Skip to main content

Future Application of Integrative Therapies for Sepsis: Bench and Experimental Animal Models

  • Chapter
  • First Online:
Book cover Integrative Therapies in Lung Health and Sleep

Part of the book series: Respiratory Medicine ((RM,volume 4))

  • 895 Accesses

Abstract

Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection and represents the leading cause of death in the intensive care unit. Current therapies for the treatment of sepsis are still largely supportive, with an anticoagulant agent—activated protein C—as the only Food and Drug Administration (FDA)-approved drug for patients with severe sepsis. In animal models of sepsis (induced by cecal ligation and puncture), a nonhistone nucleosomal protein termed “high-mobility group box-1” (HMGB1) has recently been established as a late mediator with a wider therapeutic window than early pro-inflammatory cytokines. The discovery of HMGB1 as a critical mediator of sepsis has initiated a new area of investigation involving the development of experimental therapies. Here, we briefly summarize evidence from bench research and experimental animal models that support integrative strategies, such as vagus nerve stimulation and herbal remedies, as potential therapies for the clinical management of human sepsis. It is important that clinicians be informed about this recent bench and animal research since new clinical interventions will be derived from this new information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang H, Zhu S, Zhou R, et al. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med. 2008;10:e32.

    Article  PubMed  Google Scholar 

  2. Wang H, Ward MF, Sama AE. Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock. 2009;32:348–57.

    Article  PubMed  CAS  Google Scholar 

  3. Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

    Article  PubMed  CAS  Google Scholar 

  4. Dellinger RP, Levy MM, Carlet JM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.

    Article  PubMed  Google Scholar 

  5. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–71.

    Article  PubMed  CAS  Google Scholar 

  6. Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–24.

    Article  PubMed  CAS  Google Scholar 

  7. Lefering R, Neugebauer EA. Steroid controversy in sepsis and septic shock: a meta-analysis. Crit Care Med. 1995;23:1294–303.

    Article  PubMed  CAS  Google Scholar 

  8. Van den BG, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  Google Scholar 

  9. Van den BG, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449–61.

    Article  Google Scholar 

  10. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.

    Article  PubMed  CAS  Google Scholar 

  11. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  PubMed  CAS  Google Scholar 

  12. Sama AE, D’Amore J, Ward MF, et al. Bench to bedside: HMGB1-a novel proinflammatory cytokine and potential therapeutic target for septic patients in the emergency department. Acad Emerg Med. 2004;11:867–73.

    PubMed  Google Scholar 

  13. Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.

    Article  PubMed  CAS  Google Scholar 

  14. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt-Supprian M, Murphy C, While B, et al. Activated protein C inhibits tumor necrosis factor and macrophage migration inhibitory factor production in monocytes. Eur Cytokine Netw. 2000;11:407–13.

    PubMed  CAS  Google Scholar 

  16. Brueckmann M, Hoffmann U, De Rossi L, et al. Activated protein C inhibits the release of macrophage inflammatory protein-1-alpha from THP-1 cells and from human monocytes. Cytokine. 2004;26:106–13.

    Article  PubMed  CAS  Google Scholar 

  17. Gupta A, Rhodes GJ, Berg DT, et al. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. Am J Physiol Renal Physiol. 2007;293:F245–54.

    Article  PubMed  CAS  Google Scholar 

  18. Cao C, Gao Y, Li Y, et al. The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b. J Clin Invest. 2010;120:1971–80.

    Article  PubMed  CAS  Google Scholar 

  19. Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock—a review of laboratory models and a proposal. J Surg Res. 1980;29:189–201.

    Article  PubMed  CAS  Google Scholar 

  20. Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999;285:732–6.

    Article  PubMed  CAS  Google Scholar 

  21. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  PubMed  CAS  Google Scholar 

  22. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.

    Article  PubMed  CAS  Google Scholar 

  23. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    Article  PubMed  CAS  Google Scholar 

  24. Baggiolini M, Loetscher P. Chemokines in inflammation and immunity. Immunol Today. 2000;21:418–20.

    Article  PubMed  CAS  Google Scholar 

  25. Balkwill F. Cytokines—soluble factors in immune responses. Curr Opin Immunol. 1988;1:241–9.

    Article  PubMed  CAS  Google Scholar 

  26. Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987;330:662–4.

    Article  PubMed  CAS  Google Scholar 

  27. Dinarello CA, Thompson RC. Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol Today. 1991;12:404–10.

    Article  PubMed  CAS  Google Scholar 

  28. Heinzel FP. The role of IFN-gamma in the pathology of experimental endotoxemia. J Immunol. 1990;145:2920–4.

    PubMed  CAS  Google Scholar 

  29. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.

    Article  PubMed  CAS  Google Scholar 

  30. Ivanov S, Dragoi AM, Wang X, et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 2007;110:1970–81.

    Article  PubMed  CAS  Google Scholar 

  31. Rendon-Mitchell B, Ochani M, Li J, et al. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol. 2003;170:3890–7.

    PubMed  CAS  Google Scholar 

  32. Tang D, Shi Y, Kang R, et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol. 2007;81:741–7.

    Article  PubMed  CAS  Google Scholar 

  33. Yang H, Ochani M, Li J, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA. 2004;101:296–301.

    Article  PubMed  CAS  Google Scholar 

  34. Wang H, Yang H, Czura CJ, et al. HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med. 2001;164:1768–73.

    PubMed  CAS  Google Scholar 

  35. Rouhiainen A, Kuja-Panula J, Wilkman E, et al. Regulation of monocyte migration by amphoterin (HMGB1). Blood. 2004;104:1174–82.

    Article  PubMed  CAS  Google Scholar 

  36. Yang D, Chen Q, Yang H, et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol. 2007;81:59–66.

    Article  PubMed  CAS  Google Scholar 

  37. Dumitriu IE, Bianchi ME, Bacci M, et al. The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol. 2007;81:84–91.

    Article  PubMed  CAS  Google Scholar 

  38. Orlova VV, Choi EY, Xie C, et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J. 2007;26:1129–39.

    Article  PubMed  CAS  Google Scholar 

  39. Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8:487–96.

    Article  PubMed  CAS  Google Scholar 

  40. Silva E, Arcaroli J, He Q, et al. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Med. 2007;33:1829–39.

    Article  PubMed  CAS  Google Scholar 

  41. Park JS, Svetkauskaite D, He Q, et al. Involvement of TLR 2 and TLR 4 in cellular activation by high mobility group box 1 protein (HMGB1). J Biol Chem. 2004;279:7370–7.

    Article  PubMed  CAS  Google Scholar 

  42. Yu M, Wang H, Ding A, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26:174–9.

    Article  PubMed  CAS  Google Scholar 

  43. Park JS, Gamboni-Robertson F, He Q, et al. High mobility group box 1 protein interacts with multiple toll-like receptors. Am J Physiol Cell Physiol. 2006;290:C917–24.

    Article  PubMed  CAS  Google Scholar 

  44. Kokkola R, Andersson A, Mullins G, et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol. 2005;61:1–9.

    Article  PubMed  CAS  Google Scholar 

  45. Pedrazzi M, Patrone M, Passalacqua M, et al. Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling. J Immunol. 2007;179:8525–32.

    PubMed  CAS  Google Scholar 

  46. Yamoah K, Brebene A, Baliram R, et al. High-mobility group box proteins modulate tumor necrosis factor-alpha expression in osteoclastogenesis via a novel deoxyribonucleic acid sequence. Mol Endocrinol. 2008;22:1141–53.

    Article  PubMed  CAS  Google Scholar 

  47. Fiuza C, Bustin M, Talwar S, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–60.

    Article  PubMed  CAS  Google Scholar 

  48. Treutiger CJ, Mullins GE, Johansson AS, et al. High mobility group 1 B-box mediates activation of human endothelium. J Intern Med. 2003;254:375–85.

    Article  PubMed  CAS  Google Scholar 

  49. Lv B, Wang H, Tang Y, et al. High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1. Thromb Haemost. 2009;102:352–9.

    PubMed  Google Scholar 

  50. Qin S, Wang H, Yuan R, et al. Role of HMGB1 in apoptosis-mediated sepsis lethality. J Exp Med. 2006;203:1637–42.

    Article  PubMed  CAS  Google Scholar 

  51. Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10:1216–21.

    Article  PubMed  CAS  Google Scholar 

  52. O’Connor KA, Hansen MK, Rachal PC, et al. Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects. Cytokine. 2003;24:254–65.

    Article  PubMed  Google Scholar 

  53. Sappington PL, Yang R, Yang H, et al. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology. 2002;123:790–802.

    Article  PubMed  CAS  Google Scholar 

  54. Abraham E, Arcaroli J, Carmody A, et al. HMG-1 as a mediator of acute lung inflammation. J Immunol. 2000;165:2950–4.

    PubMed  CAS  Google Scholar 

  55. Ueno H, Matsuda T, Hashimoto S, et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med. 2004;170:1310–6.

    Article  PubMed  Google Scholar 

  56. Lin X, Yang H, Sakuragi T, et al. Alpha-chemokine receptor blockade reduces high mobility group box 1 protein-induced lung inflammation and injury and improves survival in sepsis. Am J Physiol Lung Cell Mol Physiol. 2005;289:L583–90.

    Article  PubMed  CAS  Google Scholar 

  57. Rowe SM, Jackson PL, Liu G, et al. Potential role of high mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med. 2008;178(8):822–31.

    Article  PubMed  CAS  Google Scholar 

  58. Wang H, Yang H, Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med. 2004;255:320–31.

    Article  PubMed  CAS  Google Scholar 

  59. Eskandari MK, Bolgos G, Miller C, et al. Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J Immunol. 1992;148:2724–30.

    PubMed  CAS  Google Scholar 

  60. Kahn J. Principles and practice of electrotherapy. 2nd ed. New York: Churchill Livingstone; 1991.

    Google Scholar 

  61. Scognamillo-Szabo MV, Bechara GH, Ferreira SH, et al. Effect of various acupuncture treatment protocols upon sepsis in Wistar rats. Ann N Y Acad Sci. 2004;1026:251–6.

    Article  PubMed  CAS  Google Scholar 

  62. Ainsworth L, Budelier K, Clinesmith M, et al. Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain. 2006;120:182–7.

    Article  PubMed  Google Scholar 

  63. Vance CG, Radhakrishnan R, Skyba DA, et al. Transcutaneous electrical nerve stimulation at both high and low frequencies reduces primary hyperalgesia in rats with joint inflammation in a time-dependent manner. Phys Ther. 2007;87:44–51.

    Article  PubMed  Google Scholar 

  64. Rosas-Ballina M, Ochani M, Parrish WR, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA. 2008;105:11008–13.

    Article  PubMed  CAS  Google Scholar 

  65. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    Article  PubMed  CAS  Google Scholar 

  66. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.

    Article  PubMed  CAS  Google Scholar 

  67. Huston JM, Gallowitsch-Puerta M, Ochani M, et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med. 2007;35:2762–8.

    Article  PubMed  Google Scholar 

  68. Pavlov VA, Ochani M, Yang LH, et al. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med. 2007;35:1139–44.

    Article  PubMed  CAS  Google Scholar 

  69. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, et al. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med. 2008;14:567–74.

    Article  PubMed  CAS  Google Scholar 

  70. Su X, Matthay MA, Malik AB. Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. J Immunol. 2010;184:401–10.

    Article  PubMed  CAS  Google Scholar 

  71. Wang H, Li W, Li J, et al. The aqueous extract of a popular herbal nutrient supplement, Angelica sinensis, protects mice against lethal endotoxemia and sepsis. J Nutr. 2006;136:360–5.

    PubMed  CAS  Google Scholar 

  72. Li W, Li J, Ashok M, et al. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. J Immunol. 2007;178:3856–64.

    PubMed  CAS  Google Scholar 

  73. Li W, Ashok M, Li J, et al. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS One. 2007;2:e1153.

    Article  PubMed  Google Scholar 

  74. Zhu S, Li W, Li J, et al. Caging a beast in the inflammation arena: use of Chinese medicinal herbs to inhibit a late mediator of lethal sepsis, HMGB1. Int J Clin Exp Med. 2008;1:64–79.

    PubMed  CAS  Google Scholar 

  75. Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr. 2003;133:3275S–84.

    PubMed  CAS  Google Scholar 

  76. Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J Nutr. 2004;134:3431S–40.

    PubMed  CAS  Google Scholar 

  77. Vita JA. Tea consumption and cardiovascular disease: effects on endothelial function. J Nutr. 2003;133:3293S–7.

    PubMed  CAS  Google Scholar 

  78. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992;21:334–50.

    Article  PubMed  CAS  Google Scholar 

  79. Wheeler DS, Lahni PM, Hake PW, et al. The green tea polyphenol epigallocatechin-3-gallate improves systemic hemodynamics and survival in rodent models of polymicrobial sepsis. Shock. 2007;28:353–9.

    Article  PubMed  CAS  Google Scholar 

  80. Ji XY, Tan BK, Zhu YZ. Salvia miltiorrhiza and ischemic diseases. Acta Pharmacol Sin. 2000;21:1089–94.

    PubMed  CAS  Google Scholar 

  81. Cheng TO. Cardiovascular effects of Danshen. Int J Cardiol. 2007;121:9–22.

    Article  PubMed  Google Scholar 

  82. Wu TW, Zeng LH, Fung KP, et al. Effect of sodium tanshinone IIA sulfonate in the rabbit myocardium and on human cardiomyocytes and vascular endothelial cells. Biochem Pharmacol. 1993;46:2327–32.

    Article  PubMed  CAS  Google Scholar 

  83. Yang S, Chung CS, Ayala A, et al. Differential alterations in cardiovascular responses during the progression of polymicrobial sepsis in the mouse. Shock. 2002;17:55–60.

    Article  PubMed  CAS  Google Scholar 

  84. Kong CW, Tsai K, Chin JH, et al. Magnolol attenuates peroxidative damage and improves survival of rats with sepsis. Shock. 2000;13:24–8.

    Article  PubMed  CAS  Google Scholar 

  85. Liu X, Zheng X, Long Y, et al. Dual targets guided screening and isolation of Kukoamine B as a novel natural anti-sepsis agent from traditional Chinese herb Cortex lycii. Int Immuno­pharmacol. 2011;11(1):110–20.

    Article  PubMed  CAS  Google Scholar 

  86. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985;229:869–71.

    Article  PubMed  CAS  Google Scholar 

  87. Ziegler EJ, Fisher Jr CJ, Sprung CL, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N Engl J Med. 1991;324:429–36.

    Article  PubMed  CAS  Google Scholar 

  88. Ziegler EJ, McCutchan JA, Fierer J, et al. Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med. 1982;307:1225–30.

    Article  PubMed  CAS  Google Scholar 

  89. Abraham E, Wunderink R, Silverman H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA. 1995;273:934–41.

    Article  PubMed  CAS  Google Scholar 

  90. Cohen J. Adjunctive therapy in sepsis: a critical analysis of the clinical trial programme. Br Med Bull. 1999;55:212–25.

    Article  PubMed  CAS  Google Scholar 

  91. Yang CS, Chen L, Lee MJ, et al. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev. 1998;7:351–4.

    PubMed  CAS  Google Scholar 

  92. Mantell LL, Parrish WR, Ulloa L. Hmgb-1 as a therapeutic target for infectious and inflammatory disorders. Shock. 2006;25:4–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Arvin Jundoria and Dr. Qiuping Zhou for critical reading of the manuscript. Work in authors’ laboratory was supported by grants from the National Institutes of Health, National Institute of General Medical Science (R01GM063075), and the National Center of Complementary and Alternative Medicine (R01AT05076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichao Wang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, H., Sama, A.E., Ward, M.F., Miele, K.L., Zhu, S. (2012). Future Application of Integrative Therapies for Sepsis: Bench and Experimental Animal Models. In: Chlan, L., Hertz, M. (eds) Integrative Therapies in Lung Health and Sleep. Respiratory Medicine, vol 4. Humana Press. https://doi.org/10.1007/978-1-61779-579-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-579-4_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-578-7

  • Online ISBN: 978-1-61779-579-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics