.

    PubMed  CAS  Google Scholar 

  140. Goy A, Bernstein SH, Kahl BS, et al. Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol. 2009;20(3):520–5.

    PubMed  CAS  Google Scholar 

  141. Di Bella N, Taetle R, Kolibaba K, et al. Results of a phase 2 study of bortezomib in patients with relapsed or refractory indolent lymphoma. Blood. 2010;115(3):475–80.

    PubMed  Google Scholar 

  142. O’Connor OA, Portlock C, Moskowitz C, et al. Time to treatment response in patients with follicular lymphoma treated with bortezomib is longer compared with other histologic subtypes. Clin Cancer Res. 2010;16(2):719–26.

    PubMed  Google Scholar 

  143. Dunleavy K, Pittaluga S, Czuczman MS, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood. 2009;113(24):6069–76.

    PubMed  CAS  Google Scholar 

  144. Kupperman et al. ASCO 2009, abstract 5636.

    Google Scholar 

  145. Piva R, Ruggeri B, Williams M, et al. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood. 2008;111(5):2765–75.

    PubMed  CAS  Google Scholar 

  146. Kuhn DJ, Chen Q, Voorhees PM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110(9):3281–90.

    PubMed  CAS  Google Scholar 

  147. Paoluzzi L, Gonen M, Gardner JR, et al. Targeting Bcl-2 family members with the BH3 mimetic AT-101 markedly enhances the therapeutic effects of chemotherapeutic agents in in vitro and in vivo models of B-cell lymphoma. Blood. 2008;111(11):5350–8.

    PubMed  CAS  Google Scholar 

  148. O’Connor OA, Stewart AK, Vallone M, et al. A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res. 2009;15(22):7085–91.

    PubMed  Google Scholar 

  149. Chauhan D, Catley L, Li G, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer cell. 2005;8(5):407–19.

    PubMed  CAS  Google Scholar 

  150. Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood. 2009;113(19):4667–76.

    PubMed  CAS  Google Scholar 

  151. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    PubMed  CAS  Google Scholar 

  152. Pandolfi PP. Histone deacetylases and transcriptional therapy with their inhibitors. Cancer Chemother Pharmacol. 2001;48 Suppl 1:S17–9.

    PubMed  CAS  Google Scholar 

  153. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.

    PubMed  CAS  Google Scholar 

  154. Kurland JF, Tansey WP. Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res. 2008;68(10):3624–9.

    PubMed  CAS  Google Scholar 

  155. Burgess A, Ruefli A, Beamish H, et al. Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene. 2004;23(40):6693–701.

    PubMed  CAS  Google Scholar 

  156. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84.

    PubMed  CAS  Google Scholar 

  157. Ma X, Ezzeldin HH, Diasio RB. Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs. 2009;69(14):1911–34.

    PubMed  CAS  Google Scholar 

  158. Deroanne CF, Bonjean K, Servotte S, et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21(3):427–36.

    PubMed  CAS  Google Scholar 

  159. Liu LT, Chang HC, Chiang LC, Hung WC. Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res. 2003;63(12):3069–72.

    PubMed  CAS  Google Scholar 

  160. Kirschbaum et al. ASCO 2007, abstracts 18515.

    Google Scholar 

  161. Kirschbaum et al. ASH annual meeting 2008, abstract 1564.

    Google Scholar 

  162. Ottmann et al. ASH annual meeting 2008, abstract 958.

    Google Scholar 

  163. Zain et al. ASCO 2009, abstract 8580.

    Google Scholar 

  164. Furumai R, Matsuyama A, Kobashi N, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002;62(17):4916–21.

    PubMed  CAS  Google Scholar 

  165. Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27(32):5410–7.

    PubMed  CAS  Google Scholar 

  166. Crump et al. ASCO 2008, abstract 8528.

    Google Scholar 

  167. Younes et al. ASH annual meeting 2007, abstract 2571.

    Google Scholar 

  168. Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001;20(24):6969–78.

    PubMed  CAS  Google Scholar 

  169. Chung EJ, Lee MJ, Lee S, Trepel JB. Assays for pharmacodynamic analysis of histone deacetylase inhibitors. Expert Opin Drug Metab Toxicol. 2006;2(2):213–30.

    PubMed  CAS  Google Scholar 

  170. Bonfils C, Kalita A, Dubay M, et al. Evaluation of the pharmacodynamic effects of MGCD0103 from preclinical models to human using a novel HDAC enzyme assay. Clin Cancer Res. 2008;14(11):3441–9.

    PubMed  CAS  Google Scholar 

  171. Fantin VR, Loboda A, Paweletz CP, et al. Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res. 2008;68(10):3785–94.

    PubMed  CAS  Google Scholar 

  172. Younes et al. ASH annual meeting 2010, abstract 2830.

    Google Scholar 

  173. Ganesan A, Nolan L, Crabb SJ, Packham G. Epigenetic therapy: histone acetylation, DNA methylation and anti-cancer drug discovery. Curr Cancer Drug Targets. 2009;9(8):963–81.

    PubMed  CAS  Google Scholar 

  174. Garcia-Manero G. Demethylating agents in myeloid malignancies. Curr Opin Oncol. 2008;20(6):705–10.

    PubMed  CAS  Google Scholar 

  175. Odenike et al. ASCO 2008, abstract 7057.

    Google Scholar 

  176. Pro B, Leber B, Smith M, et al. Phase II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in combination with rituximab in patients with recurrent B-cell non-Hodgkin lymphoma. Br J Haematol. 2008;143(3):355–60.

    PubMed  CAS  Google Scholar 

  177. Wilson et al. ASCO 2009, abstract 8574.

    Google Scholar 

  178. Hernandez-Ilizaliturr et al. ASH annual meeting 2009, abstract 114:288.

    Google Scholar 

  179. Goy et al. ASH annual meeting 2008, abstract 2569.

    Google Scholar 

  180. Andersen MH, Svane IM, Becker JC, Straten PT. The universal character of the tumor-associated antigen survivin. Clin Cancer Res. 2007;13(20):5991–4.

    PubMed  CAS  Google Scholar 

  181. Oldenhuis et al. ASCO 2008, abstract 3540.

    Google Scholar 

  182. Younes et al. ASH annual meeting 2009, abstract 1708.

    Google Scholar 

  183. Ling et al. ASCO 2006, abstract 3047.

    Google Scholar 

  184. Yee et al. ASCO 2007, abstract 8078.

    Google Scholar 

  185. Lavazza C, Carlo-Stella C, Giacomini A, et al. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood. 2010;115:2231–40.

    PubMed  CAS  Google Scholar 

  186. Tabe Y, Sebasigari D, Jin L, et al. MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res. 2009;15(3):933–42.

    PubMed  CAS  Google Scholar 

  187. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    PubMed  CAS  Google Scholar 

  188. Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125(4):1678–85.

    PubMed  CAS  Google Scholar 

  189. Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun. 2005;8:140–74.

    PubMed  CAS  Google Scholar 

  190. Jazirehi AR, Bonavida B. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin’s lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene. 2005;24(13):2121–43.

    PubMed  CAS  Google Scholar 

  191. Golay J, Zaffaroni L, Vaccari T, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood. 2000;95(12):3900–8.

    PubMed  CAS  Google Scholar 

  192. Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood. 2002;99(4):1314–9.

    PubMed  CAS  Google Scholar 

  193. Alas S, Emmanouilides C, Bonavida B. Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin Cancer Res. 2001;7(3):709–23.

    PubMed  CAS  Google Scholar 

  194. Davis TA, Grillo-Lopez AJ, White CA, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000;18(17):3135–43.

    PubMed  CAS  Google Scholar 

  195. Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104(6):1793–800.

    PubMed  CAS  Google Scholar 

  196. Hagenbeek A, Gadeberg O, Johnson P, et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood. 2008;111(12):5486–95.

    PubMed  CAS  Google Scholar 

  197. Goldenberg DM, Rossi EA, Stein R, et al. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood. 2009;113(5):1062–70.

    PubMed  CAS  Google Scholar 

  198. Morschhauser F, Leonard JP, Fayad L, et al. Humanized anti-CD20 antibody, veltuzumab, in refractory/recurrent non-Hodgkin’s lymphoma: phase I/II results. J Clin Oncol. 2009;27(20):3346–53.

    PubMed  CAS  Google Scholar 

  199. Milani C, Castillo J. Veltuzumab, an anti-CD20 mAb for the treatment of non-Hodgkin’s lymphoma, chronic lymphocytic leukemia and immune thrombocytopenic purpura. Curr Opin Mol Ther. 2009;11(2):200–7.

    PubMed  CAS  Google Scholar 

  200. Vugmeyster Y, Beyer J, Howell K, et al. Depletion of B cells by a humanized anti-CD20 antibody PRO70769 in Macaca fascicularis. J Immunother. 2005;28(3):212–9.

    PubMed  CAS  Google Scholar 

  201. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.

    PubMed  CAS  Google Scholar 

  202. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–7.

    PubMed  CAS  Google Scholar 

  203. Bowles JA, Wang SY, Link BK, et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood. 2006;108(8):2648–54.

    PubMed  CAS  Google Scholar 

  204. Salles GA. ASH annual meeting 2009, abstract 1704.

    Google Scholar 

  205. Leonard JP, Coleman M, Ketas JC, et al. Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21(16):3051–9.

    PubMed  CAS  Google Scholar 

  206. Pathan NI, Chu P, Hariharan K, Cheney C, Molina A, Byrd J. Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23+ lymphoma cell lines. Blood. 2008;111(3):1594–602.

    PubMed  CAS  Google Scholar 

  207. Czuczman MS, Thall A, Witzig TE, et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol. 2005;23(19):4390–8.

    PubMed  CAS  Google Scholar 

  208. Leonard JP, Coleman M, Ketas J, et al. Combination antibody therapy with epratuzumab and rituximab in relapsed or refractory non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(22):5044–51.

    PubMed  CAS  Google Scholar 

  209. Czuczman M. ASH annual meeting 2008, abstract 1003.

    Google Scholar 

  210. Friedberg et al. ASH annual meeting 2008, abstract 1004.

    Google Scholar 

  211. Micallef et al. ASCO 2009, abstract 8508.

    Google Scholar 

  212. Byrd et al. ASH annual meeting 2006, abstract 32.

    Google Scholar 

  213. Grdisa M. Influence of CD40 ligation on survival and apoptosis of B-CLL cells in vitro. Leuk Res. 2003;27(10):951–6.

    PubMed  CAS  Google Scholar 

  214. Kater AP, Evers LM, Remmerswaal EB, et al. CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the anti-apoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack. Br J Haematol. 2004;127(4):404–15.

    PubMed  CAS  Google Scholar 

  215. Luqman M, Klabunde S, Lin K, et al. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood. 2008;112(3):711–20.

    PubMed  CAS  Google Scholar 

  216. Law CL, Gordon KA, Collier J, et al. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res. 2005;65(18):8331–8.

    PubMed  CAS  Google Scholar 

  217. Advani et al. ASH annual meeting 2008, abstract 1000.

    Google Scholar 

  218. Kaufman et al. ASCO 2009, abstract 8593.

    Google Scholar 

  219. Hintzen RQ, Lens SM, Beckmann MP, Goodwin RG, Lynch D, van Lier RA. Characterization of the human CD27 ligand, a novel member of the TNF gene family. J Immunol. 1994;152(4):1762–73.

    PubMed  CAS  Google Scholar 

  220. Israel BF, Gulley M, Elmore S, Ferrini S, Feng WH, Kenney SC. Anti-CD70 antibodies: a potential treatment for EBV+ CD70-expressing lymphomas. Mol Cancer Ther. 2005;4(12):2037–44.

    PubMed  CAS  Google Scholar 

  221. Starlets D, Gore Y, Binsky I, et al. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood. 2006;107(12):4807–16.

    PubMed  CAS  Google Scholar 

  222. Roche PA, Cresswell P. Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature. 1990;345(6276):615–8.

    PubMed  CAS  Google Scholar 

  223. Stein R, Mattes MJ, Cardillo TM, et al. CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res. 2007;13(18 Pt 2):5556s–63.

    PubMed  CAS  Google Scholar 

  224. Stein R, Qu Z, Cardillo TM, et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood. 2004;104(12):3705–11.

    PubMed  CAS  Google Scholar 

  225. Davis TA, Czerwinski DK, Levy R. Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clin Cancer Res. 1999;5(3):611–5.

    PubMed  CAS  Google Scholar 

  226. Cartron G, Watier H, Golay J, Solal-Celigny P. From the bench to the bedside: ways to improve rituximab efficacy. Blood. 2004;104(9):2635–42.

    PubMed  CAS  Google Scholar 

  227. Zhou X, Hu W, Qin X. The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist. 2008;13(9):954–66.

    PubMed  CAS  Google Scholar 

  228. Messmann RA, Vitetta ES, Headlee D, et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin Cancer Res. 2000;6(4):1302–13.

    PubMed  CAS  Google Scholar 

  229. DiJoseph JF, Armellino DC, Boghaert ER, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14.

    PubMed  CAS  Google Scholar 

  230. Fayad L, Patel H, Verhoef G, et al. Clinical Activity of the Immunoconjugate CMC-544 in B-Cell Malignancies: Preliminary Report of the Expanded Maximum Tolerated Dose (MTD) Cohort of a Phase 1 Study. (ASH Annual Meeting Abstracts). Blood. 2006;108(11): abstract 2711.

    Google Scholar 

  231. Fayad et al. ASH annual meeting 2008, abstract 266.

    Google Scholar 

  232. Emmanouilides C. Radioimmunotherapy for Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30(2):258–61.

    PubMed  CAS  Google Scholar 

  233. Fisher RI, Kaminski MS, Wahl RL, et al. Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin’s lymphomas. J Clin Oncol. 2005;23(30):7565–73.

    PubMed  CAS  Google Scholar 

  234. Kaminski MS, Radford JA, Gregory SA, et al. Re-treatment with I-131 tositumomab in patients with non-Hodgkin’s lymphoma who had previously responded to I-131 tositumomab. J Clin Oncol. 2005;23(31):7985–93.

    PubMed  CAS  Google Scholar 

  235. Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(15):3262–9.

    PubMed  CAS  Google Scholar 

  236. Witzig TE, White CA, Gordon LI, et al. Safety of yttrium-90 ibritumomab tiuxetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21(7):1263–70.

    PubMed  CAS  Google Scholar 

  237. Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(10):2453–63.

    PubMed  CAS  Google Scholar 

  238. Gill DS, Damle NK. Biopharmaceutical drug discovery using novel protein scaffolds. Curr Opin Biotechnol. 2006;17(6):653–8.

    PubMed  CAS  Google Scholar 

  239. Hayden-Ledbetter MS, Cerveny CG, Espling E, et al. CD20-directed small modular immunopharmaceutical, TRU-015, depletes normal and malignant B cells. Clin Cancer Res. 2009;15(8):2739–46.

    PubMed  CAS  Google Scholar 

  240. Burge DJ, Bookbinder SA, Kivitz AJ, Fleischmann RM, Shu C, Bannink J. Pharmacokinetic and pharmacodynamic properties of TRU-015, a CD20-directed small modular immunopharmaceutical protein therapeutic, in patients with rheumatoid arthritis: a Phase I, open-label, dose-escalation clinical study. Clin Ther. 2008;30(10):1806–16.

    PubMed  CAS  Google Scholar 

  241. Brischwein K, Parr L, Pflanz S, et al. Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J Immunother. 2007;30(8):798–807.

    PubMed  CAS  Google Scholar 

  242. Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891): 974–7.

    PubMed  CAS  Google Scholar 

  243. Koos D, Josephs SF, Alexandrescu DT, et al. Tumor vaccines in 2010: need for integration. Cellular Immunol. 2010;263:138–47.

    CAS  Google Scholar 

  244. Forstpointner R, Unterhalt M, Dreyling M, et al. Maintenance therapy with rituximab leads to a significant prolongation of response duration after salvage therapy with a combination of rituximab, fludarabine, cyclophosphamide, and mitoxantrone (R-FCM) in patients with recurring and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low Grade Lymphoma Study Group (GLSG). Blood. 2006;108(13):4003–8.

    PubMed  CAS  Google Scholar 

  245. Harris JR, Markl J. Keyhole limpet hemocyanin: molecular structure of a potent marine immunoactivator. A review. Eur Urol. 2000;37 Suppl 3:24–33.

    PubMed  CAS  Google Scholar 

  246. Hsu FJ, Caspar CB, Czerwinski D, et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma – long-term results of a clinical trial. Blood. 1997;89(9):3129–35.

    PubMed  CAS  Google Scholar 

  247. Li J, Song W, Czerwinski DK, et al. Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J Immunol. 2007;179(4):2493–500.

    PubMed  CAS  Google Scholar 

  248. Datta SK, Cho HJ, Takabayashi K, Horner AA, Raz E. Antigen-immunostimulatory oligonucleotide conjugates: mechanisms and applications. Immunol Rev. 2004;199:217–26.

    PubMed  CAS  Google Scholar 

  249. Lynch RG, Graff RJ, Sirisinha S, Simms ES, Eisen HN. Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci USA. 1972;69(6):1540–4.

    PubMed  CAS  Google Scholar 

  250. Freedman PM, Autry JR, Tokuda S, Williams Jr RC. Tumor immunity induced by preimmunization with BALB/c mouse myeloma protein. J Natl Cancer Inst. 1976;56(4):735–40.

    PubMed  CAS  Google Scholar 

  251. Stevenson GT, Elliott EV, Stevenson FK. Idiotypic determinants on the surface immunoglobulin of neoplastic lymphocytes: a therapeutic target. Fed Proc. 1977;36(9):2268–71.

    PubMed  CAS  Google Scholar 

  252. Kwak LW, Young HA, Pennington RW, Weeks SD. Vaccination with syngeneic, lymphoma-derived immunoglobulin idiotype combined with granulocyte/macrophage colony-stimulating factor primes mice for a protective T-cell response. Proc Natl Acad Sci USA. 1996;93(20):10972–7.

    PubMed  CAS  Google Scholar 

  253. Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med. 1992;327(17):1209–15.

    PubMed  CAS  Google Scholar 

  254. Bendandi M, Gocke CD, Kobrin CB, et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat Med. 1999;5(10):1171–7.

    PubMed  CAS  Google Scholar 

  255. Redfern CH, Guthrie TH, Bessudo A, et al. Phase II trial of idiotype vaccination in previously treated patients with indolent non-Hodgkin’s lymphoma resulting in durable clinical responses. J Clin Oncol. 2006;24(19):3107–12.

    PubMed  CAS  Google Scholar 

  256. Yanez R, Barrios Y, Ruiz E, Cabrera R, Diaz-Espada F. Anti-idiotypic Immunotherapy in follicular lymphoma patients: results of a long follow-up study. J Immunother. 2008;31(3):310–2.

    PubMed  Google Scholar 

  257. Inoges S, Rodriguez-Calvillo M, Zabalegui N, et al. Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J Natl Cancer Inst. 2006;98(18):1292–301.

    PubMed  Google Scholar 

  258. Neelapu SS, Kwak LW, Kobrin CB, et al. Vaccine-induced tumor-specific immunity despite severe B-cell depletion in mantle cell lymphoma. Nat Med. 2005;11(9):986–91.

    PubMed  CAS  Google Scholar 

  259. Koc et al. ASH annual meeting 2005, abstract 772.

    Google Scholar 

  260. Freedman A, Neelapu SS, Nichols C, et al. Placebo-controlled phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte-macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J Clin Oncol. 2009;27(18):3036–43.

    PubMed  CAS  Google Scholar 

  261. Levy et al. ASCO 2008, abstract LB-204.

    Google Scholar 

  262. Schuster et al. ASCO 2009, abstract 2;27 Suppl:18s.

    Google Scholar 

  263. Bendandi M. Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nat Rev Cancer. 2009;9(9):675–81.

    PubMed  CAS  Google Scholar 

  264. Timmerman JM, Singh G, Hermanson G, et al. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res. 2002;62(20):5845–52.

    PubMed  CAS  Google Scholar 

  265. Hawkins RE, Zhu D, Ovecka M, et al. Idiotypic vaccination against human B-cell lymphoma. Rescue of variable region gene sequences from biopsy material for assembly as single-chain Fv personal vaccines. Blood. 1994;83(11):3279–88.

    PubMed  CAS  Google Scholar 

  266. Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev. 2007;220:129–50.

    PubMed  CAS  Google Scholar 

  267. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179(4):1109–18.

    PubMed  CAS  Google Scholar 

  268. Timmerman JM. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood. 2002;99(5):1517–26.

    PubMed  CAS  Google Scholar 

  269. Di Nicola M, Zappasodi R, Carlo-Stella C, et al. Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood. 2009;113(1):18–27.

    PubMed  Google Scholar 

  270. Zappasodi R, Pupa SM, Ghedini GC, et al. Improved clinical outcome in indolent B-cell lymphoma patients vaccinated with autologous tumor cells experiencing immunogenic death. Cancer Res. 2010;70(22):9062–72.

    PubMed  CAS  Google Scholar 

  271. Neelapu SS, Gause BL, Harvey L, et al. A novel proteoliposomal vaccine induces antitumor immunity against follicular lymphoma. Blood. 2007;109(12):5160–3.

    PubMed  CAS  Google Scholar 

  272. Zitvogel L, Apetoh L, Ghiringhelli FO, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59–73.

    PubMed  CAS  Google Scholar 

  273. Brody JD, Ai WZ, Czerwinski DK, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. 2010;28:4324–32.

    PubMed  Google Scholar 

  274. Neelapu SS, Kwak LW. Cancer vaccines: up, down, … up again? Blood. 2009;113(1):1–2.

    CAS  Google Scholar 

  275. Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC. Thalidomide and lenalidomide: mechanism-based potential drug combinations. Leuk Lymphoma. 2008;49(7):1238–45.

    PubMed  CAS  Google Scholar 

  276. Zhu D, Corral LG, Fleming YW, Stein B. Immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce apoptosis of both hematological and solid tumor cells through NK cell activation. Cancer Immunol Immunother. 2008;57(12):1849–59.

    PubMed  CAS  Google Scholar 

  277. Chang DH, Liu N, Klimek V, et al. Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood. 2006;108(2):618–21.

    PubMed  CAS  Google Scholar 

  278. Wiernik PH, Lossos IS, Tuscano JM, et al. Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26(30):4952–7.

    PubMed  Google Scholar 

  279. Witzig TE, Wiernik PH, Moore T, et al. Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27(32):5404–9.

    PubMed  CAS  Google Scholar 

  280. Dutia et al. ASH annual meeting 2009, abstract 1679.

    Google Scholar 

  281. Fowler et al. ASH annual meeting 2009, abstract 1714.

    Google Scholar 

  282. Nowakowski et al. ASH annual meeting 2009, abstract 1669.

    Google Scholar 

  283. Hilchey SP, Hyrien O, Mosmann TR, et al. Rituximab immunotherapy results in the induction of a lymphoma idiotype-specific T-cell response in patients with follicular lymphoma: support for a “vaccinal effect” of rituximab. Blood. 2009;113(16): 3809–12.

    PubMed  CAS  Google Scholar 

  284. Cerchietti LC, Lopes EC, Yang SN, et al. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat Med. 2009;15(12):1369–76.

    PubMed  CAS  Google Scholar 

  285. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761–72.

    PubMed  CAS  Google Scholar 

  286. Younes et al. ASH annual meeting 2009, abstract 3744.

    Google Scholar 

  287. Rao et al. ASH annual meeting 2010, abstract 2856.

    Google Scholar 

  288. Hagenbeek A, Plesner T, Johnson P, et al. HuMax-CD20, a novel fully human anti-CD20 monoclonal antibody: results of a phase I/II trial in relapsed or refractory follicular non-Hodgkins’s lymphoma. (ASH annual meeting abstracts). Blood. 2005;106(11):abstract 5760.

    PubMed  CAS  Google Scholar 

  289. Hagenbeek A, Fayad L, Delwail V, et al. Evaluation of ofatumumab, a novel human CD20 monoclonal antibody, as single agent therapy in rituximab-­refractory follicular lymphoma. (ASH annual meeting abstracts). Blood. 2009;114(22):abstract 935.

    PubMed  CAS  Google Scholar 

  290. Coiffer B, Bosly A, Wu KL, et al. Ofatumumab monotherapy for treatment of patients with relapsed/progressive diffuse large B-cell lymphoma: results from a multicenter phase II study. Blood. 2010;116(21):abstract 3955.

    PubMed  CAS  Google Scholar 

  291. Kipps T, Osterborg A, Mayer J, et al. Clinical improvement with a novel CD20 mAb, ofatumumab, in fludarabine-refractory chronic lymphocytic leukemia (CLL) also refractory to alemtuzumab or with bulky lymphadenopathy. J Clin Oncol. 2009;27:15s (suppl; abstract 7043).

    PubMed  CAS  Google Scholar 

  292. Morschhauser F, Leonard JP, Fayad L, et al. Humanized anti-CD20 antibody, veltuzumab, in refractory/recurrent non-Hodgkin’s lymphoma: phase I/II results. J Clin Oncol. 2009;27(20):3346–53.

    PubMed  CAS  Google Scholar 

  293. Salles GA, Morschhauser F, Thieblemont C, et al. Promising efficacy with the new anti-CD20 antibody GA101 in heavily pre-treated NHL patients—updated results with encouraging progression free survival (PFS) data from a phase II study in patients with relapsed/refractory indolent NHL (iNHL). (ASH annual meeting abstracts). Blood. 2010; 116(21):abstract 2868.

    PubMed  CAS  Google Scholar 

  294. Cartron G, Thieblemont C, Solal-Celigny P, et al. Promising efficacy with the new anti-CD20 antibody GA101 in heavily pre-treated NHL patients—first results from a phase II study in patients with relapsed/refractory DLBCL and MCL. (ASH annual meeting abstracts). Blood. 2010;116(21):abstract 2878.

    PubMed  CAS  Google Scholar 

  295. Leonard JP, Coleman M, Ketas JC, et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res. 2004;10:5327–34.

    PubMed  CAS  Google Scholar 

  296. Leonard JP, Schuster SJ, Emmanouilides C, et al. Durable complete responses from therapy with combined epratuxumab and rituximab: final results from an international multicenter, phase 2 study in recurrent, indolent, non-Hodgkin lymphoma. Cancer. 2008:113(10):2714–23.

    PubMed  CAS  Google Scholar 

  297. Grant B, Leonard JP, Jeffrey L, et al. Combination biologic therapy as initial treatment for follicular lymphoma: initial results from CALGB 50701—a phase II trial of extended induction epratuzumab (anti-CD22) and rituximab (anti-CD20). (ASH annual meeting abstracts). Blood. 2010;116(21):abstract 427.

    PubMed  CAS  Google Scholar 

  298. Morschhauser F, Leonard JP, Fayad L, et al. Humanized anti-CD20 antibody, veltuzumab, in refractory/recurrent non-Hodgkin’s lymphoma: phase I/II results. J Clin Oncol. 2009;27(20):3346–53.

    PubMed  CAS  Google Scholar 

  299. Tobanai K, Ogura M, Hatake K, et al. Phase I and pharmacokinetic study of inotuzumab ozogamicin (CMC- 544) as a single agent in Japanese patients with follicular lymphoma pretreated with rituximab. (ASH annual meeting abstracts). Blood. 2008; 118(11):abstract 1565.

    PubMed  CAS  Google Scholar 

  300. Goy A, Leach J, Ehmann WC, et al., Inotuzumab ozogamicin (CMC-544) in patients with indolent B-cell NHL that is refractory to rituximab alone, rituximab and chemotherapy, or radioimmunotherapy: preliminary safety and efficacy from a phase 2 trial. (ASH annual meeting abstracts). Blood. 2010;116(21):abstract 430.

    PubMed  CAS  Google Scholar 

  301. Byrd J, Kipps TJ, Flinn IW, et al. Phase 1/2 study of lumiliximab combined with fludarabine, cyclophosphamide, and rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood. 2010;115(3):489–95.

    PubMed  CAS  Google Scholar 

  302. Advani R, Forero-Torres A, Furman RR, et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27(32):4371–77.

    PubMed  CAS  Google Scholar 

  303. Kivekas I, Hulkkonen J, Hurme M, Vilpo L, Vilpo J. CD80 antigen expression as a predictor of ex vivo chemosensitivity in chronic lymphocytic leukemia. Leuk Res. 2002;26(5):443–6.

    PubMed  CAS  Google Scholar 

  304. Bence-Bruckler I, Macdonald D, Stiff PJ, et al. A phase 2, double-blind, placebo-controlled trial of rituximab + galiximab vs rituximab + placebo in advanced follicular non-Hodgkin’s lymphoma (NHL). (ASH annual meeting abstracts). Blood. 2010;116(21):abstract 428.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Di Nicola M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zappasodi, R., Di Nicola, M. (2012). Non-Hodgkin’s Lymphomas. In: Bologna, M. (eds) Biotargets of Cancer in Current Clinical Practice. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-61779-615-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-615-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-614-2

  • Online ISBN: 978-1-61779-615-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics