Skip to main content

Uterine Cancer: The Influence of Genetics and Environment on Cell Cycling Pathways in Cancer

  • Chapter
  • First Online:
Book cover Biotargets of Cancer in Current Clinical Practice

Abstract

Endometrial cancer is the most common gynecologic malignancy in the USA and is becoming increasingly more prevalent in industrialized countries. Endometrial cancer accounts for over 43,000 new cases (6% of all cancer cases) and almost 8,000 deaths annually (3% of cancer deaths). This chapter reviews current knowledge about endometrial cancer and its implication for strategies at prevention and treatment, with a particular focus on molecular mechanisms of pathogenesis and targeted therapies.

Endometrial cancer presents as abnormal uterine bleeding, with 80% of cases occurring in postmenopausal patients. The disease is further subcategorized as type I or II. Type I is associated with unopposed estrogen and an endometrioid histology, whereas type II is a more aggressive subtype that presents at a later stage, generally demonstrates a serous histology, and is more likely to recur.

Genetic mutations play a key role in the development of endometrial cancer. Hereditary syndromes such as HNPCC and Lynch syndrome and their germ line mutations have been well described. Various somatic mutations play an important role on tumorigenesis and poor clinical outcomes, such as loss of function of tumor suppressor genes. Further investigation of cell signaling pathways provides novel insights into mechanisms of disease as well as providing therapeutic targets. Current knowledge about the role of tumor suppressor genes, TP53 and PTEN, and mutations in key cell signaling pathways, such as the PI3K-Akt-mTOR pathway, is discussed.

Translational implications for endometrial cancer therapy, traditional chemotherapies, and potential advantages of novel, targeted agents such as mTOR, VEGF, and PI3K inhibitors are reviewed. To date, none of these targeted therapies have demonstrated response rates approaching those of conventional therapies, but they have added greatly to our understanding of endometrial cancer pathogenesis and clinical correlations with disease recurrence and resistance to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jamal A, Siegel R, Xu J, et al. Cancer statistics 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  Google Scholar 

  2. Deligdisch L, Holinka CF. Endometrial carcinoma: two diseases? Cancer Detect Prev. 1987;10:237–46.

    PubMed  CAS  Google Scholar 

  3. Lin WM, Forgacs E, Warshal DP, Yeh T, Martin JS, Ashfaq R, Muller CY. Loss of heterozygosity and mutational analysis of the PTEN/MMAC1 gene in synchronous endometrial and ovarian carcinomas. Clin Cancer Res. 1998;4:2577–83.

    PubMed  CAS  Google Scholar 

  4. Okamoto A, Sameshima Y, Yamada Y, Teshima SI, Terashima Y, Terada M, Yokota J. Allelic loss on chromosome 17p and p53 mutations in human endometrial carcinoma of the uterus. Cancer Res. 1991;51:5632–5.

    PubMed  CAS  Google Scholar 

  5. von Gruenigen VE, Waggoner SE, Frasure HE, Kavanagh MB, Janata JW, Rose PG, Courneya KS, Lerner E. Lifestyle challenges in endometrial cancer survivorship. Obstet Gynecol. 2011;117(1):93–9.

    Article  Google Scholar 

  6. Lauren Streib. World’s FastestCountries. http://www.forbes.com/2007/02/07/worlds-fattest-countries-forbeslife-cx_ls_0208worldfat_2.html Accessed 1 Mar 2011.

  7. The Surgeon General’s Call to Action to Prevent and Decrease Overweight and Obesity. http://www.surgeongeneral.gov/topics/obesity/ Accessed 1 Mar 2011.

  8. Abe N, Watanabe J, Tsunoda S, Kuramoto H, Okayasu I. Significance of nuclear p-Akt in endometrial carcinogenesis. Int J Gynecol Cancer. 2011;21(2):194–202.

    Article  PubMed  Google Scholar 

  9. Nakmura K, Hongo A, Kodama J, Hiramatsu Y. Fat accumulation in adipose tissues as a risk factor for the development of endometrial cancer. Oncol Rep. 2011 Jul;26(1):65–71.

    Google Scholar 

  10. Goodman MT, Wilkens LR, Hankin JH, Lyu LC, Wu AH, Kolonel LN. Association of soy and fiber consumption with the risk of endometrial cancer. Am J Epidemiol. 1997;146(4):294–306.

    PubMed  CAS  Google Scholar 

  11. Myung SK, Ju W, Choi HJ, Kim SC. Soy intake and risk of endocrine-related gynaecological cancer: a meta-analysis. Br J Obstet Gynaecol. 2009;116(13): 1697–705.

    Article  Google Scholar 

  12. McGrath M, Lee IM, Buring J, De Vivo I. Common genetic variation within IGFI, IGFII, IGFPB-1, and IGFBP-3 and endometrial cancer risk. Gynecol Oncol. 2011;120:174–8.

    Article  PubMed  CAS  Google Scholar 

  13. Maki RG. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol. 2010;28(33):4985–95.

    Article  PubMed  CAS  Google Scholar 

  14. Burzawa JK, Schmeler KM, Soliman PT, Meyer LA, Bevers MW, Pustilnik TL, Anderson ML, Ramondetta LM, Tortolero-Luna G, Urbauer DL, Chang S, Gershenson DM, Brown J, Lu KH. Prospective ­evaluation of insulin resistance among endometrial cancer patients. Am J Obstet Gynecol. 2011 Apr;204(4):355.

    Google Scholar 

  15. Zhang Q, Shen Q, Celestino J. Enhanced estrogen-induced proliferation in obese rat endometrium. Am J Obstet Gynecol. 2009;200:186.e1–e8.

    Article  Google Scholar 

  16. Creasman WT, DeGeest K, DiSaia PJ, Zaino RJ. Significance of true surgical pathologic staging: A Gynecologic Oncology Group study. Am J Obstet Gynecol. 1999;181:31–4.

    Article  PubMed  CAS  Google Scholar 

  17. Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105(2):103–4.

    Article  PubMed  Google Scholar 

  18. Kurman RJ, Zaino RJ, Norris HJ. Endometrial carcinoma. In: Kurman RJ, editor. Blaustein’s pathology of the female genital tract. 4th ed. New York: Springer; 1994. p. 439–86.

    Google Scholar 

  19. Mutter GL. Endometrial intraepithelial neoplasia (EIN): will it bring order to chaos? The endometrial Collaborative group. Gynecol Oncol. 2000;76:287.

    Article  PubMed  CAS  Google Scholar 

  20. Baloglu H, Cannizzaro LA, Jones J, Koss LG. Atypical endometrial hyperplasia shares genomic abnormalities with endometrioid carcinoma by comparative genomic hybridization. Human Pathol. 2001;32(6):615–22.

    Article  CAS  Google Scholar 

  21. Soslow RA, Pirog E, Isacson C. Endometrial intraepithelial carcinoma with associated peritoneal carcinomatosis. Am J Surg Pathol. 2000;24(5):726–32.

    Article  PubMed  CAS  Google Scholar 

  22. Pecorelli S, Benedet JL, Creasman WT, et al. FIGO staging of gynecologic cancer 1994–1997. Int J Gynaecol Obstet. 1999;65(3):243–9.

    Article  PubMed  CAS  Google Scholar 

  23. Iochin E. Immunohistochemical tumour markers in endometrial carcinoma. Eur J Gynaecol Oncol. 2005;26(4):363–71.

    Google Scholar 

  24. Lynch HT, Lynch J. Lynch syndrome: genetics, natural history, genetic counseling, and prevention. J Clin Oncol. 2000;18:19S–31.

    PubMed  CAS  Google Scholar 

  25. Boks DES, Trujillo AP, Voogd AC, Morreau H, Kenter GG, Vasen HFA. Survival analysis of endometrial carcinoma associated with hereditary nonpolyposis colorectal cancer. Int J Cancer. 2002;102:198–200.

    Article  PubMed  CAS  Google Scholar 

  26. Barak F, Milgrom R, Laitman Y, Gemer O, Rabinovich A, Piura B, Anteby E, Ben Baruch G, Korach J, Friedman E. The rate of the predominant Jewish mutations in the BRCA 1, BRCA2, MSH2, and MSH6 genes in unselected Jewish endometrial cancer patients. Gynecol Oncol. 2010;119:511–5.

    Article  PubMed  CAS  Google Scholar 

  27. Service RF. Stalking the start of colon cancer. Science. 1994;263:1559–60.

    Article  PubMed  CAS  Google Scholar 

  28. Thibodeau SN, French AJ, Roche PC, Cunningham JM, Tester DJ, Lindor NM, Moslein G, Baker SM, Liskay M, Burgart LJ, Honchel R, Halling KC. Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res. 1996;56:4836–40.

    PubMed  CAS  Google Scholar 

  29. Peltomaki P, Lothe RA, Aaltonen LA, Pylkkanen L, Nystrom-Lahti M, Seruca R, David L, Holm R, Ryberg D, Haugen A, Brogger A, Borresen AL, de la Chapelle A. Microsatellite Instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res. 1993;53:5853–5.

    PubMed  CAS  Google Scholar 

  30. Kanaya T, Kyo S, Maida Y, Yatabe N, Tanaka M, Nakamura M, Inoue M. Frequent hypermethylation of MLH1 promoter in normal endometrium of patients with endometrial cancers. Oncogene. 2003;22:2352–60.

    Article  PubMed  CAS  Google Scholar 

  31. Hirasaw A, Aoki D, Inoue J, Imoto I, Susumu N, Sugano K, Nozawa S, Inazawa J. Unfavorable prognostic factors associated with high frequency of microsatellite instability and comparative genomic hybridization analysis in endometrial cancer. Clin Cancer Res. 2003;9:5675–82.

    Google Scholar 

  32. MacDonald ND, Salvesen HB, Ryan A. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 2000;60:1750–2.

    PubMed  CAS  Google Scholar 

  33. Zauber NP, Denehy TR, Taylor RR, Ongcapin EH, Marotta SP, Saabbath-Solitaire M, Kulkarni R, Pradham TS, Hermelin D, Bishop DT. Microsatellite instability and DNA methylation of endometrial tumors and clinical features in young women compared to older women. Int J Gynecol Cancer. 2010;20:1549–56.

    PubMed  Google Scholar 

  34. Caduff RF, Johnston DM, Svoboda-Newman SM, Poy EL, Merajver SD, Frank TS. Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am J Pathol. 1996;148:1671–8.

    PubMed  CAS  Google Scholar 

  35. Basil JB, Goodfellow PJ, Rader JS, Mutch DG, Herzog TJ. Clinical significance of microsatellite instability in endometrial carcinoma. Cancer. 2000;89:1758–64.

    Article  PubMed  CAS  Google Scholar 

  36. Lynch HT, Smyrk TC, Watson P, Lanspa SJ, Lynch JF, Lynch PM, Cavalieri J, Boland CR. Genetics, natural history, tumor spectrum and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology. 1993;104:1535–49.

    PubMed  CAS  Google Scholar 

  37. Paulson TG, Wright FA, Parker BA, Russack V, Wahl GM. Microsatellite instability correlates with reduced survival and poor disease prognosis in breast cancer. Cancer Res. 1996;56:4021–6.

    PubMed  CAS  Google Scholar 

  38. Shannon C, Kirk J, Barnetson R, Evans J, Schnitzler M, Quinn M, Hacker N, Crandon A, Harnett P. Incidence of microsatellite instability in synchronous tumors of the ovary and endometrium. Clin Cancer Res. 2003;9:1387–92.

    PubMed  CAS  Google Scholar 

  39. Kempers MJE, Kuiper RP, Ockeloen CW, Chappuis PO, Hutter P, Rahner N, Schackert HK, Steinke V, Holinski-Feder E, et al. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol. 2011;12:49–55.

    Article  PubMed  Google Scholar 

  40. Lukes AS, Kohler MF, Pieper CF, Kerns BJ, Bentley R, Rodriguez GC, Soper JT, Clarke-Pearson DL, Bast RC, Berchuk A. Multivariable analysis of DNA ploidy, p53, and HER-2/neu as prognostic factors in endometrial cancer. Cancer. 1994;73(9):2380–5.

    Article  PubMed  CAS  Google Scholar 

  41. Kiechle M, Hinrichs M, Jacobsen A, Luttges J, Pfisterer J, Kommoss F, Arnold N. Genetic imbalances in precursor lesions of endometrial cancer detected by comparative genomic hybridization. Am J Pathol. 2000;156(6):1827–33.

    Article  PubMed  CAS  Google Scholar 

  42. Shah NK, Curries JL, Rosenshein N, Campbell J, Long P, Abbas F, Griffin CA. Cytogeneic and FISH analysis of endometrial carcinoma. Cancer Genet Cytogenet. 1994;73:142–6.

    Article  PubMed  CAS  Google Scholar 

  43. Mutter GL, Baak JPA, Fitzgerald JT, Gray R, Neuberg D, Kust GA, Gentleman R, Gullans SR, Wei LJ, Wilcox M. Global expression changes of constitutive and hormonally regulated genes during endometrial neoplastic transformation. Gynecol Oncol. 2001;83:177–85.

    Article  PubMed  CAS  Google Scholar 

  44. Maxwell GL, Chandramouli GVR, Dainty L, Litzi TJ, Berchuk A, Barrett JC, Risinger JI. Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer. Clin Cancer Res. 2005;11:4056–66.

    Article  PubMed  CAS  Google Scholar 

  45. Moreno-Bueno G, Fernandez-Marcos PJ, Collado M, Tendero MI, Rodriguez-Pinilla SM, Garcia-Cao I, Hardisson D, Diaz-Meco MT, Moscat J, Serrano M, Palacios J. Inactivation of the candidate tumor suppressor par-4 in endometrial cancer. Cancer Res. 2007;67:1927–34.

    Article  PubMed  CAS  Google Scholar 

  46. Ferguson SE, Olshen AB, Viale A, Barakat RB, Boyd J. Stratification of intermediate-risk endometrial cancer patients into groups at high risk or low risk for recurrence based on tumor gene expression profiles. Clin Cancer Res. 2005;11:2252–7.

    Article  PubMed  CAS  Google Scholar 

  47. Wong YF, Cheung TH, Lo KWK, Yim SF, Siu NSS, Chan SCS, Ho TWF, Wong KWY, Yu MY, Wang VW, Li C, Gardner GJ, Bonome T, Johnson WB, Smith DI, Chung TKH, Birrer MJ. Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genomic-wide gene expression profiling. Oncogene. 2007;26:1971–82.

    Article  PubMed  CAS  Google Scholar 

  48. Gehrig PA, Bae-Jump VL. Promising novel therapies for treatment of endometrial cancer. Gynecol Oncol. 2010;116:187–94.

    Article  PubMed  CAS  Google Scholar 

  49. Morrison C, Zanagnolo V, Ramirez N, Cohn DE, Kelbick N, Copeland L, Maxwell LG, Fowler JM. Her-2 is an independent prognostic factor in endometrial cancer: association with outcome in a large cohort of surgically staged patients. J Clin Oncol. 2006;24(15):2376–85.

    Article  PubMed  CAS  Google Scholar 

  50. Santin AD, Bellone S, van Stedum S, Bushen W, de las Casas LE, Korourian S, Tiam E, Roman JJ, Burnett A, Pecorelli S. Determination of HER2/neu status in uterine serous papillary carcinoma: comparative analysis of immunohistochemistry and fluorescence in situ hybridization. Gynecol Oncol. 2005;98:24–30.

    Article  PubMed  CAS  Google Scholar 

  51. Slomovitz BM, Lu KH, Johnston T, Coleman RL, Munsell M, Broaddus RR, Walker C, Ramondetta LM, Burke TW, Gershenson DM, Wolf J. A phase 2 study of the oral mammalian target of rapamycin inhibitor, Everolimus, in patients with recurrent endometrial carcinoma. Cancer. 2010;116:5415–9.

    Article  PubMed  CAS  Google Scholar 

  52. Konecny GE, Santos L, Winterhoff B, Hatmal M, Keeney GL, Mariani A, Jones M, Neuper C, Thomas B, Muderspach L, Riehle D, Wang HJ, Dowdy S, Podratz KC, Press MF. HER2 gene amplification and EGFR expression in a large cohort of surgically staged patients with nonendometrioid (type II) endometrial cancer. Br J Cancer. 2009;100(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  53. Fadare O, Zheng W. Insights into endometrial serous carcinogenesis and progression. Int J Clin Exp Pathol. 2009;2(5):411–32.

    PubMed  CAS  Google Scholar 

  54. Enomoto T, Inoue M, Perantoni AO, Terakawa N, Tanizawa O, Rice JM. K-ras activation in neoplasms of the human female reproductive tract. Cancer Res. 1990;50:6139–45.

    PubMed  CAS  Google Scholar 

  55. Duggan BD, Felix JC, Muderspach LI, Tsao JL, Shibata DK. Early mutational activation of the c-Ki-ras oncogene in endometrial carcinoma. Cancer Res. 1994;54:1604–7.

    PubMed  CAS  Google Scholar 

  56. Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000;88(4):814–24.

    Article  PubMed  CAS  Google Scholar 

  57. Koul A, Willén R, Bendahl PO, Nilbert M, Borg A. Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumorigenesis. Cancer. 2002;94(9):2369–79.

    Article  PubMed  CAS  Google Scholar 

  58. Vandenput I, Debiec-Rychter M, Capoen A, Verbist G, Vergote I, Moerman P, Amant F. Kit gene in endometrial carcinoma. Int J Gynecol Cancer. 2011;21: 203–5.

    Article  PubMed  Google Scholar 

  59. Kohler MF, Berchuk A, Davidoff AM, Humphrey PA, Dodge RK, Iglehart JD, Soper JT, Clarke-Pearson DL, Bast RC, Marks JR. Overexpression and mutation of p53 in endometrial carcinoma. Cancer Res. 1992;52:1622–7.

    PubMed  CAS  Google Scholar 

  60. Catasus L, Gallardo A, Cuatrecasas M, Prat J. PIK3CA mutations in the kinase domain (exon 20) of uterine endometrial adenocarcinomas are associated with adverse prognostic parameters. Mod Pathol. 2008;21: 131–9.

    PubMed  CAS  Google Scholar 

  61. Jia L, Liu Y, Yi X, Miron A, Crum CP, Kong B, Zheng W. Endometrial glandular dysplasia with frequent p53 gene mutation: a genetic evidence supporting its precancer nature for endometrial serous carcinoma. Clin Cancer Res. 2008;14:2263–9.

    Article  PubMed  CAS  Google Scholar 

  62. Enomoto T, Fujita M, Inoue M, Rice JM, Nakajima R, Tanizawa O, Nomura T. Alterations of the p53 tumor suppressor gene and its association with activation of the c-K-ras-2 proto-oncogene in premalignant and malignant lesions of the human uterine endometrium. Cancer Res. 1993;53:1883–8.

    PubMed  CAS  Google Scholar 

  63. Pavlakis K, Messini I, Vrekoussis T, Panoskaltsis T, Chrissanthakis D, Yiannou P, Stathopoulos EN. PTEN-loss and nuclear atypia of EIN in endometrial biopsies can predict the existence of a concurrent endometrial carcinoma. Gynecol Oncol. 2010;119:516–9.

    Article  PubMed  Google Scholar 

  64. Kong D, Suzuki A, Zou TT, Sakurada A, Kemp LW, Wakatsuki S, Yokoyama T, Yamakawa H, Furukawa T, Sato M, Ohuchi N, Sato S, Yin J, Wang S, Abraham JM, Souza RF, Smolinski KN, Meltzer SJ, Horii A. PTEN1 is frequently mutated in primary endometrial carcinomas. Nature genetics. 1997;17:143–4.

    Article  PubMed  CAS  Google Scholar 

  65. Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, Weng LP, Eng C. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 2000;92(11):924–30.

    Article  PubMed  CAS  Google Scholar 

  66. Risinger JI, Hayes K, Maxwell GL, Carney ME, Dodge RK, Barrett JC, Berchuk A. PTEN Mutation in endometrial cancers is associated with favorable clinical and pathological characteristics. Clin Cancer Res. 1998;4:3005–10.

    PubMed  CAS  Google Scholar 

  67. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK. Effective use of PI3K and MEK inhibitors to treat mutant K-ras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14(12):1351–6.

    Article  PubMed  CAS  Google Scholar 

  68. Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H, Wang S, Garcia-Echeverria C, Maira SM. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci U S A. 2009;106(52):22299–304.

    Article  PubMed  CAS  Google Scholar 

  69. Shoji K, Oda K, Nakagawa S, Hosokawa S, Nagae G, Uehara Y, Sone K, Miyamoto Y, Hiraike H, Hiraike-Wada O, Nei T, Kawana K, Kuramoto H, Aburatani H, Yano T, Taketani Y. The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer. 2009;101(1):145–8.

    Article  PubMed  CAS  Google Scholar 

  70. Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65(23):10669–73.

    Article  PubMed  CAS  Google Scholar 

  71. Hayes MP, Douglas W, Ellenson LH. Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma. Gynecol Oncol. 2009;113(3):370–3.

    Article  PubMed  CAS  Google Scholar 

  72. Miyake T, Yoshino K, Enomoto T, Takata T, Ugaki H, Kim A, Fujiwara K, Miyatake T, Fujita M, Kimura T. PIK3CA gene mutations and amplifications in uterine cancers, identified by methods that avoid confounding by PIK3CA pseudogene sequences. Cancer Lett. 2008;261(1):120–6.

    Article  PubMed  CAS  Google Scholar 

  73. Kanamori Y, Kigawa J, Itamochi H, Himada M, Takahashi M, Kamazawa S, Sato S, Akeshima R, Terakawa N. Correlation between loss of PTEN expression and AKT phosphorylation in endometrial carcinoma. Clin Cancer Res. 2001;7:892–5.

    PubMed  CAS  Google Scholar 

  74. Dowling RJO, Pollak M, Sonenberg N. Current status and challenges associated with targeting mTOR for cancer therapy. Biodrugs. 2009;23(2):77–91.

    Article  PubMed  CAS  Google Scholar 

  75. Maira SM, Staauffer F, Schnell C, Garcia-Escheverria C. PI3K inhibitors for cancer treatment: where do we stand? Biochem Soc Trans. 2009;37:265–72.

    Article  PubMed  CAS  Google Scholar 

  76. Lui TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM, Garcia-Echevrria C, Yung WK. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted ­antitumor activities in human gliomas. Mol Cancer Ther. 2009;8(8):2204–10.

    Article  Google Scholar 

  77. Lacey JV, Yang H, Gaudet MM, Dunning A, Lissowska J, Sherman ME, Peplonska B, Brinton LA, Healey CS, Ahmed S, Pharoah P, Easton D, Chanock S, Garcia-Closas M. Endometrial cancer and genetic variation in PTEN, PIK3CA, AKT1, MLH1, and MSH2 within a population-based case–control study. Gynecol Oncol. 2011;120:167–73.

    Article  PubMed  CAS  Google Scholar 

  78. Growdon WB, Roussel BN, Scialabba VL, Foster R, Dias-Santagata D, Iafrate AJ, Ellisen LW, Tambouret RH, Rueda BR, Borger DR. Tissue-specific signature of activating PIK3CA and RAS mutations in carcinosarcomas of gynecologic origin. Gynecol Oncol. 2011 Apr;121(1):212–7.

    Google Scholar 

  79. Von Hoff DD, Stephenson JJ, Rosen P, Loesch DM, Borad MJ, Anthony S, Jameson G, Brown S, Cantafio N, Richards DA, Fitch TR, Wasserman E, Fernandez C, Green S, Sutherland W, Bittner M, Alarcon A, Mallery D, Penny R. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol. 2010;28(33):4877–83.

    Article  Google Scholar 

  80. McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med. 2011;364(4):340–50.

    Article  PubMed  CAS  Google Scholar 

  81. Doroshow JH. Selecting Systemic Cancer therapy one patient at a time: Is there a role for molecular profiling of individual patients with advanced solid tumors? J Clin Oncol. 2010;28(33):4869–71.

    Article  PubMed  Google Scholar 

  82. Moxley KM, McMeekin DS. Endometrial carcinoma: a review of chemotherapy, drug resistance, and the search for new agents. Oncologist. 2010;13:1026–33.

    Article  Google Scholar 

  83. Hahn HS, Yoon SG, Hong JS, et al. Conservative treatment with progestin and pregnancy outcomes in endometrial cancer. Int J Gynecol Cancer. 2009;19: 1068–73.

    Article  PubMed  Google Scholar 

  84. Zhang Z, Dong L, Sui L, Yang Y, Liu X, Yu Y, Zhu Y, Feng Y. Metformin reverses progestin resistance in endometrial cancer cells by downregulating Glol expression. Int J Gynecol Cancer. 2011;21:213–21.

    Article  PubMed  Google Scholar 

  85. Milam MR, Soliman PT, Chung LH, Schmeler KM, Bassett RL, Broaddus RR, Lu KH. Loss of phosphatase and tensin homologue deleted on chromosome 10 and phosphorylation of mammalian target of rapamycin are associated with progesterone refractory endometrial hyperplasia. Int J Gyn Cancer. 2008;18:146–51.

    Article  CAS  Google Scholar 

  86. Fleming GI, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, Adler LM, Berek JS, Chapman JA, DiSilvestro PA, Horowitz IR, Fiorica JV. Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: A Gynecologic Oncology Group Study. Gynecol Oncol. 2010;116: 15–20.

    Article  PubMed  CAS  Google Scholar 

  87. Covens AL, Filiaci V, Gersell D, Lutman CV, Bonebrake A, Lee YC. Phase II study of fulvestrant in recurrent/metastatic endometrial carcinoma: a Gynecologic Oncology Group Study. Gynecol Oncol. 2011;120:185–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annekathryn Goodman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goodman, A., Bradford, L.S., Garrett, L.A. (2012). Uterine Cancer: The Influence of Genetics and Environment on Cell Cycling Pathways in Cancer. In: Bologna, M. (eds) Biotargets of Cancer in Current Clinical Practice. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-61779-615-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-615-9_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-614-2

  • Online ISBN: 978-1-61779-615-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics